WARSAW UNIVERSITY OF TECHNOI

 AND INEORMATION SCIENCE

Hamming Model

The model with binary inputs and weights fixed during the preparatory phase.

Hamming Model

2 independent layers:

- the first layer - calculating the similarity

The Hamming Model is a optimal classifier. The

- the second layer - blocking all signals except the systems calculates the similarity (the Hamming biggest one. distance) between the input signal and each pattern stored in the network. Next, the most similar stored

The weights and thresholds in the 1 layer are selected pattern is selected. to assure that the $s^{\text {th }}$ element input signal will be equal to \boldsymbol{N} - $\boldsymbol{H}^{\text {input, }}$ where \boldsymbol{N} is the number of bits in the input signal (and of course in the stored patterns)), $H^{\text {input,s }}$ is the Hamming distance between the input signal and $s^{\text {th }}$ stored pattern.

Hamming Model

Output signals from Hamming's net are equal to: 1,2, .., N. The greater value of output signal means that input signal \boldsymbol{X} is more similar to the stored pattern s.

MAXNET, with internal connections based on the lateral inhibition rule has to select the greatest signal suppressing to zero the other signals.

Hamming Model

ff the input signal $X=\mathbf{s}^{(m)}$, the only one weighted input is equal to \mathbf{N}, and the rest belongs to the $(-N ;+N)$ (the input signals x_{i} are equal to -1 or +1).

The inner (scalar) products $\mathbf{X}^{\boldsymbol{\top}} \mathbf{s}^{(\mathrm{m})}$ are used to calculate the similarities between the input signal and stored patterns.
The inner product $\mathbf{X}^{\top} \mathbf{s}^{(m)}$ can be written as:
the number of positions (bits) where they agree minus the number of positions where they disagree.

Hamming Model

The weight matrix of Hammings' net \mathbf{W} (connections with the Ist layer)

$$
\boldsymbol{W}=\frac{1}{2}\left[\begin{array}{ccccc}
\boldsymbol{s}_{1}^{(1)} & \boldsymbol{s}_{2}^{(1)} & \circ & \circ & \boldsymbol{s}_{\boldsymbol{N}}^{(1)} \\
\boldsymbol{s}_{1}^{(2)} & \boldsymbol{s}_{2}^{(2)} & \circ & \circ & \boldsymbol{s}_{N}^{(2)} \\
\circ & \circ & \circ & \circ & \circ \\
\circ & \circ & \circ & \circ & \circ \\
\boldsymbol{s}_{1}^{(p)} & \boldsymbol{s}_{2}^{(p)} & \circ & \circ & \boldsymbol{s}_{N}^{(p)}
\end{array}\right]
$$

The input signal \mathbf{X} produce at the input of each element signal
$\frac{1}{2} \boldsymbol{X} s^{(m)}$

Hamming Model

Plus the additional constant bias signal of $\mathrm{N} / 2$,

$$
E^{H}=\frac{1}{2} X s^{(m)}+\frac{N}{2}=N-H\left(X, s^{(m)}\right)
$$

The nonlinear characteristic

$$
\boldsymbol{f}\left(\boldsymbol{E}^{\boldsymbol{H}}\right)=\frac{1}{\boldsymbol{N}} \boldsymbol{E}^{H}
$$

produce at the output signal of value $<0 ; 1>$. The element of a greater output signal indicates the class (the number of a class) where the input signal \mathbf{X} has the smallest Hamming distance. The best matching

$$
H=0 \text { i } f\left(E^{H}\right)=1
$$

\square Hamming Model

The iterative procedure of MAXNET have to suppress the rest (smaller) output signals
$\boldsymbol{W}_{\text {MANVET }}=\left[\begin{array}{ccccc}1 & -\varepsilon & \circ & \circ & -\varepsilon \\ -\varepsilon & 1 & \circ & \circ & -\varepsilon \\ \circ & \circ & \circ & \circ & \circ \\ \circ & \circ & \circ & \circ & \circ \\ -\varepsilon & -\varepsilon & \circ & \circ & 1\end{array}\right]=\boldsymbol{W}_{\boldsymbol{M}}$

> where $0<\varepsilon<1 /$ p
> the coefficient of lateral inhibition

Mamming Model
The recursive procedure $\boldsymbol{y}(\boldsymbol{t}+1)=\Psi\left[\begin{array}{l}W_{\text {MAXNET }} \\ \text { where } \quad \Psi(t)]\end{array}\right.$
0 if $a<0$ a if $a \geq 0$

Hamming Model

$$
\begin{aligned}
& \text { Lat us assume that the input signal } \\
& \prod X=\left[\begin{array}{lllllllll}
+1 & +1 & +1 & +1 & +1 & +1 & +1 & +1 & +1
\end{array}\right]
\end{aligned}
$$

it has to be classified to one of three classes $\boldsymbol{C}, \boldsymbol{I}, \boldsymbol{T}$
Let $\varepsilon=0,2(<1 / 3=1 / p)$, hence

$$
\left.\boldsymbol{E}^{H}=\left[\begin{array}{l}
7 \\
3 \\
5
\end{array}\right] \quad \boldsymbol{f}\left(\boldsymbol{E}^{\boldsymbol{H}}\right)=\left[\begin{array}{l}
7 / 9 \\
3 / 9 \\
5 / 9
\end{array}\right] \begin{array}{l}
f\left(\boldsymbol{E}^{H}\right)=y(0) \text { is the } \\
\text { first input to the } \\
\text { MAXNET }
\end{array}\right]
$$

Hamming Model

Iterative procedure

$$
\begin{array}{ll}
& \boldsymbol{y}(\boldsymbol{t}+1)=\Psi\left[\boldsymbol{E}^{\boldsymbol{M}} \cdot \boldsymbol{y}(\boldsymbol{t})\right] \\
\text { yields } & \boldsymbol{W}_{\boldsymbol{M}} \cdot \boldsymbol{y}(\boldsymbol{t})=\left[\begin{array}{ccc}
1 & -0.2 & -0.2 \\
-0.2 & 1 & -0.2 \\
-0.2 & -0.2 & 1
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{y}_{1}(\boldsymbol{t}) \\
\boldsymbol{y}_{2}(\boldsymbol{t}) \\
\boldsymbol{y}_{3}(\boldsymbol{t})
\end{array}\right]
\end{array}
$$

and next

$$
E^{M}(1)=\left\lfloor\begin{array}{lll}
6 / 10 & 1 / 15 & 1 / 3
\end{array}\right\rfloor=y(1)
$$

The Hopfield Model

W 1982 J. J. Hopfield

Neural Networks and Physical Systems with Emergent Collective Computational Abilities

Model similar to the perceptron - but with many differences.

It is not only the model - it is the ideology.

The Hopfield Model

Hopfield exploited an analogy to energy states in physics and introduced the computational energy function. Like a physical system, the network seeks its lowest energy state and with the iteration procedure converges to the The Hopfield Model

The system associates the input information with this stored which is the "closest" in accordance to the measure of similarity. The algorithm realized by the network is called
stable state.
The Hopfield network is able to memorize and
nearest neighbour algorithm next reproduce the information on the base

The Hopfield model has a shortage of precise of an incomplete or noisy input signal. mathematical description and precise convergence conditions.

The Hopfield Model

Network description

The Hopfield net consists of a number of elements, each connected to every other element - it is fully connected network (but no self feedback loops).
It is also symmetrically-weighted network, since the weights on the connections from one element to another are the same in both directions.
Each element has, like the single-layer perceptron, a threshold and each element calculates the weighted sum of their inputs minus the threshold value.

The Hopfield Model

Network operation:

The input and output signals can be binary e.g. $x \in\{-1,+1\}$ (the bipolar case) or $x \in\{0,1\}$ (the unipolar case) or continuous valued.
Next an unknown object is input to the network which proceeds to cycle (the first network output is taken as the new input, which produces an output and so on.) through a succession of states, until it converges on a stable solution, which happens when the output values of elements no longer alter.

The Hopfield Model

The network is prepared during the initialization (or learning) phase when the interconnecting matrix is calculated.

The interconnection weights $w_{i j}, i, j=1,2, \ldots, n$ form the $n \times n$ symmetric interconnection matrix \boldsymbol{W}, which is defined by the outer - product learning

The Hopfield Model

Comparison Perceptron-Hopfield
in a perceptron network is learned through the repeated adjustment of weights

* in a Hopfield model network is prepared during the initialization (or learning) phase when the interconnecting matrix is calculated.

The Hopfield Model

Comparison Perceptron-Hopfield

* in a perceptron network is addressed by the input signal - and generates the appropriate output signal
* in a Hopfield model the first output signal is used as a new input signal etc. (until it converges to the stable state).

The Hopfield Model

Analysis of system energy:
Network "calculates" an error (calculate energy)

$$
E=-\frac{1}{2} \sum_{i}\left(y_{i}-y_{j}^{*}\right)^{2}
$$

E determines the value the actual network output signal \mathbf{Y} differs from required signal \mathbf{Y}^{*}

Big difference - big energy. Small difference - small energy

The Hopfield Model

The network output signal is a function of the weights values and an input signal.

Assuming the network with two weights only the geometrical interpretation is a surface in 3D
Each next weight increase the problem dimension.
Generally - all weights are the subject of correction which lead to multidimensional energy function

The Hopfield Model

Learning rule.

The network updates its weights such that the euclidean (?) distance of the output vector and the target vector is minimized minimizing the Energy E .

Learning method - a gradient descent method

A knowledge of Y^{*} and Y are necessary. In the Hopfield's model we do not have such a knowledge - in the consecutive steps - an algorithm has to be changed.

The Hopfield Model

For the Hopfield network the energy has the form:

$$
E=-\frac{1}{2} \sum_{i} \sum_{j \neq i} w_{i j} x_{i} x_{j}+\sum_{i} x_{i} T_{i}
$$

where

$w_{i j}$ is the weight between the $i^{\text {th }}$ and $j^{\text {th }}$ element,
x_{i} is the input signal of element $i^{\text {th }}$,
T_{i} is the threshold value of the element $i^{\text {th }}$.
and $w_{i j}=w_{j i}$ and $w_{i i}=0$

Associative memories

The associative network is a computational model emphasizing local and synchronous or asynchronous control, high parallelism, and redundancy. Such a network is a connectionist architecture and shares some common features with the Rosenblatt's Perceptron. However, that is much more powerful and flexible than the Perceptron.

Associative memory model

The model has its origin both in the Hamming and Grossberg models.
The network model is composed of 3 layers or slabs: and input layer, an intermediate layer, and an output layer. The intermediate layer is a modified totally interconnected memoryless Grossberg slab with recurrent shunting oncenter off-surround subnets, whose purpose is to achieve a majority vote so that only one neuron from this level, the one with the highest input value, will send its output to the next layer.

Associative memory model

The similarities to Grossbergs' model: interconnections between input layer and intermediate layer
The similarities to Hammings' model interconnections (feedback) in the intermediate layer.

The connections between the input layer and intermediate layer contain all the information about one stored vector. The network is implementing the nearest-neighbor algorithm.

Associative memory model

The input and output elements (neurons) are only nodes whose purpose is to connect the inputs and outputs respectively to the intermediate slab. The network can be programmed to function as an autoassociative content-addressable memory or as symbolic substitution system which yields an arbitrary defined output for any input - it depends from the connections between the intermediate slab and the output layer.

Associative memory model

Programming the network

The interconnections (weights) between the input elements and each intermediate neuron are independent to each other. Each intermediate element has its weights programmed to one input signal and these connections are left unchanged while the other neurons are programmed.

Adding or removing a new pattern does not influence to the existing network structure and weights.

Associative memory model

The connection weights between the elements of the input layer and $j^{\text {th }}$ element of intermediate slab are:

- if the $i^{\text {th }}$ element of the input vector is equal to zero

$$
w_{i}^{j}=0
$$

- if the $i^{\text {th }}$ element of the input vector is equal to one

$$
w_{i}^{j}=\frac{1}{b_{j}}
$$

where b_{j} is the number of non-zero elements in the $j^{\text {th }}$ input vector to be stored.

Associative memory model

This procedure normalizes the total input to each element of the intermediate slab to the interval <0;1>, and takes not account the relative number of stored elements equal to the input elements, instead of the absolute number. It allows to distinguish between signals if one is included in another one.

Associative memory model

1. In the input signal is $\mathbf{0}$, the output from both elements is equal to one.
2. If the input signal is $\boldsymbol{2}$, the output signal from element 1 is equal to 0.8 hence from element 2 is equal to 1.0

The ambiguous output signal in the first case can be solved by the proper network structure.

Associative memory model

Each neuron in the intermediate slab is connected to all other neurons of this slab. The weight on the self feedback loop is equal to one, and all the other values depend on the correlation between stored vectors. The weight between the output of $j^{\text {th }}$ neuron and input of the $k^{\text {th }}$ neuron is given by

$$
w(k, j)=\frac{1+\operatorname{cor}(k, j) w^{k}}{2(M-1)}
$$

where $\operatorname{cor}(\boldsymbol{k}, \boldsymbol{j})$ is correlation (inner product) between $k^{\text {th }}$ and $j^{t / i}$ stored vectors.
\boldsymbol{w}^{k} is one of the identical positive weight from the input slab to the $k^{\text {th }}$ neuron,
\boldsymbol{M} is equal to the number of neurons in the intermediate slab with non-zero inputs.

Associative memory model

The denominator ensures that the total lateral inhibition for the element with the greatest value is smaller that its input.
This procedure realizes the rule winner-takes-all. The intermediate slab selects the maximum input, and drives all the other intermediate neurons to zero. If more then one intermediate neuron has the same maximum value, the slab will select the one that is less correlated to the remaining stored vectors.

Associative memory model

The structure of connections in the intermediate slab is not symmetrical

$$
w(k, j) \neq w(j, k), \text { hence } w^{j} \neq w^{k}
$$

If two or more neurons will have the same input signal, and the outputs may not be discriminated by the criterion, then the slab will be unable to distinguish between them and the outputs will be driven to zero or will be a superposition of the twp or more outputs.

Associative memory model

Retrieval of stored vectors

At the input layer the unknown signal is applied and the network has to "recognize" it.

If the stored vectors are orthogonal, any full of or partial input corresponding to one stored vector would cause only one neuron in the intermediate slab to have a nonzero output in the first iteration. When the stored vectors are not orthogonal, a certain number of neurons will be excited.

Associative memory model

Let \boldsymbol{f} is the unknown input signal

The elements of the vector \boldsymbol{X} define the total input to the elements of the intermediate layer

$$
\boldsymbol{X}=\boldsymbol{f}^{*} \boldsymbol{W}^{1}
$$

W^{1} is the matrix of connections between the input layer and intermediate layer (the columns are equal to the input weights w_{k}^{j} of each stored vector.

Associative memory model

the iterative formula

$$
\boldsymbol{G}(\boldsymbol{t}+1)=\boldsymbol{W}^{2} * \boldsymbol{G}(\boldsymbol{t})=\left(\boldsymbol{W}^{2}\right)^{t}\left(f^{*} \boldsymbol{W}^{1}\right)^{T}
$$

the output values are calculated by formula

$$
\boldsymbol{Y}=\boldsymbol{W}^{3} * \boldsymbol{G}
$$

\boldsymbol{W}^{3} matrix of connections between the intermediate slab and the output layer; for the associative memory

$$
\boldsymbol{W}^{3}=\boldsymbol{W}^{1}
$$

Logic networks

Most publications on neural networks focus on pattern recognition and associative memories. Here will be presented new area - logic operations. A multilayer system composed of simple identical elements can perform any Boolean function of two, three or more variables.

Logic networks

Example

The connections with an arrow have the positive weight equal +1 , connections without arrows have the weights equal to -1 . All elements are identical, with the nonlinear characteristics and threshold equal to 0.1 . Input signals components are equal to one or zero.

	Logic networks		
Logical operations For n logical variables one can creates $2^{2^{n}}$ different functions.			
	number of variables n	number of functions of n variables	
	1	4	
	2	16	
	3	256	
\checkmark	4	65536	
			79

Logic networks

Any logical function can be written in a canonical

form.

The canonical form: An expression is said to be in a canonical sum-of-product form when variables are logically ANDed into groups (called minterms), that are logically ORed to form a function.
Every variable appears in every minterm once in the canonical sum-of-product form. All 2^{n} minterms of n variables can be generated in a network of $n+1$ levels, and the minterm can be combined into arbitrary function in an additional level..

\squareLogic networks Functions of two variables The Canonical form $f=\overline{\mathrm{A}} \overline{\mathrm{B}} \boldsymbol{f}_{0}+\overline{\mathrm{A} B} \boldsymbol{f}_{2}+\mathrm{A} \overline{\mathrm{B}} \boldsymbol{f}_{1}+\mathrm{AB} \boldsymbol{f}_{3}$

Logic networks

Table of 16 possible two-element logical operations

Logic networks

Any out of 16 two-element logic operations can be programmable by a universal logic module.

Model assumptions:

- Input signals ar equal to 1 or 0 .
- Connections with arrow are equal to +1 .
- Connections without arrows are equal to -1.
- The element shown white is always activated by the input signal equal to +1 .

Logic networks

Description of network operation
The network input signal
Input signal to the elements of the $1^{\text {st }}$ intermediate layer

$$
\mathrm{IN}=[1, A, B,]
$$

$\mathrm{X}=\mathrm{IN}$ * W^{1}
W^{1} matrix of connections between input elements and elements of the $1^{\text {st }}$ intermediate layers

$$
\mathrm{W}^{1}=\left[\begin{array}{cccc}
+1 & 0 & 0 & 0 \\
-1 & +1 & +1 & -1 \\
-1 & -1 & +1 & +1
\end{array}\right]
$$

Nonlinear threshold function $\Phi \quad \hat{X}=\Phi(X)=\left\{\begin{array}{lll}1 & \text { for } & x_{i}>0 \\ 0 & \text { for } & x_{i} \leq 0\end{array}\right.$
Nonlinear threshold function Φ

$$
\hat{\mathrm{Y}}=\Phi(\mathrm{Y})
$$

Logic networks

Description of network operation
Network output signal OUT $=\Phi\left(\hat{\mathrm{Y}}^{*} \mathrm{~W}^{3}\right)$
W^{3} matrix of connections between the elements of the $2^{\text {nd }}$ intermediate layer and the output element

$$
\mathrm{W}^{3}=\left[\begin{array}{llll}
\mathrm{w}_{0} & \mathrm{w}_{1} & \mathrm{w}_{3} & \mathrm{w}_{2}
\end{array}\right]
$$

Finally, for the network

OUT $=\Phi\left\{\Phi\left[\Phi\left(I N^{*} \mathrm{~W}^{1}\right)^{*} \mathrm{~W}^{2}\right] * \mathrm{~W}^{3}\right\}=$
$=\Phi\left\{\Phi(1-A-B) w_{0}+\Phi(A-B) w_{1}+\Phi(B-A) w_{2}+\right.$ $\left.\Phi[\Phi(A+B)-\Phi(A-B)-\Phi(B-A)] w_{3}\right\}$

\square Logic networks

Example

The well-known operation OR ($\mathbf{A}+\mathrm{B}$) using logical theorems (expansion, distributive, commutative, De Morgan's etc), can be rewritten into a canonical form

$$
\begin{aligned}
\mathbf{A}+\mathbf{B} & =\mathbf{A}(\mathbf{B}+\overline{\mathbf{B}})+\mathbf{B}(\mathbf{A}+\overline{\mathbf{A})}= \\
& =\mathbf{A B}+\mathbf{A} \overline{\mathbf{B}}+\mathbf{B} \mathbf{A}+\mathbf{B} \overline{\mathbf{A}}= \\
& =\mathbf{A B}+\mathbf{A} \overline{\mathbf{B}}+\overline{\mathbf{A}} \mathbf{B}
\end{aligned}
$$

The universal logic module can perform this operation by setting of weights

$$
w_{0}=0 \quad w_{1}=1 \quad w_{2}=1 \quad w_{3}=1
$$

Logic networks - Universal logic module

