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The ability for parallel computation
vields to the possibility to work with
big amount of data. It allows neural
networks to solve complex and time
consuming optimization problems.




The basic problem is to replace the
task to the problem of minimization
of an energy function describing the
recurrent net treated as the
minimization network.




The following problems have to be solved

1. To define the problem by use of a neural
network. Its final (stable) stage should
determine the optimization problem

2. The energy function minimum value has

to be equivalent of the solution of
optimization problem




3. The net structure, connection
weights, threshold and out signals.

4. The elements dynamic have to assure
the minimization of energy function

5. The definition of the initial values of
elements




For typical combinatorial optimization
problems an energy function has a form

E=2Ai(l/,;)+B*F
l

where V; -is the measure of an i-th constraint
F - is the objective function
A. - and B are the coefficients




The TSP Optimization Probiem

The ,, Travelling Salesman Problem” (TSP) is a
classic of difficult optimization.

Goal:

The set of N cities A, B, ... have (pairwise)
distance separation d,g d,. ..., dgs ..

The problem is to find a closed tour which visits
each city once, returns to the starting city, and
has a short (or minimum) total part length.




The TSP Optimization Prohlem

N! N-1)! ,. ..
There are e ( - ) distinct paths for closed

TSP routes and the problem is NP-hard
(complete).

To describe the N neurons in the TSP network
to compute a solution to the problem, the
network must be described by an energy
function in which the lowest energy state (the
network stable state) corresponds to the best
path.




The TSP Optimization Probiem

The Energy Function must be determined

in such a way that its minima correspond

to solutions of the problem considered.

The Hopfield energy function may contain several
energy terms, which may be roughly classified
into constraint terms and the objective function.

To solve by Hopfield net we need to decide the
architecture:

*  How many neurons?

What are the weights?
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The TSP Optimization Probiem

For N cities in computer simulation the network
was represented by a matrix N x N.

The system is characterize using a table of cities
(rows) and steps (columns).

An entry v,; is equal to 1 if city X is visited at step J,
and 0 otherwise.

At the end of a simulation test which converged to
a solution each element representing output
potential of neuron v,;, was equal to either zero or
one.
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The TSP Optimization Probiem

The Hopfield network is fully interconnected, that is, all
neurons are connected to all other neurons (there are no
layers). The weights are symmetric.

There are three main types of weights:

a) Each neuron has its own positive bias weight.

b) Each neuron has a negative (inhibitory) weight to each of
the other neurons in its row and its column (a).

c) Each neuron has a negative weight to other possible
cities just before it and just after it on the tour (d,,). This
weight is equal to Euclidean distance. Since the tour
makes a loop, the final column is connected to the first
column by distance weights.
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The energy
function

X, Y— denote cities;

i,j — denote the tour stage

vy, — isthe activation for each neuron, v,=1 denotes the fact that city X is
the i-th city visited in the tour

d,, — denotes the distance between cities Xand Y
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The TSP Optimization Probiem

Row constraint (first term) in the energy function
is zero if and only if there is only one ,1” in each
order column; thus it takes care that no two or
more cities are in the same travel order i.e. no two
cities are visited simultaneously.

Column constraint (second term) is zero if and
only if there is only one city appears in each order
column; thus it takes care that each city is visited
only once.

These terms represent the constraint of the problem.
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The TSP Optimization Probiem

Total number of ,,1” constraint (third term) is
zero if and only if there are only N number of ,,1”
appearing in the whole N*N matrix; thus is takes
into care that all cities are visited.

That term represents the constraint of the problem.

The fourth term measures the tour length
corresponding to a given tour, where the two
terms inside the parenthesis stand for two
neighboring visiting cities if V,.implying the tour
length is calculated twice.

That term represents the objective function.
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The TSP Optimization Probiem

The fourth term mmeasures the total distance
by adding intercity distances d, , for each pair
of adjacent cities.

Here A, B and C are positive integers, the
setting of these constants are critical for the
performance of Hopfield network.
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The TSP Optimization Prohlem

The set solving the TSP problem for N = 4.
The route: 3-2-4-1
@® tern on element 1
tern off element .
connections for V,, ; 2©
inhibitory, weightd,,
----- inhibitory, weight a

4
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The TSP Optimization Prohlem

The example of normalized distances from
the city B to other cities.

14 B
-1 0.50
_ D 0.58
- C 0.32 E
1.00
0 - & A




The TSP Optimization Probiem

Inhibitory connections of the V,; element
with the rest of cities
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Neural Networks for Matrix Algebra Problems

The feedforward neural networks for
solving (in real time) a large variety of

important matrix algebra problems such
as:

® matrix inversion,

® matrix multiplication

® | U decomposition,

® the eigenvalue problem
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Neural Networks for Matrix Algebra Problems

These algorithms basing on the
massively parallel data transformation
assure the high speed (usek) in practice
—in the real-time.

For a given problem define the error (energy)
function and proper multilayer network and

during learning phase find the minimum of the
error function
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Matrix inversion

Let A be a nonsingular square

Goal:

To find the neural network calculating the
matrix B = A1, matrix B fulfill the relation

BA =1
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Neural Networks for Matrix Algebra Problems

Multiplying both sides by arbitrary non-zero
vector x=[x,X,,...,X,] we get

BAXx-x=0 (1)
The energy (error) function can be defined
by
1
E = EHBAx—xH (2)
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Neural Networks for Matrix Algebra Problems

Solving of equation (1) can be replaced by
the minimization of the function (2).
Vector x plays double role:
® is the learning signal (network input
signal),
® is the desired output (target) signal
.. e. it is the autoassociative network
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A simplified block diagram

xo:b:u,;éﬂg 4 T
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u=Ax, y=Bu or
vV=Bu=BAx=Ix=Xx

It means that the output vector signaly must be
equal to the input vector signal x —i.e. the network
should learn the identity map y = x.

The fundamental question for the training phase:

what kind of input signals x should be applied in
order to obtain the desired solution? |
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One of the simplest input patterns can be chosen as:
x1=[1,0,0,...,0]", x?=[0,1,0,...,07%,..., x{"=[0,0,0,...,1]".

The better convergence speed can be obtained by changing
the input patterns randomly on each time step from the set
x=[17-1 ...-1]7,. - %2)=[-1,1,-1 ...,-1]V ...,

xn=[-1.-1,... 1]".

In this two-layer network the first layer has fixed connection
weights a;, while in the second layer weights are unknown,
and are described by the unknown matrix B = Al

28



The network architecture
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In order to minimize the local error function E

for a single pattern
y: is the actual output signal
X; is the desired output signal

we can apply a standard steepest-descent approach
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Neural Networks for Matrix Algebra Problems

Matrix multiplication
If matrix Cis equal the product of matrices
A and B it fulfills the equation

C=AB
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To construct a proper neural network able to
solve the problem it is necessary to define
the error (energy) function whose
minimization leads to the desired solution.
Multiplying both sides by arbitrary non-zero
vector X=[x4,X,,...,X, ] we get

ABx—-Cx=0
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Neural Networks for Matrix Algebra Problems

On the basis of this equation we can
define the error (energy) function

1
E = E(HABx—CxHZ)2
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Neural Networks for Matrix Algebra Problems

A simplified block diagram for matrix
multiplication. In real it is one-layer network

in spite that on the diagram there are three
layers

— B “:>A:f>d

X | > C '1'>y
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Only one out of these three layers responsible
for matrix C is the subject of a learning
procedure — realizing the equation

vy = CX

After the learning process the network has to
fulfill the equation C = AB in the diagram there
are two additional layers with constant weights
(the elements of matrices A and B
respectively).
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These layers are used to compute the vector
d, according to

d = Au = ABXx
Again we can apply a standard steepest-
descent algorithm. The adaptation rule has

the form ¢ (t+1)=c(t)+n(d, -y, )x,

where p is the number of a learning pattern.
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LU decomposition
The standard LU decomposition of a square
matrix A into: lower-triangular matrix L and
upper-triangular matrix U such that:

A=LU
generally the LU decomposition is not unique.
However, if the LU is factorization for a lower-
triangular matrix L with unit diagonal
elements factorization is unique.
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Neural Networks for Matrix Algebra Problems

Multiplying both sides by arbitrary non-
zero vector x=[x,,x,,...,x,] and after some
further transformation we get the energy

function

1
% 5(||LUx —AX||.)’
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The two-layer linear network is more
complicated than the network for the
matrix inversion or multiplication.

Here, both layers are the subject of learning
procedure. The connection weights of the
first layer are described by the matrix U and
the second layer by the matrix L.
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A simplified block diagram
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The first layer performs a simple linear
transformation z = Ux, where x is a given
input vector. The second layer performs
transformation y = Lz = LUx.

The parallel layer with weights defined by
the matrix A elements is used to calculate
the desired (target) output d = Ax.
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Neural Networks for Matrix Algebra Problems

The weights /.. are fixed and equal to
unity, and proper elements of the
matrices L and U are equal to zero.

To minimize the error function we will
apply the simplified back-propagation
algorithm.
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We get

L, (t+1)=1.(t)+ne, z,

fori>j, and
u(t+1)=u,(t)+n

dlai<j

pre—

ilhi(t+1)ehlo
| h=1 /4

jp




where
—d Y.

is the actual error of i-th output
P element for p-th pattern x,

e is the actual output of i-th element
e .Zluijxjp of the first layer for the same p-th
pattern x

n
and ZIIJ jp dip = Zaijxjp
=1
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S We’ll take a

5-minute
: break now

s
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Cellular Neural Networks (CNN) are

a parallel computing paradigm similar to
neural networks, with the difference that
communication is allowed between
neighboring units only.

CNN can be viewed as a special case of

a continuous-time Hopfield network.

It differs from the analog Hopfield network in its
local connectivity property
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Cellural Neural Networks — CNN are built
from identical nonlinear units called cells.
It is a multi-input, dynamical system, and
the behavior of the overall system is driven
primarily through the weights of the
processing unit’s linear interconnect.
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From an architecture standpoint, CNN
processors are a system of a finite, fixed-
number, fixed-location, fixed-topology, locally
interconnected, multiple-input, single-output,
nonlinear processing units.

Cells are defined in a normed space, commonly
a two-dimensional Euclidean geometry, like

a grid.
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Cells are defined in a normed space, commonly a two-
dimensional geometry, like a grid. The cells are not limited to
two-dimensional spaces however; they can be defined in an
arbitrary number of dimensions and can be square, triangle,
hexagonal, or any other spatially invariant arrangement.
Topologically, cells can be arranged on an infinite plane or on

a toroidal space. Cell interconnect is local, meaning that all
connections between cells are within a specified radius (with
distance measured topologically). Connections can also be time-
delayed to allow for processing in the temporal domain.
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Network topology

Typically the two-dimensional network is
organized in an eight- nelghbour rectangular grld

Each cell c; situated in i-th row &
and j-th coIUumn interacts directly ‘ ‘ ‘ ‘ ‘
only with the cells within its Q ‘ """"" Q """ ‘ ‘

radius of neighbourhood r. ,- Q -------- ‘ ‘ ‘

When r = 1, which is a common

assumption, the neighbourhood Q """"" Q ““““ Q
includes the cell itself and its MQQ --------- Q ------- Q

eight nearest neighbouring cells



Network topology

Acell Cjy . situated in I+k row and J+I
column belongs to the cell neighbourhood,
when

ik, j+1 €ENp (i, j) = [k <r Il <r

where I jest natural number called radius of
neighbourhood, N (1,]) denotes
neighbourhood of the Cj; of the radius r.
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Pa'rt of the 'ceIIuraI n'eural network wit'h the
radius of neighbourhood
fe=' 1 r=3
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Network topology

Part of the cellular neural network with the radius of
neighbourhood r=1

The figure shows the emphasized cell
(red) connected to the nearest
neighbours (blue). The cells marked
in grey represent the neighbourhood
cells of the black cell. The
neighbourhood includes the black cell
itself.

54



Network topology

In order to calculate the state of the cells
on the boundary, it is necessary to define
the boundary conditions of the network, as
shown in the figure. -1 1 o

Local connections of
an edge cell. Observe
that three of its
neighbors are boun-
dary cells (dashed).
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Network topology

In the standard model, the boundary conditions
can be:

Fixed (or Dirichlet), if the value of the
boundary cells is a prescribed constant;
Zero-flux (or Neumann), if the value of the
boundary cells is the same as the edge cells;
Periodic (or toroidal), if the value of the
boundary cells is the same as the edge cells
on the opposite side (e.g., top boundary cells
have the value of bottom edge cells).
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All cells are transforming signals the same
way, generating output signal

The output signal y; depends from cells’
state x;.

Cell state is determined by the integration of
the sum of cell control signals multiplied by
the proper coefficients
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Control signals:

a)
b)
C)
d)

e)

output signals Vi, i, the cells in the neighborhood
own output signal of the ¢;; cell y;

input signals U, ;,, the cells in the neighborhood
owhinput signal of
the cell ¢;;

bias

[/
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For input signals u;; and initial conditions
of a cell state x;; for t=0, following
conditions are imposed

\xij (0)\ =, \uij (t)\ <1
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Weights of the output signals are called
feedback operators and denoted

Ai,j;i+k,j+|
subscripts 1,] refer to the cell C; being controlled
subscripts I+k,]+| refer to the cells controlling

the cell Cj;
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Weights of input signals are called control
operators and denoted

Bi,j;i+k,j+|
where
subscripts 1,] refer to the cell Cij being controlled
subscripts 1+k,J+| refer to the cells controlling
the cell ¢;;
Bias sighal z has usually constant value but not
necessary identical for every cell in the network.
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Block diagram of a single cell

=
|
A (e o A

(e ol ™
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CNN dynamics

The CNN dynamics is described by a system of nonlinear
differential equations. Using the simplest first-order cell
dynamics and linear interactions, the state equation of a cell
in position (i,j) is as follows

dx. X F
C d—tj = —R—J+ Z Z Ak, iot Yiek jn T

X K=—rl=-r
r r
- Z Z Bij;i+k,j+lui+k,j+l +Z
K=—rl=-—r
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CNN dynamics

The expression for the output y;; defined by the
piece-wise linear function is

Yi :f(xij) 2015*(Xij +1l_‘xij _]-l)

Where f(*) is the standard nonlinearity for the

output equation. 2
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The set of matrices {A,B}, which contains the weights of
the network, is called the cloning template and it
defines the operation performed by the network.
When the values of the cloning template do not
depend on the position of the cell, the CNN is called
space-invariant.
Aijiivkjr1 = A+t AN Byjiag i = Bigiai
where 0<i [ 1+k, I+k < M

0<jJj+l, 3+l < N
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We can neglect subscripts 1 and |1J leaving only K,
where -r <kl<r

Weights A, 1 B,, are usually represented in a
matrix form A (feedback operator) and B (control
operator) with dimension (2r+1)x(2r+1).

The central element of neighborhood has the
indexesk =0 and | =0, and A,, denotes power of
the cell ¢; self-control.
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A, defines the power of control by a cell distant
by | columns and Kk rows.
Network fragment for r = 1 and matrix A

a) 7

00 O 00

O OO &
eieNoMele A=[i;, > }
(s (0 Do :

_______________



The template cloning is identical for every cell
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The simplified cell

inputu |
~ -r tp t.}-
i
bias 7
output y(t) = T(x(1), u(t), 2)
state X(t+1) = g(x(t), u(t), z)

X,¥,U,Z€R



To describe the network structure it is enough to

define the cloning template:
— bias term z (usually identical for each cell),
— control operator A, describing the weights in the
feedback connections,
— feedback operator B, describing the feedforward
connections,
— initial conditions.

To start the calculations it is necessary to define:

— initial state x for each cell,

— input signal u for each cell.
70



The g function is define by:

X; (t+1) =X (1) + Z Z Aiick it Yisk i T

kK=—rl=—r

r r
¥ Z Z Bij;i+k,j+lui+k,j+l +Z

K=—rl=—r

Weights A and B are invariable and their selection
depends on the problem to be solved.
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Matrix and vector (genotype) notation of the
weights
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Detection of composed binary pattern in the
Input.
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Rectangular CNN grid, weight matrices and bias

—~01 01 -01]
01 100 01
-01 01 -01
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Extraction of the shapes containing

nput pattern Output after

+

orocessing
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Cellular neural networks are used in many areas, but
mainly in:

B image processing
m feature extraction
m modeling physical phenomena
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But also:

missile tracking, flash detection, level and gain
adjustments, color constancy detection, contrast
enhancement, deconvolution, image compression, motion
estimation, image encoding, image decoding, image
segmentation, orientation preference maps, pattern
learning/recognition, multi-target tracking, image
stabilization, resolution enhancement, image
deformations and mapping, image inpainting, optical flow,
contouring, moving object detection, axis of symmetry
detection, and image fusion.
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Are relatively simple for realization (small
number of connections).

Are able to perform parallel and distributed
processing which yields to high
computational power.
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Muiti-Layer CNN

In multi- layer structure instead of scalar
values :

state X;;,

output signal y;;,

input signal uj;,

we have vectorial: X, Y;; 1 Uj;.
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Muiti-Layer CNN

Example of connections of single cell in the
middle layer of three layer cellular network of
radiusr=1

source: T.Kacprzak, K.Slot, Sieci neuronowe komérkowe, PWN 1995. 80



Technical realisation

5.5 mmx 4.7 mm
0.3 W

60 000 transistors
16 x 16 cells

Programmable weights

For 100 x 100 cell expected calculation speed 10*?
instructions per second
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Filling of closed region

o q input signal (100 x 100)

L

®
Il!&t

= t=10 t=20 t=30 t=4

® 0| final output signal, t = 71
.
- -
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Linear templates B 3x3, A 1x1, binary patterns

Image segmentation

separate points
removal

one-side edge
detection

remaining

vertical translation | NOT operation | corner detection
horizontal AND Image erosion
translation operation

diagonal translation | OR operation | image fusion
separate points edge detection | image

compression
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Linear templates B 3x3, A 3x3, binary patterns

shadow casting in define
direction

lines detection parallel to
diagonal

vertical gap detection

detection of fully filled
objects

diagonal gap detection

filling of closed shapes

separate points
remaining

edge detection
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Linear templates B 3x3, A 3x3, gray-levels patterns

half-toning

inverse half-toning

texture extraction of similar shade

Nonlinear templates B 3x3, A 3x3, binary patterns

histogram creation

pixel-wise parity detection (XOR for neighbor
pixels)

row-wise parity detection
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Nonlinear templates B 3x3, A 3x3, gray-levels
patterns

contour detecton

region detection of similar gray-levels
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Linear templates B 3x3, A 3x3, with time-delay

object movement detection (8 basic directions)

object movement detection with filtering of
stationary objects

object movement detection with predefined
speed or slower

Linear templates B 5x5, A 5x5

de-blurring
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feature extraction & classification

motion detection & estimation

collision avoidance

object counting & size estimation

path tracking

detecting minima and maxima

detecting area with gradients that exceed a given threshold
thermographic maps

antenna-array images

medical maps and images
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