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Abstract. In many technical issues, the processes of interest could be
precisely modelled if only all the relevant information were available.
On the other hand, detailed modelling is frequently not feasible due
to the cost of acquiring appropriate data. The paper discusses the way
self-organising maps and multilayer perceptrons can be used to develop
two-stage algorithm for autonomous construction of prediction models.
The problem used as a case study is the problem of heat demand predic-
tion in a district heating company. Additionally, because of non-standard
evaluation of prediction models, evolutionary construction of multilayer
perceptrons has been applied.

1 Introduction

The results of modelling strongly depend on the quality and accuracy of data
used to devise the models. At the same time, only limited number of data pat-
terns can be acquired due to technical and financial limitations.

The paper proposes the way existing data can be used to devise prediction
models. Heat consumption by the customers of a district heating company is
used as a case study of the process that could be precisely analysed for each
consumer separately. However, this approach would require a separate project
to be performed for each out of hundreds or thousands of consumers separately.
Obviously, it remains unfeasible to carry out detailed engineering calculations
for each of them. Among the reasons lack of detailed data and significant cost
of acquiring it is not of least importance. Before actual solutions proposed to
tackle this issue are described a brief overview of district heating is presented.

Modern district heating [13] companies transmitting heat through the pipeline
system from the heat sources to heat consumers face new challenges. The devel-
opment towards more competitive energy markets means that many consumers
may decide to resign from district heating services based on central heat sources
and replace them with individual boiler systems. Therefore, utility companies
have to improve service quality and minimise its price [1]. At the same time, the
most significant part of district heating cost is usually the cost of producing the
heat. To reach these goals means to optimise heat supply. However, the latter
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objective can not be fulfilled without detailed understanding of consumers’ de-
mand and the way it changes over the time. Moreover, because of limited speed
of water flow, on-site monitoring of heat consumers is not enough to control heat
production appropriately. Thus, there is a growing need for demand prediction.

When district heating systems were developed, demand for heat significantly
depended on ambient temperature. However, improved thermal properties of
modern buildings result in increased share of hot tap water in overall heat con-
sumption. This part of demand is not directly related to ambient temperature.
Still, many buildings constructed using traditional technologies continue to con-
sume majority of heat for space heating. Therefore, due to inherently different
nature of processes involved, results of works regarding load prediction in elec-
trical power systems can not be directly applied for district heating systems.

Although detailed calculations are possible to carry out for each consumer,
it would take too much resources to acquire all necessary properties of each
building to perform them. At the same time, it remains unclear whether all the
consumers, in spite of diverse thermal properties can be approximated by a single
model. The remainder of this paper aims to propose an alternative approach that
takes into account different profiles of consumers, but resigns from performing
exhaustive engineering calculations.

The work investigates yearly heat demand profiles and continues previous
research on power demand prediction [4, 5]. The primary objective is to develop
a set of prediction models capable of forecasting heat demand in different groups
of consumers. To achieve this goal, groups of consumers with similar demand
profile are identified first, so as to build prediction models for these groups next.

The first part of the paper presents the way self-organising maps [7, 8] can
provide valuable insight into typical heat demand profiles. The information avail-
able in sales database system has been retrieved and transformed into core data
patterns. Thus, time series of sales volume for each consumer has been obtained.
Self-organising maps have been applied to build a network of neurons represent-
ing typical sales profiles and enable visualisation of consumers needs.

The second part of the paper discusses the use of multilayer perceptrons
to predict detailed heat demand. These models are built separately for differ-
ent groups of consumers identified by self-organising map. In order to support
non-standard error measures and address automatic architecture selection, evo-
lutionary construction of MLP has been applied. Thus, the way heterogeneous
solution built of self-organising maps, multilayer perceptrons and evolutionary
programming can be applied has been proposed.

The remainder of this paper is organised as follows:

– section 2 describes the data set and the problem itself,

– neural networks-based approach is outlined in section 3, it contains two
subsections describing the phases of the algorithm proposed, namely SOM-
based identification of consumer groups, and construction of MLP-based
prediction models for each of the groups,

– section 4 summarises the whole work.
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2 Data set and problem description

The problem analysis is based on the data set from one of the Polish district
heating utilities. Like other utilities of this type, it provides heat consumers with
heat required for space heating and hot tap water purposes. The challenges faced
by this company include proper reaction to substantial changes in heat demand.
Significant period of time is required to distribute heat from heat source to
distant consumers, in some cases it may reach 3 hours. During this time, demand
for hot tap water may largely change, as it reaches its peak in early morning
and late evening. Therefore to ensure adequate heat supply means to predict
demand for heat. However, this demand can be expected to change for different
consumers’ not equally. For instance, the heat demand of a bank may depend on
ambient temperature only, while the needs of a hotel are bound to be significantly
increased at peak hours every day.

To analyse the problem the monthly sales information from the billing system
for the period of last four years has been used. Unlike other data sets describing
consumers, the billing data provides complete information for virtually every
consumer ci ∈ C, C = {ci : i = 1, ..., N}.

For each consumer average monthly heat consumption has been calculated
first. After detailed analysis N = 1109 sales profiles have been obtained. Every
sales profile of a consumer ci, i = 1, ..., N is represented by a vector Si =
(si,1, ..., si,12), where si,m denotes the average heat sale to consumer i during
month m. Months are indexed in a traditional way i.e. i = 1 stands for January.

Furthermore, each sales profile has been normalised so as to obtain average
demand profile Di = (di,1, di,2, ..., di,12) out of original consumer profile Si as
follows:

di,k =
si,k

∑m=12
m=1 si,m

, k = 1, ..., 12 (1)

Thus, N = 1109 normalised demand profiles have been obtained. These cor-
respond to the average yearly consumption of heat of each consumer. Some of
demand profiles are depicted on fig. 1.

While, in general, demand profiles reflect space heating needs resulting from
average ambient temperatures, one can observe that minimal demand is reached
by the consumers in the period between May and August. Similarly, peak heat
consumption is attained between December and March. In other words, the ex-
act time location of minimal and maximal heat consumption significantly varies
among consumers. What is of outstanding importance even normalised monthly
heat sales can differ as much as 300% among sample consumers randomly se-
lected from the whole data set.

3 Neural networks and demand profile identification

While a separate demand profile Di for each consumer could be devised, the
problem remains to identify common profile groupings. The latter are necessary
for further market analysis, for instance to evaluate the impact of new consumers
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Fig. 1. Sample demand profiles Di of different consumers

on the district heating system in view of prospective heat demand. Furthermore,
there is a need to predict heat demand of a consumer to optimise heat supply.
Separate models for each consumer are not feasible, however. Still, such pre-
diction models can be devised for groups of consumers with similar behaviour
regarding heat sales profile. Therefore, the question is whether the observed va-
riety of demand profiles can be explained by the existence of a number of typical
demand profiles among consumers. In order to answer this question groupings
of demand profiles are located first. Prediction models are constructed using
multilayer perceptrons then.

3.1 Demand profiles and SOM-based approach

Algorithm overview Different approaches could be proposed to determine
possible groupings of demand profiles. Among them numerous clustering algo-
rithms can be listed. Both agglomerative and partitioning algorithms like com-
plete linkage or k-means algorithm could be applied [10]. However, significant
drawbacks of this approach would be the lack of straightforward visualisation
for multidimensional data groupings and limited potential for the identification
of natural modality of the set. Another approach proposes the use of cooper-
ative agents in each consumer to tackle the optimisation of heat supply [1].
Unfortunately, the latter method requires each consumer to be supplied with
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heat exchange substation capable of running such software agents. This would
inevitably result in significant expenditures of a company.

Therefore, in order to answer the problem of demand profiles identification,
self-organising neural networks have been applied. The purpose of using self-
organised neural networks, namely self-organised maps (SOMs) [8], is to provide
measure of locating demand pattern groupings i.e. typical profiles D̂k, k << N

that would explain diversity in the population of Di, i = 1, .., N demand profiles.
At the same time, spatial distribution of typical profiles and their relation to
existing marketing consumer categories are to be considered.

The following solutions have been applied:

– two-dimensional square lattice of J neurons,
– demand profiles Di, i = 1, .., N were used as input patterns.

Therefore, each neuron j located in the lattice is represented by a weight vector

wj = [wj,1, wj,2, .., wj,12]
T , j = 1, 2, ..., J. (2)

During the learning process neurons are tuned to the input patterns. More-
over, the weight update algorithm tunes the weights of the winning neurons and
some of its spatially close neighbour neurons. Thus, topographical map of input
space is being created [7]. In other words, as a result of this cooperative process,
both input pattern groupings and their relation to each other can be identified.

Results A number of computation series have been performed, using differ-
ent weight update algorithms. Not only standard Winner-Takes-All (WTA) [7,
8], but also Winner Takes All with Conscience (CWTA) [7] and Neural Gas
(NGAS) [11] algorithms have been used to tune neuron weights. The two lat-
ter algorithms aim to overcome deficiencies of standard WTA algorithm. Among
these deficiencies of standard WTA weight update algorithm, overrepresentation
of regions with low input density is not of least importance [7].

To illustrate the results of computations, the computations performed using
NGAS method have been selected. In all cases, for each neuron j, j = 1, ..., J in
the lattice, at the end of tuning phase, the winning count Yj has been calculated
in the following manner:

Yj =

N
∑

i=1

eval(i, j) (3)

while

eval(i, j) =

{

1 if ‖ Di − wj ‖= mink=1,...,J ‖ Di − wk ‖
0 otherwise

(4)

Thus Yj : j = 1, ..., J denotes the number of input patterns that are the most
similar to the weight vector wj in terms of Euclidean distance. Fig. 1 depicts
weight vectors wj such that Yj > 20, after computations performed for a lattice
of J = 100 neurons, using NGAS method, N = 616. Each profile corresponds to
a single neuron. Its (x, y) location on the lattice is provided in the figure legend.
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Obtained results show that a number of distinctive demand profiles providing
centroids of input consumer’s profiles have been identified. This suggests that
observed diversity in the input patterns can be explained by underlying typical
demand profiles. In addition, some 40% of neurones remain virtually inactive
i.e. Yj ≤ 2, in spite of using NGAS algorithm that promotes diversity among
neurones. In other words, when dealing with heat demand prediction, it is enough
to concentrate on a limited number of consumers demand patterns.

The profile groupings identified in the form of weight vectors reflect the di-
versity of consumers’ demand profiles. In particular, one may notice that peak
consumption is reached in January, February or December, depending on result-
ing D̂k profile considered.

Fig. 2. Demand profiles represented by weight vectors of the winning neurons.

Additionally, one of previous works [6] investigates the relation between mar-
keting consumer category and its location on the lattice. The categories discussed
were FH standing for family houses, C standing for commercial buildings, S
standing for schools, H standing for hotels and HS for hospitals. It is worth
emphasising that detailed analysis of contextual map [7] built on the SOM net-
work has shown limited impact of consumer’s category on its demand profile.
In general, some consumer categories are represented by a consistent, relatively
limited part of contextual map. In other words, consumers of these categories
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share a set of similar demand profiles. These include hotels. On the other hand,
family houses demands can be related to the largest number of neurons. In fact,
no more than 10% of FH consumers are represented by a single neuron on the
SOM lattice. As a consequence, it remains impossible to create a single predic-
tion model for each marketing consumer category, as the diversity of demand
profiles may be too large for the consumers of some categories.

To sum up, previous investigation of the relation between consumer’s cate-
gory and demand profiles of consumers of the category shows that similarity in
demand profiles is to some extent related to consumer’s category. On the other
hand, diverse typical demand profiles have been identified by the SOM approach,
as depicted on fig.2. Therefore, separate prediction models should be constructed
for different groups of consumers as defined by the proximity to weight vectors
of SOM neurones [6]. This approach allows to address by a single prediction
model a group of consumers displaying similar demand profile. This similarity of
a demand profile, characteristic for all the consumers related to a neuron, may
result from real consumer’s category, but also thermal properties of buildings
and the share of space heating needs in overall demand.

Therefore, the next step is to construct a separate prediction model for each
group of consumers Ci. More formally:

Ci =

{

{cn :‖ Dn − wi ‖= minj=1,...,J;j:Yj≥10 ‖ Dn − wj ‖} when Yi ≥ 10
∅ otherwise

(5)

One can easily see that C = C1 ∪ C2 ∪ ... ∪ CJ and Ci ∩ Cj = ∅, i 6= j; i, j =
1, ..., J . For each of the so defined Ci : i = 1, ..., J ∧ Ci 6= ∅ sets of consumers a
separate prediction model based on multilayer perceptron is constructed in the
next stage. The role of each prediction model is to predict heat consumption
for consumers ci ∈ Ck from its group. As the consumers classified to each set
Ci share similar demand profile, their overall thermal properties and proportion
of heat consumption for hot tap water are similar as well. Therefore, thanks to
SOM approach groups of consumers suitable for being represented by a single
prediction model have been established.

3.2 Multilayer perceptrons to predict heat demand

Algorithm overview The problem of electrical power demand prediction has
been analysed for over 40 years. Different methods based on pattern recognition,
knowledge-based systems, statistic methods and artificial neural networks have
been proposed and applied during this period [2, 4, 5, 9, 12]. For an overview of
the subject see [9]. Some of the best results have been obtained using neural net-
works [2]. Heat demand prediction may seem to be a similar problem. However,
it depends on its own set of factors, including thermal properties of a building
and temperature required to ensure human comfort which results from the pur-
poses the building is used for. Thus, unfortunately the prediction models devised
for power demand prediction can not be applied for heat demand prediction.

In our work, in order to construct heat prediction models, MLP networks
have been applied. For each non-empty group of consumers Cj , j = 1, ..., J a
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single MLP network is constructed. To train the neural networks, evolutionary
construction of multilayer perceptrons ECoMLP has been applied [4, 5].

The purpose of the algorithm is to minimise the prediction error measured on
a learning set and obtain networks with generalisation abilities, thus making it
possible to use the final networks for the purpose of load prediction. In our case, it
will be used to predict heat demand at selected consumers belonging to the same
group Cj . Detailed time series available for selected consumers of the Cj group
has been used to construct both learning and testing set. This contains heat
consumption at each hour of selected months combined with average ambient
temperature at this hour. The primary objective it to train multilayer perceptron
to predict heat demand at each hour depending on ambient temperature, time of
the day and day of week. Additionally selected hours are marked as peek hours
in terms of hot tap water demands.

The motivation for using evolutionary method is as follows:

– The problem requires numerous multilayer perceptrons to be constructed,
as there is a need for a separate MLP network for each group Ci,

– Because of the number of networks involved, no trial-and-error architecture
selection can be accepted. Similarly architecture selection can not rely on
human expert intervention

– The objective function is not a standard mean square error. The problem
may require non-differentiable and even non-continuous error measure for
the reasons listed below.

Before sample results are presented an overview of evolutionary algorithm
used to construct the multilayer perceptrons is presented. The algorithm is a
result of previous works [4, 5] and is based on the concepts of evolutionary pro-
gramming (EP)[3] and self-adaptive control of algorithm settings.

Evolutionary construction of multilayer perceptrons ECoMLP

– t := 0,
– create initial population of MLPs

Φ(0) = {φi : i = 1, ..., N} satisfying the following assumptions:
• fixed number of input layer nodes card(L0) and output layer neurones

card(LM ) defined by the problem,
• random number of hidden neurones,
• randomly chosen connection weights,

– in a sequence of generations construct consecutive populations Φ(t) by:
• applying standard EP selection and promoting the best N

2 networks to
the next population, duplicating them and producing child subpopula-
tion thereafter; the networks are evaluated using fitness function F (),

• affecting child networks with mutation operator composed of:
∗ hidden node mutation (add or delete neuron with pa and pd proba-

bility),
∗ weight mutation in accordance with the learning rule of each indi-

vidual (see below),
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∗ mutation of learning rule with probability of plr,
– t := t + 1.

As far as the number of hidden neurones is concerned, it is randomly chosen
from a predefined range. Then it can be changed by the mutation operator within
the same range. The weight mutation has been strictly based on the form of the
learning rule controlling the behaviour of the mutation operator.

Learning rule and weight mutation

– let us define for each individual in the population φi ∈ Φ(t) learning rule
(Meti, Pari) where:
• Meti ∈ {0, 1} stands for mutation type, discrete or real,
• Pari is defined by Pari = (pm) for discrete type and Pari = (pm, µ) for

the real mutation type, respectively,
– mutate the weights of the network in accordance with the learning rule of

the individual, using uniform distribution over a specified range of weights,
in case of discrete mutation, or Gaussian distribution, otherwise; thus Par

is used to store the distribution settings,
– mutate learning rules as well.

Every network can be mutated using a different learning rule. As a conse-
quence, numerous search strategies are applied and verified in each generation.
The solution belongs to the class of self-adaptive control methods. For detailed
presentation and discussion of the method see [5] or [4].

Results In order to discuss the results of constructing prediction models, one of
the consumer groups Cj has been selected. This group contains card(Cj) = 66
consumers. The best representative of the group in terms of proximity to the
weight vector of a neuron wj is a popular tourist hostel. Detailed time series are
available for three consumers in the group. All the three consumers are hotels of
different sizes. Out of all data patterns in detailed time series described above,
learning set L and testing set V have been created, containing 1918 and 959
data patterns respectively.

In order to construct prediction model for the group ECoMLP method has
been used. As mutation procedures are based on random processes, 50 runs
of the algorithm have been executed. The fitness function took into account
desired form of predicted heat demand profile. A priori knowledge regarding
acceptable error rate from the point of view prospective heat supply optimisation
has been applied. Therefore, the following fitness function has been devised to
drive evolutionary process:

F (φg
i ) =

∑card(L)
j=1 θ(φg

i , j)

card(L)
(6)

θ(φg
i , j) stands for an error rate of prediction of pattern j by neural network

φ
g
i i.e. multilayer perceptron i in generation g. The error rate takes into account

the following information regarding heat demand prediction:
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– detailed prediction of peak demand remains virtually impossible due to
partly random character of hot tap water demands,

– it is acceptable to some extent to underestimate demand for heat during a
single hour assuming the prediction for both preceding and succeeding hour
is not underestimated.

Therefore,

ξ(x) =

{

0.9 when x > 0.9
x otherwise

(7)

θ(φg
i , j) =















0 when (ξ(phi
g
i (lj)) ≥ 0.85 × ξ(dj))

∧(ξ(phi
g
i (lj)) ≤ ξ(dj))

∧(φg
i (lj−1) ≥ (dj−1)) ∧ (φg

i (lj+1) ≥ (dj+1))
| φ

g
i (lj) − dj | otherwise

(8)

For clarity purposes d0 = dcard(L)+1 = φ
g
i (l0) = φ

g
i (lcard(L)+1) = 0 for i =

1, ..., card(Φ), lj denotes learning pattern j. It is obvious that by using this or
similar fitness function F () as defined in formulas 6, 7 and 8, expectations re-
garding suitable heat demand prediction can be expressed. Moreover, different
approaches considering heat demand can be defined and compared in terms of
predicted demand profiles. In case of fitness function defined above, an average
value of fitness function F () after G = 1000 generations for the best individual
φG

b was equal to 0.1122. This value is an average over 50 algorithm runs. Stan-
dard deviation of the error rate was equal to 0.001. An average value of fitness
function and standard deviation of its value on the testing set were equal to
0.1186 and 0.0019 respectively. Thus, proper generalisation has been achieved
by the networks.

Typical architecture of the optimal in terms of fitness function multilayer
perceptron is based on the layers composed of 6 input nodes, and on average 2
neurones in each hidden layer. One neuron is used in the output layer to produce
predicted heat demand. Results show that both network architecture and weight
values have been set by the learning processes. What is important, the whole
process does not involve human expert intervention, thus it may be used for
training of numerous networks for their groups of consumers Ci. This is due to
the self-adaptive procedure responsible for autonomous selection of algorithm
settings. Considering the fact this process has to be repeated for all Ci : Ci 6= ∅
no other solution could be accepted for real-life solutions. One can also notice
that thermal properties of buildings and hot tap water consumption may change
over the time, thus both stages of the algorithm would have to be repeated every
few months.

4 Conclusions

Numerous real-life technical problems could be solved using detailed computa-
tion. However, detailed input data is frequently not available, thus other ap-
proaches need to be considered. In our work two-stage algorithm for building
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diverse prediction models is proposed. A real-life problem of heat demand pre-
diction in district heating systems is used as a case study.

In the first part, the paper shows the way SOM neural networks can provide
for time-series data analysis. Results of the computations suggest that the di-
versity of heat demand profiles can be explained by a number of base demand
profiles. Such profiles have been obtained in the form of weight vectors of the
neurons with the highest winning rate. The results show that a limited number
of typical demand profiles provides a valid representation of all consumers.

In the second part of the work, evolutionary algorithm is applied to develop
multilayer perceptrons predicting heat demand for their respective groups iden-
tified before by the SOM algorithm. Sample computations results show the way
the algorithm can be used to adopt a priori human expert knowledge regarding
acceptable error rates. This knowledge is used to search for an optimal heat
supply volume that would ensure compromise between consumers’ demands and
cost of heat production.
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