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Lecture 6 

Neural Networks  
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Solving of Optimization 

Problems 
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Optimization problems 

The ability for parallel computation 
yields to the possibility to work with 
big amount of data. It allows neural 
networks to solve complex and time 
consuming optimization problems. 
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The basic problem is to replace the 
task to the problem of minimization 
of an energy function describing the 
recurrent net treated as the 
minimization network. 

Optimization problems 
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The following problems have to be solved 
  

1. To define the problem by use of a neural 
 network. Its final (stable) stage should 
 determine the optimization problem 

2. The energy function minimum value has 
to be equivalent of the solution of 
optimization problem 
 

Optimization problems 
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3. The net structure, connection 
weights, threshold and out signals. 

4. The elements dynamic have to assure 
the minimization of energy function 

5. The definition of the initial values of 
elements 

 

Optimization problems 



7 



Optimization problems 
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The TSP Optimization Problem 

The „Travelling Salesman Problem” (TSP) is a 
classic of difficult optimization. 

Goal: 

The set of N cities A, B, ... have (pairwise) 
distance separation dAB, dAC, ..., dBC, ... 

The problem is to find a closed tour which visits 
each city once, returns to the starting city, and 
has a short (or minimum) total part length. 
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

The TSP Optimization Problem 
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The Energy Function must be determined 
in such a way that its minima correspond  
to solutions of the problem considered. 
The Hopfield energy function may contain several  
energy terms, which may be roughly classified  
into constraint terms and the objective function. 
 

To solve by Hopfield net we need to decide the  
architecture: 

• How many neurons? 
• What are the weights? 

The TSP Optimization Problem 
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For N cities in computer simulation the network 
was represented by a matrix N x N. 
The system is characterize using a table of cities 
(rows) and steps (columns). 
An entry vXi is equal to 1 if city X is visited at step i, 
and 0 otherwise. 
 
At the end of a simulation test which converged to 
a solution each element representing output 
potential of neuron vXi, was equal to either zero or 
one.  

The TSP Optimization Problem 
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The Hopfield network is fully interconnected, that is, all 
neurons are connected to all other neurons (there are no 
layers). The weights are symmetric. 
   
There are three main types of weights: 
a) Each neuron has its own positive bias weight. 
b) Each neuron has a negative (inhibitory) weight to each of 

the other neurons in its row and its column (α). 
c) Each neuron has a negative weight to other possible 

cities just before it and just after it on the tour (dXY). This 
weight is equal to Euclidean distance. Since the tour 
makes a loop, the final column is connected to the first 
column by distance weights. 

The TSP Optimization Problem 
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X, Y –   denote cities;  
i,j    –   denote the tour stage 
vXi   –   is the activation for each neuron, vXi=1 denotes the fact that city X is 
            the i-th city visited in the tour 
dXY  –   denotes the distance between cities X and Y 

The TSP Optimization Problem 

The energy 
function 
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Row constraint (first term) in the energy function 
is zero if and only if there is only one „1” in each 
order column; thus it takes care that no two or 
more cities are in the same travel order i.e. no two 
cities are visited simultaneously. 
Column constraint (second term) is zero if and 
only if there is only one city appears in each order 
column; thus it takes care that each city is visited 
only once.  

These terms represent the constraint of the problem. 

The TSP Optimization Problem 
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Total number of „1” constraint (third term) is 
zero if and only if there are only N number of „1” 
appearing in the whole N*N matrix; thus is takes 
into care that all cities are visited. 
 

 

The fourth term measures the tour length 
corresponding to a given tour, where the two 
terms inside the parenthesis stand for two 
neighboring visiting cities if VXi implying the tour 
length is calculated twice. 
  

The TSP Optimization Problem 

That term represents the constraint of the problem. 

That term represents the objective function. 
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The fourth term mmeasures the total distance 
by adding intercity distances dX,Y for each pair 
of adjacent cities. 
Here A, B and C are positive integers, the 
setting of these constants are critical for the 
performance of Hopfield network.  

The TSP Optimization Problem 
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The set solving the TSP problem for N = 4.       
The route: 3-2-4-1 
  tern on element 
  tern off element 
connections for V22 
    inhibitory, weight dXY 
    inhibitory, weight α 

The TSP Optimization Problem 
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The example of normalized distances from 
the city B to other cities. 

The TSP Optimization Problem 
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Inhibitory connections of the VB3 element 
with the rest of cities 

The TSP Optimization Problem 
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Neural Networks for Matrix 

Algebra Problems 
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Neural Networks for Matrix Algebra Problems 

The feedforward neural networks for 
solving (in real time) a large variety of 
important matrix algebra problems such 
as:  

• matrix inversion, 
• matrix multiplication 
•LU decomposition, 
• the eigenvalue problem 
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These algorithms basing on the 
massively parallel data transformation 
assure the high speed (μsek) in practice 
– in the real-time. 
 
For a given problem define the error (energy) 
function and proper multilayer network and 
during learning phase find the minimum of the 
error function 

Neural Networks for Matrix Algebra Problems 



23 

Matrix inversion 
Let A be a nonsingular square 
Goal: 
To find the neural network calculating the 
matrix B = A-1. matrix B fulfill the relation 

 
BA = I 

 

Neural Networks for Matrix Algebra Problems 
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Multiplying both sides by arbitrary non-zero 
vector x=[x1,x2,...,xn] we get 

BAx - x = 0    (1) 
 

The energy (error) function can be defined 
by 

(2)             xBAx
2

1
E 

Neural Networks for Matrix Algebra Problems 
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Solving of equation (1) can be replaced by 
the minimization of the function (2). 
Vector x plays double role: 

• is the learning signal (network input 
signal),  
• is the desired output (target) signal 

i. e. it is the autoassociative network 

Neural Networks for Matrix Algebra Problems 
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A simplified block diagram 

Neural Networks for Matrix Algebra Problems 
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u = Ax,    y = Bu      or    
y = Bu = BAx = Ix = x 
 
It means that the output vector signal y  must be 
equal to the input vector signal x – i.e. the network 
should learn the identity map y = x. 
 
The fundamental question for the training phase: 
 

what kind of input signals x should be applied in 
order to obtain the desired solution? 

Neural Networks for Matrix Algebra Problems 
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One of the simplest input patterns can be chosen as: 
x(1)=[1,0,0,...,0]T, x(2)=[0,1,0,...,0]T,...,  x(n)=[0,0,0,...,1]T. 
 
The better convergence speed can be obtained by changing 
the input patterns randomly on each time step from the set 
 x(1)=[1,-1,...,-1]T,     x(2)=[-1,1,-1,...,-1]T,...,  
 x(n)=[-1,-1,...,1]T. 
 
In this two-layer network the first layer has fixed connection 
weights aij, while in the second layer weights are unknown, 
and are described by the unknown matrix   B = A1. 

Neural Networks for Matrix Algebra Problems 
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The network architecture 

Neural Networks for Matrix Algebra Problems 
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In order to minimize the local error function E 
 

 
     for a single pattern 
yi is the actual output signal 
xi is the desired output signal 
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we can apply a standard steepest-descent approach 

Neural Networks for Matrix Algebra Problems 
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Matrix multiplication  
If matrix C is equal the product of matrices 
A and B it fulfills the equation 

 
C = AB 

Neural Networks for Matrix Algebra Problems 
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To construct a proper neural network able to 
solve the problem it is necessary to define 
the error (energy) function whose 
minimization leads to the desired solution. 
Multiplying both sides by arbitrary non-zero 
vector x=[x1,x2,...,xn] we get 
 

ABx – Cx = 0   

Neural Networks for Matrix Algebra Problems 



33 

On the basis of this equation we can 
define the error (energy) function 

2
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Neural Networks for Matrix Algebra Problems 
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A simplified block diagram for matrix 
multiplication. In real it is one-layer network 
in spite that on the diagram there are three 
layers 

Neural Networks for Matrix Algebra Problems 
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Only one out of these three layers responsible 
for matrix C is the subject of a learning 
procedure – realizing the equation 

y = Cx 

After the learning process the network has to 
fulfill the equation C = AB in the diagram there 
are two additional layers with constant weights 
(the elements of matrices A and B 
respectively). 

Neural Networks for Matrix Algebra Problems 
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These layers are used to compute the vector 
d, according to  

d = Au = ABx  
Again we can apply a standard steepest-
descent algorithm. The adaptation rule has 
the form 

where p is the number of a learning pattern.  

jpipijijij )xyη(d(t)c1)(tc 

Neural Networks for Matrix Algebra Problems 
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LU decomposition 
The standard LU decomposition of a square 
matrix A into: lower-triangular matrix  L and 
upper-triangular matrix U such that:  

A = LU 
generally the LU decomposition is not unique. 
However, if the LU is factorization for a lower-
triangular matrix  L with unit diagonal 
elements factorization is unique. 

Neural Networks for Matrix Algebra Problems 
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Multiplying both sides by arbitrary non-
zero vector x=[x1,x2,...,xn] and after some 
further transformation we get the energy 
function 
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Neural Networks for Matrix Algebra Problems 
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The two-layer linear network is more 
complicated than the network for the 
matrix inversion or multiplication. 

Here, both layers are the subject of learning 
procedure. The connection weights of the 
first layer are described by the matrix U and 
the second layer by the matrix L. 

Neural Networks for Matrix Algebra Problems 
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A simplified block diagram 

Neural Networks for Matrix Algebra Problems 
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The first layer performs a simple linear 
transformation  z = Ux, where x is a given 
input vector. The second layer performs 
transformation y = Lz = LUx.  
  
The parallel layer  with weights defined by 
the matrix A elements is used to calculate 
the desired (target) output d = Ax. 

Neural Networks for Matrix Algebra Problems 
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The weights lii are fixed and equal to 
unity, and proper elements of the 
matrices L and U are equal to zero.  
To minimize the error function we will 
apply the simplified back-propagation 
algorithm. 

Neural Networks for Matrix Algebra Problems 
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We get 
 
 
for i > j, and 
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Neural Networks for Matrix Algebra Problems 
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is the actual error of i-th output 
element for p-th pattern xp 

is the actual output of i-th element 
of the first layer for the same p-th 
pattern xp 

Neural Networks for Matrix Algebra Problems 
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Cellular Neural 
Networks 
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Cellular Neural Networks 

Cellular Neural Networks (CNN) are 
a parallel computing paradigm similar to 
neural networks, with the difference that 
communication is allowed between 
neighboring units only. 
CNN can be viewed as a special case of 
a continuous-time Hopfield network. 
It differs from the analog Hopfield network in its 
local connectivity property 
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Cellural Neural Networks – CNN 

Cellural Neural Networks – CNN are built 
from identical nonlinear units called cells. 
It is a multi-input, dynamical system, and 
the behavior of the overall system is driven 
primarily through the weights of the 
processing unit’s linear interconnect.  
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Cellular Neural Networks 

  

From an architecture standpoint, CNN 
processors are a system of a finite, fixed-
number, fixed-location, fixed-topology, locally 
interconnected, multiple-input, single-output, 
nonlinear processing units. 
Cells are defined in a normed space, commonly 
a two-dimensional Euclidean geometry, like 
a grid.  
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Cells are defined in a normed space, commonly a two-
dimensional geometry, like a grid. The cells are not limited to 
two-dimensional spaces however; they can be defined in an 
arbitrary number of dimensions and can be square, triangle, 
hexagonal, or any other spatially invariant arrangement. 
Topologically, cells can be arranged on an infinite plane or on 
a toroidal space. Cell interconnect is local, meaning that all 
connections between cells are within a specified radius (with 
distance measured topologically). Connections can also be time-
delayed to allow for processing in the temporal domain. 

Cellural Neural Networks – CNN 
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Network topology 

Each cell cij situated in i-th row 
and j-th column interacts directly 
only with the cells within its 
radius of neighbourhood r.  
When r = 1, which is a common 
assumption, the neighbourhood 
includes the cell itself and its 
eight nearest neighbouring cells  

Typically the two-dimensional network is 
organized in an eight-neighbour rectangular grid 
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A cell   ci+k,j+l situated in i+k row and  j+l 
column belongs to the cell neighbourhood, 
when 

rlrkjiNc rljki  ,),(,

where r  jest natural number called radius of 
neighbourhood, Nr(i,j) denotes 
neighbourhood of the cij of the radius r. 

Network topology 
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Part of the cellural neural network with the 
radius of neighbourhood  

          r = 1        r = 3 

Network topology 
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Part of the cellular neural network with the radius of 
neighbourhood   r = 1 

Network topology 

The figure shows the emphasized  cell 
(red) connected to the nearest 
neighbours (blue).  The cells marked 
in grey represent the neighbourhood 
cells of the black cell. The 
neighbourhood includes the black cell 
itself. 
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Local connections of 
an edge cell. Observe 
that three of its 
neighbors are boun-
dary cells (dashed). 

In order to calculate the state of the cells 
on the boundary, it is necessary to define 
the boundary conditions of the network, as 
shown in the figure.  

Network topology 
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In the standard model, the boundary conditions 
can be:  
• Fixed (or Dirichlet), if the value of the 

boundary cells is a prescribed constant;  
• Zero-flux (or Neumann), if the value of the 

boundary cells is the same as the edge cells;  
• Periodic (or toroidal), if the value of the 

boundary cells is the same as the edge cells 
on the opposite side (e.g., top boundary cells 
have the value of bottom edge cells).  

Network topology 
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All cells are transforming signals the same 
way, generating output signal  
The output signal  yij depends from cells’ 
state xij. 
Cell state is determined by the integration of 
the sum of cell control signals multiplied by 
the proper coefficients 

Network operation 
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Control signals: 
a) output signals  yi+k,j+l the cells in the neighborhood 
b) own output signal of the cij  cell  yij 

c) input signals ui+k,j+l the cells in the neighborhood 
d) owninput signal of          

the cell cij                                                cell uij 

e) bias z 

 

Network operation 
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 For input signals uij  and initial conditions 
of a cell state xij for t=0,  following 
conditions are imposed 

1)(,1)0(  tux ijij               

Network operation 
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Weights of the output signals are called 
feedback operators and denoted  
      Ai,j;i+k,j+l 

subscripts i,j refer to the cell cij being controlled 
subscripts i+k,j+l refer to the cells controlling 

the cell cij 

Network operation 



61 

Weights of input signals  are called control 
operators and denoted  
      Bi,j;i+k,j+l 

where  

subscripts i,j refer to the cell cij being controlled  

subscripts i+k,j+l refer to the cells controlling 
the cell cij. 

Bias signal z has usually constant value but not 
necessary identical for every cell in the network.  

Network operation 
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Cell 

Block diagram of a single cell 

z 
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CNN dynamics  

The CNN dynamics is described by a system of nonlinear   
differential equations. Using the simplest first-order cell  
dynamics and linear interactions, the state equation of a cell  
in position (i,j) is as follows 
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The expression for the output yij defined by the 
piece-wise linear function is 

)11(50)f(  ijijijij xx,xy

Where f(*) is the standard nonlinearity for the 
output equation.  

CNN dynamics  
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Network operation 

The set of matrices {A,B}, which contains the weights of 
the network, is called the cloning template and it 
defines the operation performed by the network. 
When the values of the cloning template do not 
depend on the position of the cell, the CNN is called 
space-invariant. 
Aij;i+k,j+l = AIJ;I+k,J+l    and   Bij;i+k,j+l = BIJ;I+k,J+l 

where    0 ≤ i, I, i+k, I+k < M 

    0 ≤  j, J, j+l,  J+l  <   N  
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We can neglect subscripts ij and IJ leaving only kl, 

where    -r ≤ k,l ≤ r. 

Weights  Akl  i Bkl  are usually represented in a 
matrix form A (feedback operator) and B (control 

operator) with dimension (2r+1)x(2r+1). 
The central element of neighborhood has the 
indexes k = 0  and  l = 0, and A00 denotes power of 
the cell cij self-control. 

Network operation 
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Akl defines the power of control by a cell distant 
by l columns and k rows.  
Network fragment for r = 1 and matrix A 

Network operation 
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The template cloning is identical for every cell 

Network operation 
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The simplified cell  

output   y(t) = f(x(t), u(t), z) 

state     x(t+1) = g(x(t), u(t), z) 

      x, y, u, z ∈ R 

Network operation 



70 

To describe the network structure it is enough to 
define the cloning template: 

– bias term z (usually identical for each cell), 
– control operator A, describing the weights in the 

feedback connections, 
– feedback operator  B, describing the feedforward 

connections, 
– initial conditions. 

To start the calculations it is necessary to define: 
– initial state x for each cell, 
– input signal u for each cell. 

 

Network operation 
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The g function is define by: 
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Network operation 

Weights A and B are invariable and their selection 
depends on the problem to be solved. 
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Matrix and vector (genotype) notation of the 
weights 

Representation 
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Detection of composed binary pattern in the 
input.  

Representation 
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Rectangular CNN grid, weight matrices and bias 
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Extraction of the shapes containing   

     

               Input pattern   Output after processing 

Representation 
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Applications 

Cellular neural networks are used in many areas, but 
mainly in: 

 image processing 

 feature extraction 

 modeling physical phenomena 
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Applications 

But also: 
missile tracking, flash detection, level and gain 
adjustments, color constancy detection, contrast 
enhancement, deconvolution, image compression, motion 
estimation, image encoding, image decoding, image 
segmentation, orientation preference maps, pattern 
learning/recognition, multi-target tracking, image 
stabilization, resolution enhancement, image 
deformations and mapping, image inpainting, optical flow, 
contouring, moving object detection, axis of symmetry 
detection, and image fusion. 



78 

 Are relatively simple for realization (small 
number of connections).  

 Are able to perform parallel and distributed 
processing which yields to high 
computational power. 

Applications 
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Multi-Layer CNN 

In multi- layer structure instead of scalar 
values :  

– state xij,  

– output signal yij, 

– input signal uij,  

we have vectorial: Xij, Yij i Uij. 
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Example of connections of single cell in the 
middle layer of three layer cellular network of 
radius r = 1 

Multi-Layer CNN 

source: T.Kacprzak, K.Ślot, Sieci neuronowe komórkowe, PWN 1995. 
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Technical realisation 

 5.5 mm x 4.7 mm 

 0.3 W 

 60 000 transistors 

 16 x 16 cells 

 Programmable weights 

 

 

For 100 x 100 cell expected calculation speed 1012 
instructions per second 
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Filling of  closed region 

Example 

input signal (100 x 100) 

final output signal, t = 71  

t = 0 t = 10 t = 20 t = 30 t = 40 t = 50 t = 60 
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  Potential use 

Linear templates B 3x3, A 1x1, binary patterns 
 
 

image segmentation separate points 
removal 

one-side edge 
detection 

vertical translation  NOT operation corner detection 

horizontal 
translation 

AND 
operation 

image erosion 

diagonal translation  OR operation image fusion 

separate points 
remaining 

edge detection image 
compression 
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shadow casting in define 
direction 

lines detection parallel  to 
diagonal 

vertical gap detection detection of fully filled 
objects 

diagonal gap detection filling of closed shapes 

separate points 
remaining 

edge detection 

Linear templates B 3x3, A 3x3, binary patterns 
 
 

  Potential use 
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Linear templates B 3x3, A 3x3, gray-levels patterns 
 
 

half-toning 

inverse half-toning 

texture extraction of similar shade 

Nonlinear templates B 3x3, A 3x3, binary patterns 
 
 

histogram creation 

pixel-wise parity detection (XOR for neighbor 
pixels) 

row-wise parity detection 

  Potential use 
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Nonlinear templates B 3x3, A 3x3, gray-levels 
patterns 
 
 

contour detecton 

region detection of similar gray-levels 

  Potential use 
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Linear templates B 3x3, A 3x3, with time-delay 
 
 

object movement detection (8 basic directions) 

object movement detection with filtering of 
stationary objects 

object movement detection with predefined 
speed or slower 

Linear templates B 5x5, A 5x5 

de-blurring 

  Potential use 
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CNNs scientific applications 

 feature extraction & classification  

 motion detection & estimation  

 collision avoidance  

 object counting & size estimation  

 path tracking  

 detecting minima and maxima  

 detecting area with gradients that exceed a given threshold 

 thermographic maps  

 antenna-array images  

 medical maps and images  
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