
2021-02-22

1

1

Lecture 3

Neural Networks

2

The convergence of the

learning procedure

3

The input patterns are assumed to come from a

space which has two classes: F+ and F-.

We want the perceptron to respond with 1 if the

input comes from F+ , and -1 if it comes from F-.

The set of input values Xi as a vector in n-

dimensional space X, and the set of weights Wi as

the another vector in the same space W.

Increasing the weights is performed by W + X, and

decreasing by W - X.

The convergence of the learning procedure

4

start: Choose any value for W

test: Choose an X from F+ or F-

If X∈ F+ i W⋅X > 0 ⇒ test

If X∈ F+ i W⋅X ≤ 0 ⇒ add

If X∈ F- i W⋅X < 0 ⇒ test

If X∈ F- i W⋅X ≥ 0 ⇒ subtract

add: Replace W by W + X ⇒ test

subtract: Replace W by W - X ⇒ test

Notice that we go to subtract when X∈∈∈∈ F-, and if we consider that

going to subtract is the same as going to add X replaced by –X.

The convergence of the learning procedure

5

start: Choose any value for W

test: Choose a X from F+ or F-

If X∈ F- change the sign of X

If W⋅X > 0 ⇒ test

otherwise ⇒ add

add: Replace W by W + X ⇒ test

We can simplify the algorithm still further, if we define F to

be F+∪∪∪∪-F- i.e. F+ and the negatives of F-.

The convergence of the learning procedure

6

start: Choose any value for W

test: Choose any X from F

If W⋅X > 0 ⇒ test

otherwise ⇒ add

add: Replace W by W + X ⇒ test

The convergence of the learning procedure

2021-02-22

2

7

The Perceptron

Theorem and proof

8

Convergence Theorem:

Program will only go to add a finite number

of times.

Proof:

Assume that there is a unit vector W*, which partitions up the

space, and a small positive fixed number δ, such that

W*⋅X > δ for every X∈ F

Define G(W) = W*⋅W/|W|

and note that G(W) is the cosine of the angle between W and W*.

Theorem and proof

9

Since |W*| = 1, we can say that G(W) ≤1.

Consider the behavior of G(W) through add.

The numerator:

W*⋅Wt+1 = W*⋅(Wt + X) = W*⋅Wt + W*⋅X ≥≥≥≥ W*⋅Wt + δ

since W*⋅X > δ .

Hence, after the mth application of add we have

W*⋅Wm ≥≥≥≥ δ⋅m (1)

Theorem and proof

10

The denominator:

Since W⋅X must be negative (add operation is performed),

then | Wt+1 |
2 = Wt+1⋅Wt+1 = (Wt + X)⋅(Wt + X) =

= | Wt |
2 + 2Wt⋅X + |X |2

Moreover |X | = 1, so | Wt+1 |2 < | Wt |2 + 1,

and after mth application of add

| Wm |
2 < m. (2)

Theorem and proof

11

Combining (1) i (2) gives

Theorem and proof

Because G(W) ≤ 1, so we can write

12

What does it mean?? Inequality (3) is our proof.

In the perceptron algorithm, we only go to test if W⋅X > 0.

We have chosen a small fixed number δ, such that W⋅X >δ.

Inequality (3) then says that we can make δ as small as we

like, but the number of times, m, that we go to add will

still be finite, and will be ≤ 1/δ2.

In other words, perceptron will learn a weight vector W,

that partitions the space successfully, so that patterns from

F+ are responded to with a positive output and patterns

from F- produce a negative output.

Theorem and proof

2021-02-22

3

13

The perceptron learning

algorithm

14

1 step – initialize weight and threshold:

Define wi(t), (i=0,1,...,n) to be the weight from
input i at time t, and to be a threshold value ij
the output node. Set wi(0) to small random
numbers.

2 step – present input and desired output:

Present input X = [x1, x2, ..., xn], xi ∈ {0,1}, and to
the comparison block desired output d(t).

The perceptron learning algorithm

15

3 step:

Calculate actual output

4 step:

Adapt weights

The perceptron learning algorithm

16

4 step (cont):

if y(t) = d(t) ⇒ wi(t+1) = wi(t)

if y(t) = 0 and d(t) = 1 ⇒ wi(t+1) = wi(t) + xi(t)

if y(t) = 1 and d(t) = 0 ⇒ wi(t+1) = wi(t) − xi(t)

The perceptron learning algorithm

17

Algorithm modifications

4 step (cont.):

if y(t) = d(t) ⇒ wi(t+1) = wi(t)

if y(t) = 0 and d(t) = 1 ⇒ wi(t+1) = wi(t) + η∙xi(t)

if y(t) = 1 and d(t) = 0 ⇒ wi(t+1) = wi(t) − η∙xi(t)

0 ≤ η ≤ 1, a positive gain term that controls the
adaptation rate.

The perceptron learning algorithm

18

Widrow and Hoff modification

4 step (cont.):

if y(t) = d(t) ⇒ wi(t+1) = wi(t)

if y(t) ≠ d(t) ⇒ wi(t+1) = wi(t) + η∙Δ∙xi(t)

0 ≤ η ≤ 1 a positive gain term that controls the

adaptation rate.

Δ = d(t) – y(t)

The perceptron learning algorithm

2021-02-22

4

19

The Widrow-Hoff delta rule calculates the difference

between the weighted sum and the required output,

and calls that the error.

This means that during the learning process, the output

from the unit is not passed through the step function –

however, actual classification is effected by using the

step function to produce the +1 or 0.

Neuron units using this learning algorithm were called

ADALINEs (ADAptive LInear NEurons), who are also

connected into a many ADALINE, or MADALINE

structure.

The perceptron learning algorithm

20

Model ADALINE

21

Widrow and Hoff model

The structure ADALINE, and the way how it

performs a weighted sum of inputs is similar to

the single perceptron unit and has similar

limitations. (for example the XOR problem).

22

Widrow and Hoff model

23

When in a perceptron decision concerning

change of weights is taken on the base of

the output signal ADALINE uses the signal

from the sum unit (marked Σ).

Widrow and Hoff model

24

The system of two ADALINE type elements can realize

the logical AND function.

Widrow and Hoff model

2021-02-22

5

25

Similarly to another multilayer nets (e.g. perceptron),

from basic ADALINE elements one can create the

whole network called ADALINE or MADALINE.

Complicated net’s structure makes difficult definition

of an effective learning algorithm. The most in use is

the LMS algorithm (Least-Mean-Square). But for the

LMS method it is necessary to know the input and

output values of every hidden layer. Unfortunately

these information are not accessible.

Widrow and Hoff model

26

Three layer net composed of ADALINE elements

create the MADALINE net.

Widrow and Hoff model

27

The neuron operation can be described by the formula

(assuming the threshold = 0)

y = WT∙ X

where W = [w1,w2,...,wn] is the weight vector

X = [x1,x2,...xn] is the input signal (vector)

Widrow and Hoff model

28

From the inner product properties, we know that the out

put signal will be bigger when the direction of the vector

xi in the n-dimensional space of input signals X will

coincide with the direction of the vector wi in the n-

dimensional space of the weights W. The neuron will

react stronger for the input signals more „similar” to the

weight vector.

Assuming that vectors xi i wi are normalized (i.e. wi =

1 i xi  = 1), one get

y = cosΦ

where Φ is the angle between the vectors xi i wi.

Widrow and Hoff model

29

For the m-elements layer of the neurons (processing

elements), we get

Y = W∙X

where rows in the matrix W (1,2,...,m) correspond to

the weights coming to particular processing elements

from input nods, and

Y = [y1, y2, ..., ym]

Widrow and Hoff model

30

The net is mapping the input space X into Rm, X →Rm.

Of course this mapping is absolutely free. One can say

that the net is performing the filtering.

A net operation is defined by the elements of a

matrix W – i. e. the weights are an equivalent of the

program in numerical calculation.

The a priori definition of weights is difficult, and in the

multilayer nets – practically impossible.

Widrow and Hoff model

2021-02-22

6

31

The one-step process of the weights determining can

be replaced by the multi-step process – the learning

process.

It is necessary to expand a system adding the element

able to define the output signal error and the element

able to control the weights adaptation.

The method of operating the ADALINE is based on

the algorithm called DELTA introduced by Widrow

and Hoff. General idea: each input signal X is

associated with the signal d, the correct output

signal.

Widrow and Hoff model

32

The actual output signal y is compared with d and

the error is calculated. On the base of this error

signal and the input signal X the weight vector W is

corrected.

The new weight vector W' is calculated by the

formula

W' = W + η∙e∙X

where η is the learning speed coefficient

Widrow and Hoff model

33

The idea is identical with the perceptron learning rule.

When d > y it means, that the output signal was too

small, the angle between vectors X and W – was too

big. To the vector W it is necessary to add the vector X

multiplied by the constant

(0< η ∙ e < 1).

{This condition prevents too fast „rotations" of vector W}.

The vector W correction is bigger when the error is

bigger – the correction should be stronger with the big

error and m0ore precise with the small one.

Widrow and Hoff model

34

The rule assures, that i-th component of the

vector W is changed more the bigger appropriate

component of learned X was .

When the components of X can be both positive

and negative – the sign of the error e defines the

increase or decrease of W.

Widrow and Hoff model

35 36

The Delta Rule

2021-02-22

7

37

The one –layer network

The Delta learning rule

38

The perceptron learning rule is also the delta rule

if y(t) = d(t) ⇒ wi(t+1) = wi(t)

if y(t) ≠ d(t) ⇒ wi(t+1) = wi(t) + η∙Δ∙xi(t)

where

0 ≤ η ≤ 1 is the learning coefficient

and Δ = d(t) – y(t)

The Delta learning rule

39

The basic difference is in the error

definition – discrete in the perceptron

and continuous in the Adaline model.

The Delta learning rule

40

Let δδδδk, the error term, defines the difference

between the dk desired response of the k-th

element of the output layer, and is the actual

response (real) yk.

Let us define the error function E to be equal to the

square of the difference between the actual and

desired output, for all elements in the output layer

The Delta learning rule

41

Because

thus

The Delta learning rule

42

The error function E is the function of all the weights.

It is the square function with respect to each weight,

so it has exactly one minimum with respect to each of

the weights. To find this minimum we use the gradient

descend method.

Gradient of E is the vector consisting of the partial

derivatives of E with respect to each variable. This

vector gives the direction of most rapid increase in

function; the opposite direction gives the direction of

most rapid decrease in the function.

The Delta learning rule

2021-02-22

8

43

So, the weight change is proportional to the

partial derivative of a error function with

respect to this weight with the minus sign.

where ηηηη is the learning rate

The Delta learning rule

44

Each weight can be fixed this way.

Lets calculate the partial derivative of E

thus

The Delta learning rule

45

The DELTA RULE changes weights in a

net proportionally to the output error

(the difference between the real and

desired output signal), and the value of

input signal

The Delta learning rule

46

The multilayer Perceptron

Many years the idea of multi layer perceptron was

introduced . Multi – typically three

Layers: input, output and hidden.

In 1986 Rumelhart and McClelland described the

new learning rule the backpropagation learning

rule.

47

Neural network for

Classification

48

Neural Network for Classification

The fundamental objective for pattern recognition is

classification and it is the most typical form of neural

transformation. A pattern recognition system can be

treated as a two stage device: feature extraction and

classification. A feature is defined as a measurement

taken on the input pattern that is to be classified but

the classifier has to map the input features onto a

classification state. The classifier must to decide which

type of class category they match most closely.

2021-02-22

9

49

Neural Network for Classification

Any given input pattern must belong to one of the

classes that are in consideration. So, the mapping

from the input to the required class must exists.

This mapping is a function that transforms the input

pattern into the correct output class, and we will

consider that our network has learnt to perform

correctly, if it can carry out this mapping.

50

Neural Network for Classification

51

We spoke about the multilayer perceptron limitations.

When the problem of linear separability was well

understood it was also found that the problem of

single-layer network can be overcome by adding more

layers. For example, the two layer network may be

formed by cascading two single-layer networks. These

can perform more general classification, separating

those points that are contained in convex open or

closed regions.

Neural Network for Classification

52

A convex regions

A convex region – is one in which any two points in the

region can be joined by a straight line that does not

leave the region.

53

To understand the convexity limitation, consider a

simple two-layer network with two inputs going to two

neurons in the first layer, both feeding a single neuron

in the layer 2. The output neuron threshold is set to

0.75 and weights si are both set to 0.5

Neural Network for Classification

54

In this case the output of one (1) is required from

both layer 1 neurons to exceed the threshold and

to produce a one (1) on the output. Thus the

output neuron performs a logical AND function.

Each neuron in layer 1 subdivides the OXY plane ,

producing tan output of one (1) on one side of the

line.

Neural Network for Classification

2021-02-22

10

55

The result of double subdivision when the output of

one (1) of the layer 2 neuron is only over V-shaped

region.

Neural Network for Classification

56

Similarly, three neurons used in the layer 1

further subdivide the plane, creating for

example a triangle-shaped region. By including

enough neurons in the layer 1, a convex region

of any desired shape can be formed.

The layer 2 of course is not limited to the AND

function, it can produce many other functions if

the weights and threshold are suitably chosen.

Neural Network for Classification

57

A three-layer network is still more general, its

limitation capability is limited only by the number

of neurons and weights. There are no convexity

constrains; the layer 3 neuron receives as input a

group of convex polygons, and the logical

combination of that need not to be convex.

Neural Network for Classification

58

A concave decision region formed by intersection of

two convex regions. Logical operation A and not B

Neural Network for Classification

Layer 3Layer 2Layer 1

y

x2

x1

Triangle A
Triangle b

Non-convex region A and not B

59

Neural Network for Classification

Existence (Kolmogorov) Theorem

60

Conclusions

To create any arbitrary complex shape (decision

region), we never need more that three layers in the

network.

It gives the limitation on layers but does not define:

• how many elements is necessary to create

a network (in general and in particular layers),

• how these elements should be connected,

• which weights value should be.

Neural Network for Classification

2021-02-22

11

61

Inconsistency in nomenclature

What is layer???

• some authors refer to the number of layers of

variable weights

• some authors describe the number of layers of

nodes

Usually, the nodes in the first layer, the input layer,

merely distribute the inputs to subsequent layers, and

do not perform and operations (summation or

thresholding) n.b. some authors miss out these nodes.

Network structure

62

What is a network layer?

A layer - it is the part of network structure which

contains active elements performing some operation.

A multilayer network receives a number of inputs.

These are distributed by a layer of input nodes that do

not perform any operation – these inputs are then

passed along the first layer of adaptive weights to a

layer of perceptron-like units, which do sum and

threshold their inputs. This layer is able to produce

classification lines in pattern space.

Network structure

63

The output from this layer in then passed to another

layer, and the output of this layer forms convex

regions in pattern space. A further layer is able to

define any arbitrary shape in pattern space.

Neural Network for Classification

64

Neural networks and their corresponding

decision regions

Neural Network for Classification

65

Neural Network for Classification

66

A multilayer perceptron is fault-tolerant, since it is

distributed parallel processing element, with each

node contributing to the final output.

If a node or its weights are lost or damaged. recall is

impaired in quality, but the distributed nature of the

information means that the damage has to be

extensive before the network’s response degrades

badly. The network demonstrate graceful degradation

rather that catastrophic failure.

Neural Network for Classification

2021-02-22

12

67 68

Backpropagation Algorithm

69

Backpropagation

For many years there was no theoretical sound

algorithm for training multilayer artificial neural

networks. Since single-layer networks proved severely

limited in what they could represent, the entire field

went into virtual eclipse.

In 1986 Rumelhart and McClelland suggested a new

learning rule known as a backpropagation rule which

is today used in many practical applications like for

example in solving the optimization problems.

70

Backpropagation

The invention of the backpropagation algorithm has

played a large part in the resurgence of interest in

artificial neural networks.

Backpropagation is a systematic method for training

multilayer artificial neural networks.

71

Backpropagation

It is the rule how to change the weights Tij between

network elements.

The algorithm is based on the idea to minimize the

square root of errors by use of the gradient descent

method.

72

Backpropagation

Assumptions:

• the net is the regular, multilayer structure

• the first layer – input layer

• the last layer – output layer

• layers between – hidden layers

• feed forward propagation only

2021-02-22

13

73

Backpropagation

2

2

N

input layer

output
layerM

1

1

1

2

3 K

21 3 R

hidden
layers

net input

net output

74

Backpropagation

To define a state of j-th neuron in layer n we calculate

the weighted sum of its M inputs

where
weighted input sum of j-th neuron in layer n

connection weight between i-th neuron inlayer n-1

and j-th neuron in layer n

out put signal of i-th neuron in layer n-1

(1)

75

Backpropagation

1

j

M layer n-1

layer n

76

Backpropagation

output signal of j-th neuron in layer n is defined by

where f is the neuron transfer function

f – sigmoid function, the output values∈ (0;1),

- the threshold, - slope

(2)

(3)

77

Backpropagation

The global error D is a differentiable function of

weights

where

desired output (a target) of j-th

neuron in the output layer

actual output of j-th neuron in the

output layer

(4)

78

Backpropagation

Aim: minimization of a global error D, modifying the

network’s weights.

Goal: define the rules of the weights adaptation to

minimize the global error

Solution: the gradient descent method

where is the learning coefficient

(5)

2021-02-22

14

79

Backpropagation

Each weight is changed according to the

value and direction of negative gradient on

the hyperplane D(T).

The partial derivative in (5) can be

calculated by use of the chain rule.

80

Backpropagation

We define the change in error as a function

of the change in the net inputs to a j-th

neuron as

(6)

81

Backpropagation

(7)

because

82

Backpropagation

Finally, we get

(8)

For the elements in the output layer

(9)

Decrease of D means the changes

proportional to

83

Backpropagation

1

1

N

the last
hidden layer

output layer
M

84

Backpropagation

Now, we need to know what is for

each of the units

(10)

where

2021-02-22

15

85

Backpropagation

differentiate D with respect to giving

(11)

thus

(12)

86

Backpropagation

This is useful for the output units to modify

weights between the neurons of the

output layer and the neurons of the last

hidden layer (since the target and output

both are available)

= + τ

where τ is a learning coefficient (13)

87

Backpropagation

The formula (9) can be rewritten to avoid

oscillations

= +

where is the weighted input sum of i-th

element from the last hidden layer, α (so called

smoothing parameter), is a constant value defining

the effect of the previous weights modification on

the actual modification .

(14)

88

Backpropagation

This method is very useful for the output

layer elements because we have access both

to the output signal, target signal.

However, for the elements located in the

hidden layers unfortunately does not work.

89

Backpropagation

If j-th neuron does not belong to the output

layer but is an element of a hidden layer s, then

its local weight modification is calculated from

Because

(15)

(16)

90

Backpropagation

also

then

(17)

(18)

2021-02-22

16

91

Backpropagation

it modify the weight between i-th element

of the layer n-1 and j-th element of the layer n

= + τ (19)

(20)

a

Iterative calculations correct weight „backwards”,

to the input layer.

92

Backpropagation

This learning procedure is repeated for

each learning pattern, until the network

will generate the correct answer for

every input signal (pattern) – of course

with the defined accuracy.

93

Backpropagation

Example:

If

f(E) ∈∈∈∈ (0;1), k>0

when k ⇒⇒⇒⇒ ∞

then f(E) ⇒⇒⇒⇒ step function

94

Backpropagation

calculating the derivative f ’(E) for j-th

element:

(this derivative simplify he calculations)

95

Backpropagation

for the elements in the output layer

for the elements in the hidden layers

96

Recurrent MultiLayer

Perceptron

(RMLP)

2021-02-22

17

97

RMLP

Recurrent neural network architectures consists of a

standard Multi-Layer Perceptron (MLP) plus added

loops.

98

RMLP

Assumption: only one input nod (input signal x(t)) and one output nod

(output signal y(t)), and one hidden layer.

The network input signal is composed from input x, delayed inputs and

external recurrence output signal y(t) with some unit time delays.

Delay units

Hidden layer

Delay units

input element

output element

x(t)

y(t)

99

RMLP

Structure of the RMLP network

100

RMLP is a dynamic network with delayed input and output signals.

The farther analysis is performed for only one input node (signal x(t)),

one output node (signal y(t)) and one hidden layer.

The function

y(t+1)=f(x(t),x(t-1), ..., x(t-(N-1)),y(t-1),y(t-2),...,y(t-P))

where

N -1 � number of delayed input signals,

P � number of delayed output signals,

K � number of neurons in the hidden layer,

RMLP

101

Vector input signal x applied to the network input in the time t

x(t)=[1,x(t),x(t-1), ..., x(t-(N-1)),y(t-P),y(t-P+1),...,y(t-1)]

Denote

weighted input signal of the i-th neuron of

the hidden layer

weighted input signal of the output neuron

output signal of the i-th neuron of the

hidden layer

output signal of the output neuron

(1-4)

RMLP

102

RMLP Learning Algorythm

The gradient learning algorithm is used. The gradient of ab

error function with respect to each networks’ weight is

calculated. For RMLP network the error function can be

define by:

Differentiating with respect to each weight in the

second layer

RMLP

2021-02-22

18

103

RMLP

because

104

RMLP

105

RMLP

next

this formula enable calculater the in the epoch t on

the base of its previus values

106

RMLP

Using the gradient descent method the weight change of

the output layer is defined by

Similarly can be calculated the weight change in the hidden

layer.

After calualtion of the derivative of a signal y(t) with respect of

the weight ijn the hidden layer

(5)

107

RMLP

and the formula for the weight change in the hidden

layer

(6)

108

RMLP

Summary of a learning algorithm

1. Initialize the weight vectors in the hidden layer and

output layer

2. Evaluate the neuron state in epoch (t) with input x

(1-4)

3. Calculates the values of and for

every αβ

4. Updates the weights according to 5 i 6

5. Go to step 2 algorithm.

2021-02-22

19

109

Elman network

110

Elman Network

An Elman network is an MLP with a single

hidden layer and in addition it contains

connections from the hidden layer’s neurons

to the context units. The context units store

the output values from the hidden neurons in

a time unit and these values are fed as

additional inputs to the hidden neurons in

the next time unit.

111

Elman Network – SRN (Simple Recurrent Network) is a

simplification of Multi Layer Perceptron

Elman Network

112

N- number of external

inputs

K – number of neurons in a

hidden layer

M – number of neurons in

an output layer

A structure of an Elman Network

Contex

layer

Elman Network

113

Vector input signal:

the elements denoted j=N+1,..,N+K are from the

hidden layer from the previous epoch

Elman Network

114

Notation

output signal of the i-th neuron of

the output layer

weighted input signal of the i-th

neuron of the output layer

output signal of the i-th neuron of a

hidden layer

weighted input signal of the i-th

neuron in a hidden layer

Elman Network

2021-02-22

20

115

Elman learning algorithm

The network will be learn according to steepest descent

algorithm. Similarly to feedforward network a gradient of the

cost function will be calculated with respect to every

network`s weight. For the Elman network a cost function can

be defined by

Differentiating this function with respect to any output layer

weight we obtain

Elman Network

116

Because connections between the hidden

layer and output layer are unidirectional

Elman Network

117

yields to

According to the method of steepest descent the weights’

change in output layer are defined by

(7)

(8)

Elman Network

118

Weights change in the hidden layer is more complicated

because of the feedbacks.

(9)

Elman Network

119

and next

The last formula (10) allows to calculate the derivatives of cost

function with respect to weights of hidden layer in moment t.

It is the recurrent formula defining derivative in a moment t

dependence of a derivative in a moment t-1.

(10)

Elman Network

120

Assuming the initial values in a moment t = 0

and basing on the steepest descent method the weights’

change in the hidden layer is defined by

(11)

Elman Network

2021-02-22

21

121

Elman Network

