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Lecture 3

Neural Networks 
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The convergence of the 

learning procedure

3

The input patterns are assumed to come from a 

space which has two classes: F+ and F-.

We want the perceptron to respond with  1 if the 

input comes from F+ , and  -1 if it comes from  F-.

The set of input values Xi as a vector in n-

dimensional space X, and the set of weights Wi as 

the another vector  in the same space W.

Increasing the weights is performed by W + X, and 

decreasing by W - X.

The convergence of the learning procedure

4

start: Choose any value  for W

test: Choose an X from F+ or  F-

If X∈ F+ i W⋅X > 0 ⇒ test

If  X∈ F+ i W⋅X ≤ 0 ⇒ add

If X∈ F- i W⋅X < 0 ⇒ test

If X∈ F- i W⋅X ≥ 0 ⇒ subtract

add: Replace W by W + X ⇒ test

subtract: Replace W by W - X ⇒ test

Notice that we go to subtract when X∈∈∈∈ F-, and if we consider that 

going to subtract is the same as going to add X replaced by –X.

The convergence of the learning procedure

5

start: Choose any value for W

test: Choose a X from  F+ or F-

If  X∈ F- change the sign of X

If W⋅X > 0 ⇒ test

otherwise  ⇒ add

add: Replace  W by W + X ⇒ test

We can simplify the algorithm still further, if we define F to 

be F+∪∪∪∪-F- i.e. F+ and the negatives of  F-.

The convergence of the learning procedure

6

start: Choose any value for W

test: Choose any  X from F

If  W⋅X > 0 ⇒ test

otherwise  ⇒ add

add: Replace W by W + X ⇒ test

The convergence of the learning procedure
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The Perceptron

Theorem and proof

8

Convergence Theorem:

Program will only go to add a finite number 

of times.

Proof:

Assume that there is a unit vector  W*, which partitions up the 

space, and a small positive fixed number δ, such that

W*⋅X > δ for every X∈ F

Define G(W) = W*⋅W/|W|

and note that G(W) is the cosine of the angle between  W and W*.

Theorem and proof

9

Since |W*| = 1, we can say that  G(W) ≤1.

Consider the behavior of G(W) through  add.

The numerator:

W*⋅Wt+1 = W*⋅(Wt + X) = W*⋅Wt + W*⋅X ≥≥≥≥ W*⋅Wt + δ

since  W*⋅X > δ .

Hence, after the mth application of  add we have

W*⋅Wm ≥≥≥≥ δ⋅m    (1)

Theorem and proof

10

The denominator:

Since W⋅X must be negative (add operation is performed), 

then | Wt+1 |
2 = Wt+1⋅Wt+1 = (Wt + X)⋅(Wt + X) =

= | Wt |
2 + 2Wt⋅X + |X |2

Moreover  |X | = 1, so | Wt+1 |2 < | Wt |2 + 1,

and after mth application of add

| Wm |
2 < m. (2)

Theorem and proof

11

Combining (1) i (2) gives

Theorem and proof

Because G(W) ≤ 1, so we can write

12

What does it mean?? Inequality (3) is our proof.

In the perceptron algorithm, we only go to test if W⋅X > 0. 

We have chosen a small fixed number δ, such that W⋅X >δ. 

Inequality (3) then says that we can make δ  as small as we 

like, but the number of times,  m, that we go to  add will 

still be finite, and will be ≤ 1/δ2.

In other words, perceptron will learn a weight  vector W, 

that partitions the space successfully, so that patterns from 

F+ are responded to with a positive output and patterns 

from F- produce a negative output.

Theorem and proof
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The perceptron learning 

algorithm

14

1 step – initialize weight and threshold:

Define  wi(t), (i=0,1,...,n) to be the weight from 
input i at time t, and to be a threshold value ij
the output node. Set wi(0) to small random 
numbers.

2 step – present input and desired output:

Present input X = [x1, x2, ..., xn], xi ∈ {0,1}, and to 
the comparison block desired output d(t).

The perceptron learning algorithm

15

3 step:

Calculate actual output

4 step:

Adapt weights

The perceptron learning algorithm

16

4 step (cont):

if y(t) = d(t) ⇒ wi(t+1) = wi(t)

if y(t) = 0  and d(t) = 1 ⇒ wi(t+1) = wi(t) + xi(t)

if y(t) = 1  and d(t) = 0 ⇒ wi(t+1) = wi(t) − xi(t)

The perceptron learning algorithm

17

Algorithm modifications

4 step (cont.):

if y(t) = d(t) ⇒ wi(t+1) = wi(t)

if y(t) = 0  and d(t) = 1 ⇒ wi(t+1) = wi(t) + η∙xi(t)

if y(t) = 1  and d(t) = 0 ⇒ wi(t+1) = wi(t) − η∙xi(t)

0  ≤ η ≤ 1, a positive gain term that controls the 
adaptation rate.

The perceptron learning algorithm

18

Widrow and Hoff modification

4 step (cont.):

if y(t) = d(t) ⇒ wi(t+1) = wi(t)

if y(t) ≠ d(t) ⇒ wi(t+1) = wi(t) + η∙Δ∙xi(t)

0  ≤ η ≤ 1 a positive gain term that controls the 

adaptation rate.

Δ = d(t) – y(t)

The perceptron learning algorithm
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The Widrow-Hoff delta rule calculates the difference 

between the weighted sum and the required output, 

and calls that the error. 

This means that during the learning process, the output 

from the unit is not passed through the step function –

however, actual classification is effected by using the 

step function to produce the +1 or 0. 

Neuron units using this learning algorithm were called 

ADALINEs (ADAptive LInear NEurons), who are also 

connected into a many ADALINE, or MADALINE 

structure.

The perceptron learning algorithm

20

Model ADALINE

21

Widrow and Hoff model 

The structure ADALINE, and the way how it 

performs a weighted sum of inputs is similar to 

the single perceptron unit and has similar 

limitations. (for example the XOR problem).

22

Widrow and Hoff model 

23

When in a perceptron decision concerning 

change of weights is taken on the base of 

the output signal ADALINE uses the signal 

from the sum unit (marked Σ).

Widrow and Hoff model 

24

The system of two ADALINE type elements can realize 

the logical AND function.

Widrow and Hoff model 
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Similarly to another multilayer nets (e.g. perceptron), 

from basic  ADALINE elements one can create the 

whole network called ADALINE or MADALINE.

Complicated net’s structure makes difficult definition 

of an effective learning algorithm. The most in use is 

the LMS algorithm (Least-Mean-Square). But for the 

LMS method it is necessary to know the input and 

output values of every hidden layer. Unfortunately 

these information are not accessible.

Widrow and Hoff model 

26

Three layer net composed of ADALINE elements 

create the MADALINE net.

Widrow and Hoff model 

27

The neuron operation can be described by the formula 

(assuming the threshold = 0)

y = WT∙ X

where  W = [w1,w2,...,wn] is the weight vector

X = [x1,x2,...xn]  is the input signal (vector)

Widrow and Hoff model 

28

From the inner product properties, we know that the out 

put signal will be bigger when the direction of the vector 

xi in the n-dimensional space of input signals X will 

coincide with the direction of the vector wi in the n-

dimensional space of the weights W. The neuron will 

react stronger for the input signals more „similar” to the 

weight vector.

Assuming that vectors  xi i wi are normalized (i.e. wi = 

1 i xi  = 1), one get 

y = cosΦ

where Φ is the angle between the vectors xi i wi.

Widrow and Hoff model 

29

For the  m-elements layer of the neurons (processing 

elements), we get

Y = W∙X

where rows in the matrix W (1,2,...,m) correspond to 

the weights coming to particular processing elements 

from input nods, and

Y = [y1, y2, ..., ym]

Widrow and Hoff model 

30

The net is mapping the input space X into Rm, X →Rm. 

Of course this mapping is absolutely free. One can say 

that the net is performing the filtering. 

A net operation is defined by the elements of a 

matrix W – i. e. the weights are an equivalent of the 

program in numerical calculation. 

The a priori definition of weights is difficult, and in the 

multilayer nets – practically impossible.

Widrow and Hoff model 
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The one-step process of the weights determining can 

be replaced by the multi-step process – the learning 

process. 

It is necessary to expand a system adding the element 

able to define the output signal error and the element 

able to control the weights adaptation. 

The method of operating the  ADALINE is based on 

the algorithm called DELTA introduced by Widrow 

and  Hoff. General idea: each input signal X is 

associated with the signal d, the correct output 

signal. 

Widrow and Hoff model 

32

The actual output signal y is compared with  d and 

the error is calculated. On the base of this error 

signal and the input signal X the weight vector W is 

corrected. 

The new weight vector W' is calculated by the 

formula 

W' = W + η∙e∙X 

where η is the learning speed coefficient 

Widrow and Hoff model 

33

The idea is identical with the perceptron learning rule. 

When  d > y it means, that the output signal was too 

small, the angle between vectors X and  W – was too 

big. To the vector W it is necessary to add the vector X

multiplied by the constant 

(0< η ∙ e < 1). 

{This condition prevents too fast „rotations" of vector W}.

The vector W correction is bigger when the error is 

bigger – the correction should be stronger with the big 

error and m0ore precise with the small one.

Widrow and Hoff model 

34

The rule assures, that i-th component of the 

vector W is changed more the bigger appropriate 

component of learned X was .

When  the components of X can be both positive 

and negative – the sign of the error e defines the 

increase or decrease of W.

Widrow and Hoff model 

35 36

The Delta Rule
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The one –layer network

The Delta learning rule

38

The perceptron learning rule is also the delta rule

if  y(t) = d(t) ⇒ wi(t+1) = wi(t)

if  y(t) ≠ d(t) ⇒ wi(t+1) = wi(t) + η∙Δ∙xi(t)

where

0  ≤ η ≤ 1 is the learning coefficient

and  Δ = d(t) – y(t)

The Delta learning rule

39

The basic difference is in the error 

definition – discrete in the perceptron 

and continuous in the Adaline model. 

The Delta learning rule

40

Let  δδδδk, the error term, defines the difference 

between the dk desired response of the  k-th 

element of the output layer, and  is the actual 

response (real) yk. 

Let us define the error function E to be equal to the 

square of the difference between the actual and 

desired output, for all elements in the output layer

The Delta learning rule

41

Because

thus

The Delta learning rule

42

The error function E is the function of all the weights. 

It is the square function  with respect to each weight, 

so it has exactly one minimum with respect to each of 

the weights. To find this minimum we use the gradient 

descend method.

Gradient of E is the vector consisting of the partial 

derivatives of E with respect to each variable. This 

vector gives the direction of most rapid increase in 

function; the opposite direction gives the direction of 

most rapid decrease in the function.

The Delta learning rule
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So, the weight change is proportional to the 

partial derivative of a error function with 

respect to this weight with the minus sign.

where  ηηηη is the learning rate

The Delta learning rule

44

Each weight can be fixed this way. 

Lets calculate the partial derivative of E

thus

The Delta learning rule

45

The  DELTA RULE changes weights in a 

net proportionally to the output error 

(the difference between the real and 

desired output signal), and the value of 

input signal

The Delta learning rule

46

The multilayer Perceptron

Many years the idea of multi layer perceptron was 

introduced . Multi – typically three 

Layers: input, output and  hidden.

In  1986 Rumelhart and McClelland described the 

new learning rule the backpropagation learning 

rule.

47

Neural network for 

Classification

48

Neural Network for Classification

The fundamental objective for pattern recognition is

classification and it is the most typical form of neural

transformation. A pattern recognition system can be

treated as a two stage device: feature extraction and

classification. A feature is defined as a measurement

taken on the input pattern that is to be classified but

the classifier has to map the input features onto a

classification state. The classifier must to decide which

type of class category they match most closely.
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Neural Network for Classification

Any given input pattern must belong to one of the

classes that are in consideration. So, the mapping

from the input to the required class must exists.

This mapping is a function that transforms the input

pattern into the correct output class, and we will

consider that our network has learnt to perform

correctly, if it can carry out this mapping.

50

Neural Network for Classification

51

We spoke about the multilayer perceptron limitations. 

When the problem of linear separability was well 

understood it was also found that the problem of 

single-layer network can be overcome by adding more 

layers. For example, the two layer network may be 

formed by cascading two single-layer networks. These 

can perform more general classification, separating 

those points that are contained in convex open or 

closed regions.

Neural Network for Classification

52

A convex regions

A convex region – is one in which any two points in the 

region can be joined by a straight line that does not 

leave the region. 

53

To understand the convexity limitation, consider a 

simple two-layer network  with two inputs going to two 

neurons in the first layer, both feeding a single neuron 

in the layer 2. The output neuron threshold is set to 

0.75 and weights si are both set to 0.5

Neural Network for Classification

54

In this case the output of one (1) is required from  

both layer 1 neurons to exceed the threshold and 

to produce  a one (1) on the output. Thus the 

output neuron performs a logical AND function.

Each neuron in layer 1 subdivides the OXY plane , 

producing tan output of one (1) on one side of the 

line. 

Neural Network for Classification



2021-02-22

10

55

The result of double subdivision when the output of 

one (1) of the layer 2 neuron is only over V-shaped 

region.

Neural Network for Classification

56

Similarly, three neurons used in the layer 1

further subdivide the plane, creating for 

example a triangle-shaped region. By including 

enough neurons in the layer 1, a convex region 

of any desired shape can be formed.

The layer 2 of course is not limited to the AND 

function, it can produce many other functions if 

the weights and threshold are suitably chosen.

Neural Network for Classification

57

A three-layer network is still more general, its 

limitation capability is limited only by the number 

of neurons and weights. There are no convexity 

constrains; the layer 3 neuron receives as input a 

group of convex polygons, and the logical 

combination of that need not to be convex.

Neural Network for Classification

58

A concave decision region formed by intersection of 

two convex regions. Logical operation A and not B

Neural Network for Classification

Layer 3Layer 2Layer 1

y

x2

x1

Triangle A
Triangle b

Non-convex region   A and not B

59

Neural Network for Classification

Existence (Kolmogorov) Theorem

60

Conclusions

To create any arbitrary complex shape (decision 

region), we never need more that three layers in the 

network.

It gives the limitation on layers but does not define:

• how many elements is necessary to create 

a network (in general and in particular layers),

• how these elements should be connected,

• which weights value should be.

Neural Network for Classification
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Inconsistency in nomenclature

What is layer???

• some authors refer to the number of layers of 

variable weights

• some authors describe the number of layers of

nodes

Usually, the nodes in the first layer, the input layer, 

merely distribute the inputs to subsequent layers, and 

do not perform and operations (summation or 

thresholding) n.b. some authors miss out these nodes.

Network structure

62

What is a network layer?

A layer  - it is the part of network structure which 

contains active elements performing some operation. 

A multilayer network receives a number of inputs. 

These are distributed by a layer of input nodes that do 

not perform any operation – these inputs are then  

passed along the first layer of adaptive weights to a 

layer of perceptron-like units, which do sum and 

threshold their inputs. This layer is able to produce 

classification lines in pattern space.

Network structure

63

The output from this layer in then passed to another 

layer, and the output of this layer forms convex 

regions in pattern space. A further layer is able to 

define any arbitrary shape in pattern space.

Neural Network for Classification

64

Neural networks and their corresponding 

decision regions

Neural Network for Classification

65

Neural Network for Classification

66

A multilayer perceptron is fault-tolerant, since it is 

distributed parallel processing element, with each 

node contributing to the final output.

If a node or its weights are lost or damaged. recall is 

impaired in quality, but the distributed nature of the 

information means that the damage has to be 

extensive before the network’s response degrades 

badly. The network demonstrate graceful degradation 

rather that catastrophic failure.

Neural Network for Classification
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Backpropagation Algorithm

69

Backpropagation

For many years there was no theoretical sound 

algorithm for training multilayer artificial neural 

networks. Since single-layer networks proved severely 

limited in what they could represent, the entire field 

went into virtual eclipse.

In 1986 Rumelhart and McClelland suggested a new 

learning rule known as a backpropagation rule which 

is today used in many practical applications like for 

example in solving the optimization problems.

70

Backpropagation

The invention of the backpropagation algorithm has 

played a large part in the resurgence of interest in 

artificial neural networks.

Backpropagation is a systematic method for training 

multilayer artificial neural networks. 

71

Backpropagation

It is the rule how to change the weights Tij between 

network elements.

The algorithm is based on the idea to minimize the 

square root of errors by use of the gradient descent 

method.

72

Backpropagation

Assumptions:

• the net is the regular, multilayer structure

• the first layer – input layer

• the last layer  – output layer

• layers between – hidden layers

• feed forward propagation only
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Backpropagation

2

2

N

input layer

output
layerM 

1

1

1

2

3 K

21 3 R

hidden 
layers

net input

net output

74

Backpropagation

To define a state of  j-th neuron in layer n we calculate 

the weighted sum of its M inputs

where
weighted input sum of  j-th neuron in layer n

connection weight between i-th neuron inlayer  n-1 

and j-th neuron in layer n

out put signal of i-th neuron in layer n-1

(1)

75

Backpropagation

1

j

M layer n-1

layer n

76

Backpropagation

output signal of  j-th neuron in layer  n is defined by

where f is the neuron transfer function

f – sigmoid function, the output values∈ (0;1),

- the threshold, - slope

(2)

(3)

77

Backpropagation

The global error  D is a differentiable function of 

weights

where

desired output (a target) of  j-th

neuron in the output layer

actual output of  j-th neuron in the 

output layer

(4)

78

Backpropagation

Aim: minimization of a global error D, modifying the 

network’s weights.

Goal: define the rules of the weights adaptation to 

minimize the global error

Solution: the gradient descent method

where is the learning coefficient 

(5)
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Backpropagation

Each weight is changed according to the 

value and direction of negative gradient on 

the hyperplane D(T).

The partial derivative in (5) can be 

calculated by use of the chain rule.

80

Backpropagation

We define the change in error as a function 

of the change in the net inputs to a j-th

neuron as

(6)

81

Backpropagation

(7)

because

82

Backpropagation

Finally, we get

(8)

For the elements in the output layer

(9)

Decrease of D means the changes 

proportional to

83

Backpropagation

1

1

N

the last 
hidden layer

output layer
M

84

Backpropagation

Now, we need to know what is for 

each of the units

(10)

where
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Backpropagation

differentiate D with respect to giving

(11)

thus

(12)

86

Backpropagation

This is useful for the output units to modify 

weights between the neurons of the 

output layer and the neurons of the last 

hidden layer (since the target and output 

both are available)

=           + τ

where τ is a learning coefficient (13)

87

Backpropagation

The formula (9) can be rewritten to avoid 

oscillations

= +    

where is the weighted input sum of i-th

element from the last hidden layer, α (so called  

smoothing parameter), is a constant value defining 

the effect of the previous weights modification on 

the actual modification .

(14)

88

Backpropagation

This method is very useful for the output 

layer elements because we have access both 

to the output signal, target signal. 

However, for the elements located in the 

hidden layers unfortunately does not work.

89

Backpropagation

If j-th neuron does not belong to the output 

layer but is an element of a hidden layer s, then 

its local weight modification is calculated from

Because

(15)

(16)

90

Backpropagation

also

then

(17)

(18)
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Backpropagation

it modify the weight between i-th element 

of the layer n-1 and j-th element of the layer n

= + τ (19)

(20)

a

Iterative calculations correct weight „backwards”, 

to the  input layer.

92

Backpropagation

This learning procedure is repeated for 

each learning pattern, until the network 

will generate the correct answer for 

every input signal (pattern) – of course 

with the  defined accuracy.

93

Backpropagation

Example:

If

f(E) ∈∈∈∈ (0;1), k>0

when k ⇒⇒⇒⇒ ∞ 

then  f(E) ⇒⇒⇒⇒ step function

94

Backpropagation

calculating the derivative  f ’(E) for j-th

element:

(this derivative simplify he calculations)

95

Backpropagation

for the elements in the output layer

for the elements in the hidden layers

96

Recurrent MultiLayer

Perceptron

(RMLP)
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RMLP

Recurrent neural network  architectures consists of a 

standard Multi-Layer Perceptron (MLP) plus added 

loops. 

98

RMLP

Assumption: only one input nod (input signal x(t)) and one output nod 

(output signal y(t)), and one hidden layer.

The network input signal is composed from input x, delayed inputs and  

external recurrence output signal y(t) with some unit time delays. 

Delay units

Hidden layer

Delay units

input element

output element

x(t)

y(t)

99

RMLP

Structure of the RMLP network 

100

RMLP is a dynamic network with delayed input and output signals.

The farther analysis is performed for only one input node (signal x(t)), 

one output node (signal y(t)) and one hidden layer. 

The function 

y(t+1)=f(x(t),x(t-1), ..., x(t-(N-1)),y(t-1),y(t-2),...,y(t-P))

where

N -1 � number of delayed input signals, 

P � number of delayed output signals,

K � number of neurons in the  hidden layer, 

RMLP

101

Vector input signal x applied to the network input in the time t

x(t)=[1,x(t),x(t-1), ..., x(t-(N-1)),y(t-P),y(t-P+1),...,y(t-1)]

Denote

weighted input signal of the i-th neuron of 

the hidden layer

weighted input signal of the output neuron

output signal of the  i-th neuron of the 

hidden layer

output signal of the output neuron

(1-4)

RMLP

102

RMLP Learning Algorythm

The gradient learning algorithm is used. The gradient of ab 

error function with respect to each networks’ weight is 

calculated. For RMLP network the error function can be 

define by:

Differentiating with respect to each weight in the 

second layer

RMLP
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RMLP

because

104

RMLP

105

RMLP

next

this formula enable calculater the in the epoch  t on 

the base of its previus values

106

RMLP

Using the gradient descent method the weight change of 

the output layer is defined by

Similarly can be calculated the weight change in the hidden

layer. 

After calualtion of the derivative of a signal y(t) with respect of 

the weight ijn the hidden layer

(5)

107

RMLP

and the formula for the weight change in the hidden

layer

(6)

108

RMLP

Summary of a learning algorithm

1. Initialize the weight vectors in the hidden layer and 

output layer 

2. Evaluate the neuron state in epoch (t) with input x 

(1-4)

3. Calculates the values of and for 

every αβ

4. Updates the weights according to  5 i 6

5. Go to step 2 algorithm.
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Elman network

110

Elman Network

An Elman network is an MLP with a single 

hidden layer and in addition it contains 

connections from the hidden layer’s neurons 

to the context units. The context units store 

the output values from the hidden neurons in 

a time unit and these values are fed as 

additional inputs to the hidden neurons in 

the next time unit.

111

Elman Network – SRN (Simple Recurrent Network) is a 

simplification of Multi Layer Perceptron

Elman Network

112

N- number of external

inputs

K – number of neurons in a  

hidden layer

M – number of neurons in 

an output layer

A structure of an Elman Network

Contex 

layer

Elman Network

113

Vector input signal:

the elements denoted  j=N+1,..,N+K are from the 

hidden layer from the previous epoch

Elman Network

114

Notation

output signal of the i-th neuron of 

the output layer

weighted input signal of the i-th

neuron of the output layer

output signal of the i-th neuron of a 

hidden layer

weighted input signal of the i-th

neuron in a hidden layer

Elman Network
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Elman learning algorithm

The network will be learn according to steepest descent 

algorithm. Similarly to feedforward network a gradient of the 

cost function will be calculated with respect to every 

network`s weight. For the  Elman network a cost function can 

be defined by

Differentiating this function with respect to any output layer 

weight           we obtain 

Elman Network

116

Because connections between the hidden 

layer and output layer are  unidirectional

Elman Network

117

yields to

According to the method of steepest descent the weights’

change in output layer are defined by

(7)

(8)
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Weights change in the hidden layer is more complicated 

because of the feedbacks.

(9)
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and next 

The last formula (10) allows to calculate the derivatives of cost 

function with respect to weights of hidden layer in moment t.

It is the recurrent formula defining derivative in a moment t 

dependence of a derivative in a moment t-1.

(10)
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Assuming the initial values in a moment t = 0

and basing on the steepest descent method the weights’ 

change in the hidden layer is defined by

(11)

Elman Network
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