

Some hiology and neurophysiology

Lower region of the brain and regions in the cerebellum are coordinating the motor activities, orientation in space, general regulation of body (temperature, blood pressure etc.)
Cerebral cortex establish interrelations between lower regions and coordinating their functions. Decision are taking, information is stored in cerebral cortex,

Some hiology and neurophysiology

Peripheral nervous system composed of the nerve processes running out from the brain and spinal cord.

Nerves are the connections for communication between centers and organs.

The task of the Autonomous nervous system is to control the most important vital processes such as breathing, blood circulation, concentration of chemicals in the blood etc.

\square	Some hiology and neurophysiology
Functional scheme of connections of the nervous system: 1. an afferent system 2. a central association decision making system 3. an efferent system	

Some biology and neurophysiology

Afferent ways

an afferent system in which signals arriving from the environment are transmitted and analyzed, the degree and mode of analysis is controlled by superior coordinating and decision making system, multi level and hierarchical structures supplying the brain with information about external world (environment).

Some hiology and neurophysiology

The efferent system
in which, on the basis of the decision taken a plan of reaction of the organism is worked out, on the base of static and dynamic situation, experience and optimization rules, output channels of a nervous system responsible for transmission and processing of signals controlling the effectors

Nerve cell models

Model assumptions:

1. The element activity is based on the ,all-ornone" principle.
2. The excitation (state 1) is preceded by a constant delay while accumulating the signals incoming to synapses (independent from the previous activity and localization of synapses).
3. The only neuronal delay between the input simulation and activity at the output, is the synaptic delay.

Nerve cell models

Model assumptions:
3. Stimulation of any inhibitory input excludes a response at the output at the moment under consideration.
4. The net structure and neuron properties do not change with time.

The discrete time is logical, because in the real neuron, after the action potential, the membrane is non-excitable, i.e. another impulse cannot be generated (appr. 1 ms). This interval is called the absolute refractory period.
It specifies the maximum impulse repetition rate to about 1000 impulses per second.

Mathematical models of a nerve cell

The methods of selection of the properties of neural element depends not only on previous results, our level of knowledge - but mainly from the phenomena to be modeled.
Another properties will be important while modeling the steady states, another for dynamic processes or for the learning processes.
But always, the model has to be as simple as possible.

\square	Activation functions
1. Adder 2. Product 3. Maximum 4. Minimum 5. Dominant 6. Cumulative sum	

McGulloch-Pitts Model

In 1943 Warren McCulloch and Walter Pitts proposed the first simple mathematics model of a neuron as a two-values threshold element. The McCulloch-Pitts neuron calculates the weighted sum of input signals incoming from other neurons and produce at the output value 1 (on) or 0 (off) depending the sum is greater or smaller from the threshold value.

Simple nets huild from McGulloch \&Pitts elements

From these simple elements - formal neurons - the nets simulating complex operations or some forms of the behavior of living organisms can be modeled

McGulloch symbollsm for three Inputs

Venn diagram and McCulloch symbols for three inputs. Unknown are marked by A, B and C.

What Is a Meurall Iotuortip

> An Artificial Neural Network (ANN) is an information processing paradigm that is inspired by the way biological nervous systems, such as the brain, process information. The key element of this paradigm is the novel structure of the information processing system. It is composed of a large number of highly interconnected processing elements (neurons) working in unison to solve specific problems. ANNs, like people, learn by example. An ANN is configured for a specific application, such as pattern recognition or data classification, through a learning process. Learning in biological systems involves adjustments to the synaptic connections that exist between the neurons. This is true of ANNs as well.

Meural Metworts-deffintition

[Zurada, J.M.. Introduction to Artificial Neural Systems, 1992]

Chris Stergiou
Artificial neural systems, or neural networks, are physical cellular systems which can acquire, store, and utilize experiential knowledge
[Cichocki A. \& Umbehauen R. Neural Networks for Optimization and Signal Processing, 1994]
(...) an artificial neural network is an information or signal processing system composed of a large number of simple processing elements, called artificial neurons, or simply nodes which are interconnected by direct links called connections and which cooperate to perform parallel distributed processing in order to solve a desired computational task

Meural Metworts

At the beginning was the idea that it is
enough to build the net of many randomly connected elements to get the model of the brain operation.

Question: how many element is necessary for the process of self organization ??

Meural Metworts

Research of McCulloch, Lettvin, Maturana, Hartlin and Ratliff.

Research on the frog's eye and specially on the compound eye of the horseshoe cram - Limulus.
Hubel and Wiesel research on the mammals visual system.

Some parts are constructed in the very special, regular way.

Meural Ietworts

The input layer of photoreceptors and the layer of processing elements which will locate the possible changes in the excitation distribution.

Connection rule:

Each receptor cell is to excite one element (exactly below). In addition to the excitatory connections there are also inhibitory connections (for the simplicity - to the adjacent cells only) which reduce the signal to the neighbors.

Meural Metworts

As you can see such a network gives the possibility to locate the point where the changes in the excitation were enough high (terminations, inflections, bends etc.).

From the neurophysiology we know on the existence of the opposite operation lateral excitation.

These nets allows to detect the points of crossing or branchings etc.

The Perceptron

The one layer perceptron is based on the McCulloch \& Pitts threshold element. The simplest perceptron -
Mark 1 - is composed from four types of elements:

- layer of input elements, (square grid of 400 receptors), elements type S receiving stimuli from the environment and transforming those stimuli into electrical signals
- associative elements, elements type A, threshold adding elements with excitatory and inhibitory inputs

The Perceptron

- output layer - elements type R, the reacting elements, randomly connected with the A elements,
set of A elements correspond with to each element,
R passes to state 1 when its total input signal is greater than zero
- control units

Phase 1 - learning. At the beginning, e.g presentation of the representatives of the first class.
Phase 2 - verification of the learning results
Learning of the second class etc..

The Perceptron

Mark 1:
400 threshold elements of the type S; if they are enough excited - they produce at the output one the signal +1 and at the output two the signal -1.

The associative element A, has 20 inputs, randomly (or not) connected with the S elements outputs (excitatory or inhibitory). In Mark 1 was 512 elements of type A.
The A elements are randomly connected with the elements type \boldsymbol{R}. In Mark 1 was 8 elements of type \boldsymbol{R}.

A block diagram of a perceptron. On the receptive layer the picture of the letter K is projected. As the result, in the reacting layer, the region corresponding to letter K (in black) is activated.

The Perceptron

Each element A obtain „weighted sum" of an input signal.
When the number of excitatory signals > than the number of inhibitory signals - at the output the +1 signal is generated.
When < there is no signal generation.
Elements R are reacting on the added input from the elements A. When the input is > than the threshold - The +1 signal is generated, otherwise - signal 0 .

Learning means changes in weights of active elements A.

The Perceptron

Simplified version:

Two layers - input and output. Active is only the layer two. Input signals are equal 0 or $+\mathbf{1}$. Such the structure is called one layer perceptron.

Elements (possibly only one) of the output layer obtain at their input the weighted signal from the input layer. If this signal is greater than the defined threshold value - the signal +1 is generated, otherwise the signal 0 .

The learning method is based on the correction of weights connecting the input layer with the elements of the output layer. Only the active elements of the input layer are the subject of correction.

The one-layer and two-elements Perceptron

The one-layer and two-elements Perceptron

The perceptron learning algorithm

It can be proved that:
„ ... given it is possible to classify a series of inputs, ... then a perceptron network will find this classification".
another words
„a perceptron will learn the solution, if there is a solution to be found"
Unfortunately, such the solution not always exists !!!

The perceptron learning algorithm

It is important to distinguish between the representation and learning.

- Representation refers to the ability of a perceptron (or any other network) to simulate a specified function.
- Learning requires the existence of a systematic procedure for adjusting the network weights to produce that function.

The perceptron learning algorithm

This problem was used to illustrate the weakness of the perceptron by Minsky and Papert in 1969:
They showed that some perceptrons were impractical or inadequate to solve many problems and stated there was no underlying mathematical theory to perceptrons.

The perceptron Iearning algorithm

Bernard Widrow recalls: „...my impression was that Minsky and Papert defined the perceptron narrowly enough that it couldn't do anything interesting. You can easily design something to overcome many of the things that they proved' couldn't be done. It looked like an attempt to show that the perceptron was no good. It wasn't fair."

Finally, what the perceptron really Is ??

[^0]
Finally, what the perceptron really is??

Geometrical interpretation of the equation

$$
\sum w_{i}(t) x_{i}(t)=\Theta
$$

is a plane (surface), which orientation depends from the weights..
The plane should be orientated in such the way all vertices, where output $=1$ where located on the same side, i.e. the inequality will be fulfilled

$$
\sum w_{i}(t) x_{i}(t) \geq \Theta
$$

Finally, what the perceptron really is??

From the figure above it is easy to understand why realization of the XOR is impossible.
Does not exist the single plane (for $\mathbf{N}=\mathbf{2}$ - straight line) separating points of different color.

Finally, what the perceptron really is??

On these figures is the difficulties with the realization demanding the negative threshold values (n.b. the biological interpretation is sometime doubtful).

Unearseparability

The problem of linear separability impose limitations fro the use of one layer neural nets. So, it is very important to knowledge about this property.

The problem of linear separability can be solved by the increase of the number of the network layers.

[^0]: - Question, is it possible to realize every logical function by means of a single neuronal element with properly selected parameters??
 - Is it possible to built every digital system by means of the neuronal elements??
 - Unfortunately, there exist functions where it is necessary to use two or more elements.
 - It is easy to demonstrate, that it is impossible to realize any function of N variables by means of single neuronal element.

