
1

Lecture 6

Neural Networks

2

Solving of Optimization

Problems

3

Optimization problems

The ability for parallel computation
yields to the possibility to work with
big amount of data. It allows neural
networks to solve complex and time
consuming optimization problems.

4

The basic problem is to replace the
task to the problem of minimization
of an energy function describing the
recurrent net treated as the
minimization network.

Optimization problems

5

The following problems have to be solved

1. To define the problem by use of a neural
 network. Its final (stable) stage should
 determine the optimization problem

2. The energy function minimum value has
to be equivalent of the solution of
optimization problem

Optimization problems

6

3. The net structure, connection
weights, threshold and out signals.

4. The elements dynamic have to assure
the minimization of energy function

5. The definition of the initial values of
elements

Optimization problems

7



Optimization problems

8

The TSP Optimization Problem

The „Travelling Salesman Problem” (TSP) is a
classic of difficult optimization.

Goal:

The set of N cities A, B, ... have (pairwise)
distance separation dAB, dAC, ..., dBC, ...

The problem is to find a closed tour which visits
each city once, returns to the starting city, and
has a short (or minimum) total part length.

9



The TSP Optimization Problem

10

The Energy Function must be determined
in such a way that its minima correspond
to solutions of the problem considered.
The Hopfield energy function may contain several
energy terms, which may be roughly classified
into constraint terms and the objective function.

To solve by Hopfield net we need to decide the
architecture:

• How many neurons?
• What are the weights?

The TSP Optimization Problem

11

For N cities in computer simulation the network
was represented by a matrix N x N.
The system is characterize using a table of cities
(rows) and steps (columns).
An entry vXi is equal to 1 if city X is visited at step i,
and 0 otherwise.

At the end of a simulation test which converged to
a solution each element representing output
potential of neuron vXi, was equal to either zero or
one.

The TSP Optimization Problem

12

The Hopfield network is fully interconnected, that is, all
neurons are connected to all other neurons (there are no
layers). The weights are symmetric.

There are three main types of weights:
a) Each neuron has its own positive bias weight.
b) Each neuron has a negative (inhibitory) weight to each of

the other neurons in its row and its column (α).
c) Each neuron has a negative weight to other possible

cities just before it and just after it on the tour (dXY). This
weight is equal to Euclidean distance. Since the tour
makes a loop, the final column is connected to the first
column by distance weights.

The TSP Optimization Problem

13

   

 

  






X XYY, i
1,1,

X i

2

i ,,

)(
2

D
 +

)(
2

C
 +

2

B
 +

2

iYiYXiXY

Xi

X XYY
YiXi

X Y jii
XjXi

vvvd

Nv

vvvv
A

E

X, Y – denote cities;
i,j – denote the tour stage
vXi – is the activation for each neuron, vXi=1 denotes the fact that city X is
 the i-th city visited in the tour
dXY – denotes the distance between cities X and Y

The TSP Optimization Problem

The energy
function

14

Row constraint (first term) in the energy function
is zero if and only if there is only one „1” in each
order column; thus it takes care that no two or
more cities are in the same travel order i.e. no two
cities are visited simultaneously.
Column constraint (second term) is zero if and
only if there is only one city appears in each order
column; thus it takes care that each city is visited
only once.

These terms represent the constraint of the problem.

The TSP Optimization Problem

15

Total number of „1” constraint (third term) is
zero if and only if there are only N number of „1”
appearing in the whole N*N matrix; thus is takes
into care that all cities are visited.

The fourth term measures the tour length
corresponding to a given tour, where the two
terms inside the parenthesis stand for two
neighboring visiting cities if VXi implying the tour
length is calculated twice.

The TSP Optimization Problem

That term represents the constraint of the problem.

That term represents the objective function.

16

The fourth term mmeasures the total distance
by adding intercity distances dX,Y for each pair
of adjacent cities.
Here A, B and C are positive integers, the
setting of these constants are critical for the
performance of Hopfield network.

The TSP Optimization Problem

17

The set solving the TSP problem for N = 4.
The route: 3-2-4-1
 tern on element
 tern off element
connections for V22
 inhibitory, weight dXY
 inhibitory, weight α

The TSP Optimization Problem

18

The example of normalized distances from
the city B to other cities.

The TSP Optimization Problem

19

Inhibitory connections of the VB3 element
with the rest of cities

The TSP Optimization Problem

20

Neural Networks for Matrix

Algebra Problems

21

Neural Networks for Matrix Algebra Problems

The feedforward neural networks for
solving (in real time) a large variety of
important matrix algebra problems such
as:

• matrix inversion,
• matrix multiplication
•LU decomposition,
• the eigenvalue problem

22

These algorithms basing on the
massively parallel data transformation
assure the high speed (μsek) in practice
– in the real-time.

For a given problem define the error (energy)
function and proper multilayer network and
during learning phase find the minimum of the
error function

Neural Networks for Matrix Algebra Problems

23

Matrix inversion
Let A be a nonsingular square
Goal:
To find the neural network calculating the
matrix B = A-1. matrix B fulfill the relation

BA = I

Neural Networks for Matrix Algebra Problems

24

Multiplying both sides by arbitrary non-zero
vector x=[x1,x2,...,xn] we get

BAx - x = 0 (1)

The energy (error) function can be defined
by

(2) xBAx
2

1
E 

Neural Networks for Matrix Algebra Problems

25

Solving of equation (1) can be replaced by
the minimization of the function (2).
Vector x plays double role:

• is the learning signal (network input
signal),
• is the desired output (target) signal

i. e. it is the autoassociative network

Neural Networks for Matrix Algebra Problems

26

A simplified block diagram

Neural Networks for Matrix Algebra Problems

27

u = Ax, y = Bu or
y = Bu = BAx = Ix = x

It means that the output vector signal y must be
equal to the input vector signal x – i.e. the network
should learn the identity map y = x.

The fundamental question for the training phase:

what kind of input signals x should be applied in
order to obtain the desired solution?

Neural Networks for Matrix Algebra Problems

28

One of the simplest input patterns can be chosen as:
x(1)=[1,0,0,...,0]T, x(2)=[0,1,0,...,0]T,..., x(n)=[0,0,0,...,1]T.

The better convergence speed can be obtained by changing
the input patterns randomly on each time step from the set
 x(1)=[1,-1,...,-1]T, x(2)=[-1,1,-1,...,-1]T,...,
 x(n)=[-1,-1,...,1]T.

In this two-layer network the first layer has fixed connection
weights aij, while in the second layer weights are unknown,
and are described by the unknown matrix B = A1.

Neural Networks for Matrix Algebra Problems

29

The network architecture

Neural Networks for Matrix Algebra Problems

30

In order to minimize the local error function E

 for a single pattern
yi is the actual output signal
xi is the desired output signal

 


n

j
jj

n

j
j yxeE

1

2

1

2)(
2

1

2

1

jiiij)uxμ(yΔB 

we can apply a standard steepest-descent approach

Neural Networks for Matrix Algebra Problems

31

Matrix multiplication
If matrix C is equal the product of matrices
A and B it fulfills the equation

C = AB

Neural Networks for Matrix Algebra Problems

32

To construct a proper neural network able to
solve the problem it is necessary to define
the error (energy) function whose
minimization leads to the desired solution.
Multiplying both sides by arbitrary non-zero
vector x=[x1,x2,...,xn] we get

ABx – Cx = 0

Neural Networks for Matrix Algebra Problems

33

On the basis of this equation we can
define the error (energy) function

2

2
)CxABx(

2

1
E 

Neural Networks for Matrix Algebra Problems

34

A simplified block diagram for matrix
multiplication. In real it is one-layer network
in spite that on the diagram there are three
layers

Neural Networks for Matrix Algebra Problems

35

Only one out of these three layers responsible
for matrix C is the subject of a learning
procedure – realizing the equation

y = Cx

After the learning process the network has to
fulfill the equation C = AB in the diagram there
are two additional layers with constant weights
(the elements of matrices A and B
respectively).

Neural Networks for Matrix Algebra Problems

36

These layers are used to compute the vector
d, according to

d = Au = ABx
Again we can apply a standard steepest-
descent algorithm. The adaptation rule has
the form

where p is the number of a learning pattern.

jpipijijij)xyη(d(t)c1)(tc 

Neural Networks for Matrix Algebra Problems

37

LU decomposition
The standard LU decomposition of a square
matrix A into: lower-triangular matrix L and
upper-triangular matrix U such that:

A = LU
generally the LU decomposition is not unique.
However, if the LU is factorization for a lower-
triangular matrix L with unit diagonal
elements factorization is unique.

Neural Networks for Matrix Algebra Problems

38

Multiplying both sides by arbitrary non-
zero vector x=[x1,x2,...,xn] and after some
further transformation we get the energy
function

2

2
)AxLUx(

2

1
E 

Neural Networks for Matrix Algebra Problems

39

The two-layer linear network is more
complicated than the network for the
matrix inversion or multiplication.

Here, both layers are the subject of learning
procedure. The connection weights of the
first layer are described by the matrix U and
the second layer by the matrix L.

Neural Networks for Matrix Algebra Problems

40

A simplified block diagram

Neural Networks for Matrix Algebra Problems

41

The first layer performs a simple linear
transformation z = Ux, where x is a given
input vector. The second layer performs
transformation y = Lz = LUx.

The parallel layer with weights defined by
the matrix A elements is used to calculate
the desired (target) output d = Ax.

Neural Networks for Matrix Algebra Problems

42

The weights lii are fixed and equal to
unity, and proper elements of the
matrices L and U are equal to zero.
To minimize the error function we will
apply the simplified back-propagation
algorithm.

Neural Networks for Matrix Algebra Problems

43

We get

for i > j, and

dla i  j

ipipijij zηe(t)l1)(tl 

jp

n

1h
hphiijij x1)e(tlη(t)u1)(tu






 


Neural Networks for Matrix Algebra Problems

44

where

ipipip yde 




n

1j
jpijip xad




n

1j
jpijip xuz




i

1j
jpijip zlyand

is the actual error of i-th output
element for p-th pattern xp

is the actual output of i-th element
of the first layer for the same p-th
pattern xp

Neural Networks for Matrix Algebra Problems

45

46

Cellular Neural
Networks

47

Cellular Neural Networks

Cellular Neural Networks (CNN) are
a parallel computing paradigm similar to
neural networks, with the difference that
communication is allowed between
neighboring units only.
CNN can be viewed as a special case of
a continuous-time Hopfield network.
It differs from the analog Hopfield network in its
local connectivity property

48

Cellural Neural Networks – CNN

Cellural Neural Networks – CNN are built
from identical nonlinear units called cells.
It is a multi-input, dynamical system, and
the behavior of the overall system is driven
primarily through the weights of the
processing unit’s linear interconnect.

49

Cellular Neural Networks

From an architecture standpoint, CNN
processors are a system of a finite, fixed-
number, fixed-location, fixed-topology, locally
interconnected, multiple-input, single-output,
nonlinear processing units.
Cells are defined in a normed space, commonly
a two-dimensional Euclidean geometry, like
a grid.

50

Cells are defined in a normed space, commonly a two-
dimensional geometry, like a grid. The cells are not limited to
two-dimensional spaces however; they can be defined in an
arbitrary number of dimensions and can be square, triangle,
hexagonal, or any other spatially invariant arrangement.
Topologically, cells can be arranged on an infinite plane or on
a toroidal space. Cell interconnect is local, meaning that all
connections between cells are within a specified radius (with
distance measured topologically). Connections can also be time-
delayed to allow for processing in the temporal domain.

Cellural Neural Networks – CNN

51

Network topology

Each cell cij situated in i-th row
and j-th column interacts directly
only with the cells within its
radius of neighbourhood r.
When r = 1, which is a common
assumption, the neighbourhood
includes the cell itself and its
eight nearest neighbouring cells

Typically the two-dimensional network is
organized in an eight-neighbour rectangular grid

52

A cell ci+k,j+l situated in i+k row and j+l
column belongs to the cell neighbourhood,
when

rlrkjiNc rljki  ,),(,

where r jest natural number called radius of
neighbourhood, Nr(i,j) denotes
neighbourhood of the cij of the radius r.

Network topology

53

Part of the cellural neural network with the
radius of neighbourhood

 r = 1 r = 3

Network topology

54

Part of the cellular neural network with the radius of
neighbourhood r = 1

Network topology

The figure shows the emphasized cell
(red) connected to the nearest
neighbours (blue). The cells marked
in grey represent the neighbourhood
cells of the black cell. The
neighbourhood includes the black cell
itself.

55

Local connections of
an edge cell. Observe
that three of its
neighbors are boun-
dary cells (dashed).

In order to calculate the state of the cells
on the boundary, it is necessary to define
the boundary conditions of the network, as
shown in the figure.

Network topology

56

In the standard model, the boundary conditions
can be:
• Fixed (or Dirichlet), if the value of the

boundary cells is a prescribed constant;
• Zero-flux (or Neumann), if the value of the

boundary cells is the same as the edge cells;
• Periodic (or toroidal), if the value of the

boundary cells is the same as the edge cells
on the opposite side (e.g., top boundary cells
have the value of bottom edge cells).

Network topology

57

All cells are transforming signals the same
way, generating output signal
The output signal yij depends from cells’
state xij.
Cell state is determined by the integration of
the sum of cell control signals multiplied by
the proper coefficients

Network operation

58

Control signals:
a) output signals yi+k,j+l the cells in the neighborhood
b) own output signal of the cij cell yij

c) input signals ui+k,j+l the cells in the neighborhood
d) owninput signal of

the cell cij cell uij

e) bias z

Network operation

59

 For input signals uij and initial conditions
of a cell state xij for t=0, following
conditions are imposed

1)(,1)0( tux ijij

Network operation

60

Weights of the output signals are called
feedback operators and denoted
 Ai,j;i+k,j+l

subscripts i,j refer to the cell cij being controlled
subscripts i+k,j+l refer to the cells controlling

the cell cij

Network operation

61

Weights of input signals are called control
operators and denoted
 Bi,j;i+k,j+l

where

subscripts i,j refer to the cell cij being controlled

subscripts i+k,j+l refer to the cells controlling
the cell cij.

Bias signal z has usually constant value but not
necessary identical for every cell in the network.

Network operation

62

Cell

Block diagram of a single cell

z

63

CNN dynamics

The CNN dynamics is described by a system of nonlinear
differential equations. Using the simplest first-order cell
dynamics and linear interactions, the state equation of a cell
in position (i,j) is as follows

zuB

yA
R

x

dt

dx
C

r

rk

r

rl

ljkiljkiij

r

rk

r

rl

ljkiljkiij

x

ijij





 



 







,,;

,,;

64

The expression for the output yij defined by the
piece-wise linear function is

)11(50)f( ijijijij xx,xy

Where f(*) is the standard nonlinearity for the
output equation.

CNN dynamics

65

Network operation

The set of matrices {A,B}, which contains the weights of
the network, is called the cloning template and it
defines the operation performed by the network.
When the values of the cloning template do not
depend on the position of the cell, the CNN is called
space-invariant.
Aij;i+k,j+l = AIJ;I+k,J+l and Bij;i+k,j+l = BIJ;I+k,J+l

where 0 ≤ i, I, i+k, I+k < M

 0 ≤ j, J, j+l, J+l < N

66

We can neglect subscripts ij and IJ leaving only kl,

where -r ≤ k,l ≤ r.

Weights Akl i Bkl are usually represented in a
matrix form A (feedback operator) and B (control

operator) with dimension (2r+1)x(2r+1).
The central element of neighborhood has the
indexes k = 0 and l = 0, and A00 denotes power of
the cell cij self-control.

Network operation

67

Akl defines the power of control by a cell distant
by l columns and k rows.
Network fragment for r = 1 and matrix A

Network operation

68

The template cloning is identical for every cell

Network operation

69

The simplified cell

output y(t) = f(x(t), u(t), z)

state x(t+1) = g(x(t), u(t), z)

 x, y, u, z ∈ R

Network operation

70

To describe the network structure it is enough to
define the cloning template:

– bias term z (usually identical for each cell),
– control operator A, describing the weights in the

feedback connections,
– feedback operator B, describing the feedforward

connections,
– initial conditions.

To start the calculations it is necessary to define:
– initial state x for each cell,
– input signal u for each cell.

Network operation

71

The g function is define by:

zuB

yAtxtx

r

rk

r

rl

ljkiljkiij

r

rk

r

rl

ljkiljkiijijij





 



 







,,;

,,;

)()1(

Network operation

Weights A and B are invariable and their selection
depends on the problem to be solved.

72

Matrix and vector (genotype) notation of the
weights

Representation

73

Detection of composed binary pattern in the
input.

Representation

74

Rectangular CNN grid, weight matrices and bias



















111

17,31

111

A























1,01,01,0

1,00,101,0

1,01,01,0

B z = 0

Representation

75

Extraction of the shapes containing

 Input pattern Output after processing

Representation

76

Applications

Cellular neural networks are used in many areas, but
mainly in:

 image processing

 feature extraction

 modeling physical phenomena

77

Applications

But also:
missile tracking, flash detection, level and gain
adjustments, color constancy detection, contrast
enhancement, deconvolution, image compression, motion
estimation, image encoding, image decoding, image
segmentation, orientation preference maps, pattern
learning/recognition, multi-target tracking, image
stabilization, resolution enhancement, image
deformations and mapping, image inpainting, optical flow,
contouring, moving object detection, axis of symmetry
detection, and image fusion.

78

 Are relatively simple for realization (small
number of connections).

 Are able to perform parallel and distributed
processing which yields to high
computational power.

Applications

79

Multi-Layer CNN

In multi- layer structure instead of scalar
values :

– state xij,

– output signal yij,

– input signal uij,

we have vectorial: Xij, Yij i Uij.

80

Example of connections of single cell in the
middle layer of three layer cellular network of
radius r = 1

Multi-Layer CNN

source: T.Kacprzak, K.Ślot, Sieci neuronowe komórkowe, PWN 1995.

81

Technical realisation

 5.5 mm x 4.7 mm

 0.3 W

 60 000 transistors

 16 x 16 cells

 Programmable weights

For 100 x 100 cell expected calculation speed 1012
instructions per second

82

Filling of closed region

Example

input signal (100 x 100)

final output signal, t = 71

t = 0 t = 10 t = 20 t = 30 t = 40 t = 50 t = 60

83

 Potential use

Linear templates B 3x3, A 1x1, binary patterns

image segmentation separate points
removal

one-side edge
detection

vertical translation NOT operation corner detection

horizontal
translation

AND
operation

image erosion

diagonal translation OR operation image fusion

separate points
remaining

edge detection image
compression

84

shadow casting in define
direction

lines detection parallel to
diagonal

vertical gap detection detection of fully filled
objects

diagonal gap detection filling of closed shapes

separate points
remaining

edge detection

Linear templates B 3x3, A 3x3, binary patterns

 Potential use

85

Linear templates B 3x3, A 3x3, gray-levels patterns

half-toning

inverse half-toning

texture extraction of similar shade

Nonlinear templates B 3x3, A 3x3, binary patterns

histogram creation

pixel-wise parity detection (XOR for neighbor
pixels)

row-wise parity detection

 Potential use

86

Nonlinear templates B 3x3, A 3x3, gray-levels
patterns

contour detecton

region detection of similar gray-levels

 Potential use

87

Linear templates B 3x3, A 3x3, with time-delay

object movement detection (8 basic directions)

object movement detection with filtering of
stationary objects

object movement detection with predefined
speed or slower

Linear templates B 5x5, A 5x5

de-blurring

 Potential use

88

CNNs scientific applications

 feature extraction & classification

 motion detection & estimation

 collision avoidance

 object counting & size estimation

 path tracking

 detecting minima and maxima

 detecting area with gradients that exceed a given threshold

 thermographic maps

 antenna-array images

 medical maps and images

89

References

 Chua, Leon O. and Yang, Lin (1988). Cellular neural
networks: theory. IEEE Transactions on Circuits and
Systems 35(10): 1257-1272.

 Chua, Leon O. and Roska, Tamas (1993). The CNN
paradigm. IEEE Transactions on Circuits and
Systems 40(3): 147-156.

 L. O. Chua, CNN: A paradigm for complexity, World
Scientific 1998.

