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Neural Networks

Lecture 5

| Hamming Modlel W Hamming Moel

— \ oy . . AP 4; independent layers:
- I'ne modelr Wrth DInary Tputs and Weignts 1IXxed _t ' 4

during the preparatory phase. the first layer — calculating the similarity

The Hamming Model is a optimal classifier. The the second layer — blocking all signals except the
systems calculates the similarity (the Hamming biggest one.

distance) between the input signal and each pattern
stored in the network. Next, the most similar stored
pattern is selected.

Fhe weights and thresholds in the 1 layer are selected
0 assure that the st element input signal will be equal
o N - H"puts where N is the number of bits in the input
ignal (and of course in the stored patterns)), H"Puts is
he Hamming distance between the input signal and sth
| stored pattern.

3 4
Hamming Model Hamming Model
—Btock diagram 7-|ammings' network
b)
X, t ™ 1 o
[:‘j » Hamming 2 7 .4 MAXNET r ‘h"i
% j Net £
"
4
o net
5 6




2021-02-22

TAANET

finer)

ey

» ¥

’ 1 / d
Initializing Recurrcat
pat cutpt

—TWo fayer Hamming network

Calculates Matching Scores

Two fayer Hamming network {exampie)

—Outputsignats from Hamming s netare equattor 1,2,
.., N. The greater value of output signal means that
nput signal X is more similar to the stored pattern s.

MAXNET, with internal connections based on the
ateral inhibition rule has to select the greatest signal
uppressing to zero the other signals.

~The netis able to store p, N-dimensional patterns st

Each element in the It layer is ,responsible” for the
pne stored pattern. The incoming weights to that m-th
element

W, = [Wi1, Winas ooy Wenn]
connects input nodes with that element.

The classifierer has p class, p elements and p outputs.

1

—The nontinear characteristic of an efement produce at
he output the signal is equal to 1 if and only if the
nput signal is identical with the stored pattern.

The incoming weights of the element (m), that one
where the m-ty pattern is stored, are equal

W, = S(m)
The input signals of network elements are

XTs) XTs@), . XTs(m) .., XTs(P)
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fthe inputsignat X =st™ the only one weighted input
s equal to N, and the rest belongs to the (-N;+N) (the
nput signals x; are equal to -1 or +1).

The inner (scalar) products X's!™ are used to calculate
he similarities between the input signal and stored
patterns.

The inner product X's(™ can be written as:

the number of positions (bits) where they agree —
minus the number of positions where they disagree.

r—The number of positions they disagree = itis

Hammings’ distance
H(X,sM)
o, the number where they agree
N - H(X,s(™)
hence XTsM = {N - H(X,s™)} - H(X,s(m),

XTs(M/2 = N/2 - H(X,s™)

—Fhe weight matrix of Hammings' net W (connections

[with the Ist layer)

) ) m

§, S, o o Sy

(2) (2) 2)

S S, o o Sy

W=—| o o o o o
o o o o o

The input signal X produce at the input of each element
signal
1

= Xs ™
2

lus-the-additional constant bias-signalof N/2;
H 1 (m) N 7 (m)
E =5Xs +7=A —H(X,s™)
The nonlinear characteristic

H _1 H
fE")= \,E

produce at the output signal of value <0; 1>. The
element of a greater output signal indicates the
class (the number of a class) where the input signal
X has the smallest Hamming distance. The best
matching

- H=0i f(E") =1

1 —-& o o —¢&
=& 1 o o —g
W o\ oover o o o o o =W,
o o o o o
—-& —& o o 1

where 0<e<1/p

the coefficient of lateral inhibition

0if a<0
[a]:{a if a>0

<
>
o
=
[¢]
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these are patterns of C, land T

E I T

[+1 +1 +1 +1 -1 -1 +1 +1 +1]
[F1 +1 -1 -1 +1 -1 -1 +1 -1]

s@=[+1 +1 +1 -1 +1 -1 -1 +1 -1]

Hamming Model
—the weicht vector r.ml
—the-weight-vector N
W= |s®
5(3)

[l

he input signals to the Hamming net elements
9/
1 9 2
H = — .
E" = W X+ %

%

Hamming Model
at us assume that the input siegnal
bk ahdil = ARk Ll b =RRhel
X=[+ +1 +1 + +1 +1 +1 +1 +1]

it has to be classified to one of three classes C,I,T

terative procedure

ya+1)=VY[EY  y)]

ields 1 -02 -02

». ()
Let £€=0,2 (<1/3 =1/p), hence Wyt =|-02 1 202 ||y,
) -02 -02 1 NG)
74 | fiE*) = y(0) s the y
E® - |3 fE")= % first input to the and next
5 5| MONET RO [ VA VAR V4 )
9 10 15 3177
21 22
Hamming Model Hamming Model
“naxt Ive _[13 -3 1] “Thelast result stonsthe procedure —the stable statais
“hext e “Fheast-result-stops-the-procedure —the stable state s
achieved.
y(2)= [i 0 i} X .
25 5 Conclussion:
EY(3)= B—z Izi %} = Fhe unknown input signal X had the smallest
. > 123 > Hamming distance from the pattern s?, so it belonged
y(3) = [g 0 E:' o the
s _ class- C
P [0 o o)a
e[ o o

23
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The Hopfield Model

\ALT 1

VA J.982 J.J. Hupﬁcld
Neural Networks and Physical Systems with
Emergent Collective Computational Abilities

Model similar to the perceptron — but with
many differences.

It is not only the model — it is the ideology.

The Hopfield Model

—Hopfield-exploited-ananalogyto-energy-states
in physics and introduced the computational
energy function. Like a physical system, the
network seeks its lowest energy state and with
the iteration procedure converges to the
stable state.

The Hopfield network is able to memorize and
next reproduce the information on the base
of an incomplete or noisy input signal.

27

The Hopfield Model

PEEE PN
1

— Th vcktam ac intac thao iyt tafa
— e SySternassotiate s themput o Tatto

with this stored which is the “closest” in
accordance to the measure of similarity.

The algorithm realized by the network is
called

nearest neighbour algorithm

The Hopfield model has a shortage of precise
mathematical description and precise

|| convergence conditions.

The Hopfield Model

—Network description

The Hopfield net consists of a number of elements,
each connected to every other element - it is fully
connected network (but no self feedback loops).

It is also symmetrically-weighted network, since the
weights on the connections from one element to
another are the same in both directions.

Each element has, like the single-layer perceptron, a
threshold and each element calculates the weighted
sum of their inputs minus the threshold value.

29

The Hopfield Model

Th 4
e Systiaint
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LAYER 0 LAYER 1

dotted lnes indicate weights of zero
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The Hopfield Model The Hopfield Model
—Netweork-operation: —The-networkis plcpqlcd dul;lls the
The input and output signals can be binary e.g. initialization (or learning) phase when the
x[{-1,+1} (the bipolar case) or x 0 {0,1} (the unipolar interconnecting matrix is calculated.
case) or continuous valued.
Next an unknown object is input to the network The interconnection weights W, i,j =1,2,...,n form
which proceeds to cycle (the first network output is the nxn symmetric interconnection matrix W,
taken as the new input, which produces an output which is defined by the outer - product learning
and so on.) through a succession of states, until it rule v
converges on a stable solution, which happens when ijxj dla i#j N is the number of stored objects,
the output values of elements no longer alter. Wy =1 o x°is the j element of object .
0 dla i=j /
31 32

The Hopfield Model The Hopfield Model
= isonP Hoofield —¢ ison P Hoofield
+* in a perceptron network is learned through ¢ in a perceptron network is addressed by
the repeated adjustment of weights the input signal — and generates the
+»* in a Hopfield model network is prepared appropriate output signal
during the initialization (or learning) phase +¢ in a Hopfield model the first output signal
when the interconnecting matrix is calculated. is used as a new input signal etc. (until it
converges to the stable state).
33 34

The Hopfield Model The Hopfield Model

— H Th 4 I 4 + ct [ £ 4 £ 41
— . — HeTIietwWuUTrR output Sigitaris a Tarnt oo Unc

weights values and an input signal.

Network “calculates” an error (calculate energy) ) ) )
Assuming the network with two weights only —

1 . ol 8 . "
E:_Ez(yi —3) the geometrical interpretation is a surface in 3D
E determines the value the actual network
output signal Y differs from required signal Y* Generally — all weights are the subject of
correction which lead to multidimensional
Big difference — big energy. Small difference —small energy energy function

Each next weight increase the problem dimension.

35
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The Hopfield Model The Hopfield Model
—Learning rule. Fer-the Hopfield network-the-energy-has the-form:
The network updates its weights such that the 1
euclidean (?) distance of the output vector and the E=—23" > wxx, + > xT,
target vector is minimized minimizing the Energy E. 255 i
Learning method — a gradient descent method e , . .
w; is the weight between the i"and ™ element,

A knowledge of Y* and Y are necessary. In the X is the input signal of element i'", "

Hopfield’s model we do not have such a knowledge dTi DI thre;hdd_"é’"”e o e elizrmet M

+in the consecutive steps — an algorithm has to be M Wy = W and Wi =

cthanged.

37 38

» We’II take a

5-minute
break now
39 40
Associative memories Associative memories
rn The massively parallel models of associative or M
content associative memory have been The associative network is a computational
developed. model emphasizing local and synchronous
Some of these models are: Kohonen, GrOSSberg, or asynchronous Controll h|gh para'le“sm’

Hamming and widely known Hopfield model.

The most interesting aspect of the most of these U] [ECUITERANES, SNEN & MEE & &
models is that they specify a learning rule which connectionist architecture and shares some

can be used to train network to associate input common features with the Rosenblatt's
and output patterns. Perceptron. However, that is much more
powerful and flexible than the Perceptron.

41 42
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Associative memory model

The model has its origin both in the Hamming
and Grossberg models.

The network model is composed of 3 layers or
slabs: and input layer, an intermediate layer, and
an output layer. The intermediate layer is a
modified totally interconnected memoryless
Grossberg slab with recurrent shunting on-
center off-surround subnets, whose purpose is to
achieve a majority vote so that only one neuron
from this level, the one with the highest input
value, will send its output to the next layer.

43

Associative memory model

The similarities to Grossbergs’ model:
interconnections between input layer and
intermediate layer

The similarities to Hammings’ model
interconnections (feedback) in the intermediate
layer.

The connections between the input layer and
intermediate layer contain all the information
about one stored vector. The network is
implementing the nearest-neighbor algorithm.

44

Associative memory model

The number of elements in the intermediate layer
defines the number of stored patterns..
All feedback connections within the intermediate
layer are based on the rule of lateral inhibition.
The network is performing a

winner-takes-all
operation.
The elements of input signals (and stored vectors)
are the binary values 0 and 1.

X =[Xq, Xoy Xgy +eey X5l x; 0{0,1}

45

Associative memory model

The input and output elements (neurons) are only,
nodes whose purpose is to connect the inputs
and outputs respectively to the intermediate slab.
The network can be programmed to function as
an autoassociative content-addressable memory
or as symbolic substitution system which yields
an arbitrary defined output for any input — it
depends from the connections between the
intermediate slab and the output layer.

46

Associative memory model

? ‘ Input layer

Intermediate layer

l i weights= +

l negative
weights

threshold = 0.1
Output layer

47

Associative memory model

Programming the network

The interconnections (weights) between the input
elements and each intermediate neuron are
independent to each other. Each intermediate
element has its weights programmed to one input
signal and these connections are left unchanged
while the other neurons are programmed.

Adding or removing a new pattern does not
influence to the existing network structure and
weights.

48
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Associative memory model Associative memory model
1 The connection weights between the elements of the 1 This procedure normalizes the total input to
input layer and j™ element of intermediate slab are: each element of the intermediate slab to the
® if the i element of the input vector is equal to zero interval <0:1>. and takes not account the
w,-J =0 relative number of stored elements equal to

the input elements, instead of the absolute
; number. It allows to distinguish between
WY = b signals if one is included in another one.
J
where b is the number of non-zero elements in the ji"
input vector to be stored.

® if the i element of the input vector is equal to one

49 50
Associative memory model Associative memory model
Example: M _ ] ]
pattern © pattern @ 1. Inthe |an_1t signal is @, the output from both
amm elements is equal to one.
e u 2. If the input signal is @, the output signal
e = from element 1 is equal to 0.8 hence from
Ll L u element 2 is equal to 1.0
weights of |_ntermed|ate slab element where The ambiguous output signal in the first case
the pattern is recorded can be solved by the proper network
wi = — ol = l structure.
| "0 P8 |
51 52
Associative memory model Associative memory model
M This learning procedure is repeated for " Each neuron ‘in the intermedigte slab is connected to all other
hi Rl EEE (T R A neurons of this slab. The weight on the self feedback loop is
_eac 'an_j D equal to one, and all the other values depend on the correlation
intermediate neuron. between stored vectors. The weight between the output of j
neuron and input of the k" neuron is given by
The total number of different vectors that . L+cor(k, yw*
can be stored with this prescription in vk D=0
the net with N — elements in the input where cor(k, j) is correlation (inner product) between ki"
BV s n and |t stored vectors.
Y n) o w¥ is one of the identical positive weight from the input
I - - slab to the kth neuron,
k=1 M is equal to the number of neurons in the intermediate
- - slab with non-zero inputs.

53 54
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Associative memory model

The denominator ensures that the total lateral
inhibition for the element with the greatest value is
smaller that its input.

This procedure realizes the rule winner-takes-all.
The intermediate slab selects the maximum input,
and drives all the other intermediate neurons to
zero. If more then one intermediate neuron has the
same maximum value, the slab will select the one
that is less correlated to the remaining stored
vectors.

55

Associative memory model

The structure of connections in the intermediate
slab is not symmetrical

w(k, j)#w( j,k), hencew/ = wk

If two or more neurons will have the same input signal,
and the outputs may not be discriminated by the
criterion, then the slab will be unable to distinguish
between them and the outputs will be driven to zero or
will be a superposition of the twp or more outputs.

56

Associative memory model

Retrieval of stored vectors
At the input layer the unknown signal is applied and the
network has to ,recognize” it.

If the stored vectors are orthogonal, any full of or partial
input corresponding to one stored vector would cause
only one neuron in the intermediate slab to have a non-
zero output in the first iteration. When the stored
vectors are not orthogonal, a certain number of neurons
will be excited.

57

Associative memory model

Let f is the unknown input signal

The elements of the vector X define the total input to the
elements of the intermediate layer

X=f*w!

w1l is the matrix of connections between the input
layer and intermediate layer (the columns are equal to
the input weights w{_ of each stored vector.

58

Associative memory model

The output to of the first iteration is equal to
G=w>*Xx"

where W2 is square matrix of connections
between elements of the intermediate slab

1 -w(l2) —-w(3) -w(l,n)
w2_|™ w(2,1) 1 -w(2,3) -w(2,n)
-wnl) —-wm?2) —-wn3) .. 1

59

Associative memory model

the iterative formula

G(t+1)=W2*G(t)=(W2)'(f*W‘)'

the output values are calculated by formula

X Y=W>*G
W= matrix of connections between the intermediate
slab and the output layer; for the associative memory

wi=w'

60

10
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Associative memory model

P! )
o ‘ Vi=[11000]
— Ny
A 1 0 fori=345
YiZ105 fori=12
o e O

61

Associative memory model

(@

I 1 0

o

U ) { 0 fori=25
wi =

1/3 for i=1,34

V2=[10110]

62

Associative memory model

1 1 1
2 o
V3=[00111]
2 | 0 fori=12
" "\1/3 for i=3,45
o e O

63

Associative memory model

1/2 1/3 0 |
/2 0 0
wl=| 0 1/3 1/3
0 1/3 1/3
0 0 1/3]

64

Associative memory model

S~ - = N

wi(j.j)=1

TN
1 +cor(k,j{)wk )

w? k,j)=
(%, J) -1y
-3/4 1/2}

wk = w;‘ >0

65

Associative memory model

66

11
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Associative memory model

2D patterns I:l L E 3

stored in the

network (9x6) I'I 5 E |'I|
B4

67

Associative memory model

Input signal Output signal

- after 3 iterations

B after 4 iterations

68

’ We’ll take a
5-minute
break now

69

Logic networks

Most publications on neural networks focus
on pattern recognition and associative
memories. Here will be presented new area
— logic operations. A multilayer system
composed of simple identical elements can
perform any Boolean function of two, three
or more variables.

71

Long ago, M. Minsky and S. Pappert
describing perceptron, or rather describing
its faults used the XOR function as the
example of operation cannot be performed
by the one-layer perceptron.

This simple logical function can be realized
on many ways

12
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Logic networks

1 Example of the network  * l l weight +
Example able to perform XOR
The connections with an arrow have the operation weight -
positive weight equal +1, connections A | B |Wy
without arrows have the weights equal to -1. 0[0]|oO hresheld =04
All elements are identical, with the nonlinear 101
characteristics and threshold equal to 0.1. 011
Input signals components are equal to one or 11110
zero.

73 74
Logic networks Logic networks

A

7

| weight =+1 Logic module for * | weights1
Model of associative many functions
t weight = -0.5 .
memory type : weight -1
threshold = 0.1
. thres=0.1
O thres = 1.5
75 76
Logic networks Logic networks
'| Examples of functions Example | weignt+1
function Wp (W, (Wg A and B weight -1
AORB 1 1 1
’ thres=0.1
AANDB 0 0 1 Q
thres=1.5
AXORB 1 1 0
A AND (NOT B) 1 0 0
A AND (B OR (NOT B)) 1 0 1

13
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Logic networks Logic networks

Any logical function can be written in a canonical
form.

The canonical form: An expression is said to be in a
canonical sum-of-product form when variables are
logically ANDed into groups (called minterms), that

Logical operations

n
For n logical variables one can creates 22
different functions.

number of variables n number of functions of n

X are logically ORed to form a function.
variables R i R .
1 4 Every variable appears in every minterm once in the
canonical sum-of-product form. All 2" minterms of n
2 16 variables can be generated in a network of n+1
3 256 levels, and the minterm can be combined into
] 4 65 536 || arbitrary function in an additional level..
79 80
Logic networks Logic networks
1 . . Table of 16 possible two-element logical
Functions of two variables operations
coefficients
Function Descr
% f, f, T,
) 1 — NOR | 1 0 olo
The Canonical form AB
2 AB o|1]0]o0
N N = 3 AB ojo|1]o0
f =ABf,+ABf, + ABf, + ABf,
2 4 AB AND| Q| 0|01
81 82
Logic networks Logic networks
Table of 16 possible two-element logical Table of 16 possible two-element logical
operations operations
coefficients coefficients
Function Descr P N Y, f, Function Descr X N N X
5| AB+AB | ®|1|1|0 |0 9 AB+AB | XR |0 |1 |10
6| AB+AB |A|[1|0|1]0 10 | AB+AB+AB| ® | 0 | 1| 1 |1
7| AB+AB | A |0 | 1|01 n AB+AB |*R| 10|01
8| aB+aB |° |00 1|2 2| a5 aB+aB|*®| 1] 2 [0 |2
83 84

14
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Logic networks

Table of 16 possible two-element logical
operations

codfficients
Function Deser
fo f fa | fs
3 | AB+AB+AB M| 1 | 1 (1|0
4 | AB+AB+AB| A8 | 1|0 |1 |1
15 outalways=0 |FASE| 0 | 0 | 0 | O
aC outalways=1 RED L 1 11

85

Any out of 16 two-element logic operations can be
programmable by a universal logic module.

Model assumptions:
® |nput signals ar equal to 1 or 0.
® Connections with arrow are equal to +1.
® Connections without arrows are equal to -1.
® The element shown white is always activated
by the input signal equal to +1.

86

Logic networks - Universal logic module

l weight +1

weight -1

‘ thres=0.1

Description of network operation

The network input signal IN=[1,A,B,]
Input signal to the elements of the
1stintermediate layer X=IN*WwW?

W? matrix of connections between input elements and
elements of the 1t intermediate layers

+1 0 0 0
W =[-1 +1 +1 -1

-1 -1 +1 +1
Nonlinear threshold function ® %o L @ %0
[0 for x;<0
87 88
Logic networks Logic networks

Description of network operation
Input signal to the element of the .
2 intermediate layer Y= X* W2

W2 matrix of connections between elements of the 1stand 2"
intermediate layers

+1 0 0 0
N 0 +1 -1 0
W2 =
0 0 +1 0
0 0 -1 +1
Nonlinear threshold function ®
Y =®(Y)

89

1Description of network operation

Network output signal oUT=O( Y* W3)

W3 matrix of connections between the elements of the 2"

intermediate layer and the output element
W= [Wo W, W, W:]

Finally, for the network
OUT = O{O[O(IN*W!)* W2 [+ w? |=
= O{®O(1 -A-B)w, + D(A-B)w, + D(B-A)w, +

O[O(A +B)-O(A -B)-O(B - A)lw,}

15
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Logic networks

Example

The well-known operation OR (A+B) using logical theorems
(expansion, distributive, commutative, De Morgan’s etc), can
be rewritten into a canonical form

A+B=AB+B)+BA+A)=
=AB+AB+BA+BA =
=AB+AB+AB

The universal logic module can perform this

operation by setting of weights
wWo=0 w;=1 w,=1 w;=1

91

l weight +1

weight -1

‘ thres=0.1

Logic networks

The other solutions

By replacing a single output element by a layer of 52"
elements (for n=2 by 16 elements), and by fixing the
interconnections to the output layer we get the network
where each output element corresponds to one logical
function. Each element of the second intermediate slab
reacts to only one term of the canonical form of a logical
function.

A simplified version of the network which can perform
seven of all 16 two element logical operations, neglecting
only those for which a total zero input lead to a non-zero
output is shown.

93

A | ® |

iobs 1
l weight+1

weight -1

thres=0.1

\

/L L \:\

—_ — V= = [ —_— N —_— D —_—
LIAB AB+AB AB+AB AB AB+AB+AB AB+AB AB

Logic networks - Universal logic module

A | &

f—weight+¢

Example A+B weight -1

thres=0.1

L
\

AB+AB+AB

95

A | ® |

f—weight-+2

Example weight -1

AXORB thres=0.1

16



