

Optimization problems

The basic problem is to replace the task to the problem of minimization of an energy function describing the recurrent net treated as the minimization network.

Optimization problems

For typical combinatorial optimization problems an energy function has a form

$$
E=\sum_{i} A_{i}\left(V_{i}\right)+B * F
$$

where V_{i} - is the measure of an i-th constraint
F - is the objective function
A_{i} - and B are the coefficients

The TSP Optimization Problem

The „Travelling Salesman Problem" (TSP) is a classic of difficult optimization.

Goal:

The set of N cities A, B, \ldots have (pairwise) distance separation $d_{A B}, d_{A C} \ldots, d_{B C} \ldots$
The problem is to find a closed tour which visits each city once, returns to the starting city, and has a short (or minimum) total part length.

The TSP Optimization Problem

There are $\frac{N!}{2 N}=\frac{(N-1)!}{2}$ distinct paths for closed TSP routes and the problem is NP-hard (complete).
To describe the N neurons in the TSP network to compute a solution to the problem, the network must be described by an energy function in which the lowest energy state (the network stable state) corresponds to the best path.

The TSP Optimization Problem

The Energy Function must be determined in such a way that its minima correspond to solutions of the problem considered.
The Hopfield energy function may contain several energy terms, which may be roughly classified into constraint terms and the objective function.

To solve by Hopfield net we need to decide the architecture:

- How many neurons?
- What are the weights?

The TSP Optimization Problem

For \boldsymbol{N} cities in computer simulation the network was represented by a matrix $\boldsymbol{N} \times \boldsymbol{N}$.
The system is characterize using a table of cities (rows) and steps (columns).
An entry $\boldsymbol{v}_{\boldsymbol{x} i}$ is equal to $\mathbf{1}$ if city \boldsymbol{X} is visited at step i, and $\mathbf{0}$ otherwise.

At the end of a simulation test which converged to a solution each element representing output potential of neuron $\boldsymbol{v}_{\boldsymbol{x} i}$, was equal to either zero or one.

The TSP Optimization Problem

The Hopfield network is fully interconnected, that is, all neurons are connected to all other neurons (there are no layers). The weights are symmetric.

There are three main types of weights:
a) Each neuron has its own positive bias weight.
b) Each neuron has a negative (inhibitory) weight to each of the other neurons in its row and its column (α).
c) Each neuron has a negative weight to other possible cities just before it and just after it on the tour ($d_{X y}$). This weight is equal to Euclidean distance. Since the tour makes a loop, the final column is connected to the first column by distance weights.

The TSP Optimization Problem

Row constraint (first term) in the energy function is zero if and only if there is only one , $1^{\prime \prime}$ in each order column; thus it takes care that no two or more cities are in the same travel order i.e. no two cities are visited simultaneously.
Column constraint (second term) is zero if and only if there is only one city appears in each order column; thus it takes care that each city is visited only once.

These terms represent the constraint of the problem.

The TSP Optimization Problem

Total number of „, $1^{\prime \prime}$ constraint (third term) is

The TSP Optimization Problem

The fourth term mmeasures the total distance by adding intercity distances $d_{X, Y}$ for each pair of adjacent cities.
Here \mathbf{A}, \mathbf{B} and \mathbf{C} are positive integers, the setting of these constants are critical for the performance of Hopfield network.
That term represents the constraint of the problem
The fourth term measures the tour length corresponding to a given tour, where the two terms inside the parenthesis stand for two neighboring visiting cities if $V_{x i}$ implying the tour length is calculated twice.
That term represents the objective function.

The TSP Optimization Problem

The set solving the TSP problem for $\mathrm{N}=4$.
The route: 3-2-4-1

- tern on element tern off element connections for V_{22} inhibitory, weight $d_{X Y}$...inhibitory, weight α

Neural Networks for Matrix Algebra Problems

The feedforward neural networks for solving (in real time) a large variety of important matrix algebra problems such as:

- matrix inversion,
- matrix multiplication
- LU decomposition,
- the eigenvalue problem

Neural Networks for Matrix Algebra Problems

These algorithms basing on the massively parallel data transformation assure the high speed ($\mu \mathrm{sek}$) in practice

- in the real-time.

For a given problem define the error (energy) function and proper multilayer network and during learning phase find the minimum of the error function

Neural Networks for Matrix Algehra Problems

Matrix inversion

Let \mathbf{A} be a nonsingular square
Goal:
To find the neural network calculating the matrix $\mathbf{B}=\mathbf{A}^{-\mathbf{1}}$. matrix \mathbf{B} fulfill the relation

$$
B A=I
$$

Neural Networks for Matrix Algebra Problems

Multiplying both sides by arbitrary non-zero vector $\mathbf{x}=\left[\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$ we get

$$
\begin{equation*}
B A x-x=0 \tag{1}
\end{equation*}
$$

The energy (error) function can be defined by

$$
\begin{equation*}
E=\frac{1}{2}\|B A x-x\| \tag{2}
\end{equation*}
$$

Neural Networks for Matrix Algebra Problems

Solving of equation (1) can be replaced by the minimization of the function (2).
Vector \mathbf{x} plays double role:

- is the learning signal (network input signal),
- is the desired output (target) signal
i. e. it is the autoassociative network

Neural Networks for Matrix Algebra Prohlems

A simplified block diagram

Neural Networks for Matrix Algebra Problems

$\mathbf{u}=\mathbf{A x}, \quad \mathbf{y}=\mathbf{B u} \quad$ or
$y=B u=B A x=I x=x$

It means that the output vector signal y must be equal to the input vector signal \mathbf{x}-i.e. the network should learn the identity map $\mathbf{y}=\mathbf{x}$.

The fundamental question for the training phase:
what kind of input signals x should be applied in order to obtain the desired solution?

Neural Networks for Matrix Algebra Problems

One of the simplest input patterns can be chosen as:
$x^{(1)}=[1,0,0, \ldots, 0]^{\top}, x^{(2)}=[0,1,0, \ldots, 0]^{\top}, \ldots, x^{(n)}=[0,0,0, \ldots, 1]^{\top}$.
The better convergence speed can be obtained by changing the input patterns randomly on each time step from the set $\mathbf{x}^{(1)}=[1,-1, \ldots,-1]^{\top}, \quad \mathbf{x}^{(2)}=[-1,1,-1, \ldots,-1]^{\top}, \ldots$, $x^{(n)}=[-1,-1, \ldots, 1]^{\top}$.

In this two-layer network the first layer has fixed connection weights a_{ij}, while in the second layer weights are unknown, and are described by the unknown matrix $\quad \mathbf{B}=\mathbf{A}^{1}$.

Neural Networks for Matrix Algebra Problems

In order to minimize the local error function \boldsymbol{E}

$$
E=\frac{1}{2} \sum_{j=1}^{n} e_{j}^{2}=\frac{1}{2} \sum_{j=1}^{n}\left(x_{j}-y_{j}\right)^{2}
$$

for a single pattern
y_{i} is the actual output signal
x_{i} is the desired output signal
we can apply a standard steepest-descent approach

$$
\Delta \mathrm{B}_{\mathrm{ij}}=-\mu\left(\mathrm{y}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}}\right) \mathrm{u}_{\mathrm{j}}
$$

Matrix multiplication

If matrix \mathbf{C} is equal the product of matrices \mathbf{A} and \mathbf{B} it fulfills the equation

$$
\mathbf{C}=\mathbf{A B}
$$

Neural Networks for Matrix Algehra Problems

On the basis of this equation we can define the error (energy) function

$$
E=\frac{1}{2}\left(\|A B x-C x\|_{2}\right)^{2}
$$

Neural Networks for Matrix Algebra Prohlems

Only one out of these three layers responsible for matrix \mathbf{C} is the subject of a learning procedure - realizing the equation

$$
y=C x
$$

After the learning process the network has to fulfill the equation $\mathbf{C}=\mathbf{A B}$ in the diagram there are two additional layers with constant weights (the elements of matrices \mathbf{A} and \mathbf{B}

Neural Networks for Matrix Algebra Prohlems

These layers are used to compute the vector d, according to

$$
d=A u=A B x
$$

Again we can apply a standard steepestdescent algorithm. The adaptation rule has the form

$$
\mathrm{c}_{\mathrm{ij}}(\mathrm{t}+1)=\mathrm{c}_{\mathrm{ij}}(\mathrm{t})+\mathrm{n}\left(\mathrm{~d}_{\mathrm{ij}}-\mathrm{y}_{\mathrm{ip}}\right) \mathrm{x}_{\mathrm{jp}}
$$ where p is the number of a learning pattern. respectively).

Neural Networks for Matrix Algebra Problems

A simplified block diagram for matrix multiplication. In real it is one-layer network in spite that on the diagram there are three layers

Neural Networks for Matrix Algebra Prohlems

LU decomposition

The standard LU decomposition of a square matrix A into: lower-triangular matrix \mathbf{L} and upper-triangular matrix \mathbf{U} such that:

$$
A=L U
$$

generally the $\mathbf{L U}$ decomposition is not unique. However, if the $\mathbf{L U}$ is factorization for a lowertriangular matrix L with unit diagonal elements factorization is unique.

Neural Networks for Matrix Algebra Problems

Multiplying both sides by arbitrary nonzero vector $\mathbf{x}=\left[\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$ and after some further transformation we get the energy function

$$
E=\frac{1}{2}\left(\|L U x-A x\|_{2}\right)^{2}
$$

Neural Networks for Matrix Algebra Problems

The two-layer linear network is more complicated than the network for the matrix inversion or multiplication.

Here, both layers are the subject of learning procedure. The connection weights of the first layer are described by the matrix \mathbf{U} and the second layer by the matrix \mathbf{L}.

Neural Networks for Matrix Alyebra Prohlems

The first layer performs a simple linear transformation $\mathbf{z}=\mathbf{U x}$, where \mathbf{x} is a given input vector. The second layer performs transformation $\mathbf{y}=\mathbf{L z}=\mathbf{L U x}$.

The parallel layer with weights defined by the matrix A elements is used to calculate the desired (target) output $\mathbf{d}=\mathbf{A x}$.

Neural Networks for Matrix Algebra Problems

A simplified block diagram

ป
-

Neural Networks for Matrix Algebra Prohlems

We get

$$
I_{i j}(t+1)=I_{i j}(t)+\eta e_{i p} z_{i p}
$$

for $\mathrm{i}>\mathrm{j}$, and
$\mathrm{u}_{\mathrm{ij}}(\mathrm{t}+1)=\mathrm{u}_{\mathrm{ij}}(\mathrm{t})+\eta\left[\sum_{\mathrm{h}=1}^{\mathrm{n}} \mathrm{I}_{\mathrm{hi}}(\mathrm{t}+1) \mathrm{e}_{\mathrm{hp}}\right] \mathrm{x}_{\mathrm{ip}}$

```
dla i < j
```

```
dla i < j
```


where

$e_{i p}=d_{i p}-y_{i p}$
is the actual error of i-th output element for p-th pattern \mathbf{x}_{p}
$\mathrm{z}_{\mathrm{ip}}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{u}_{\mathrm{ij}} \mathrm{x}_{\mathrm{ip}}$
is the actual output of i-th element of the first layer for the same p-th pattern \mathbf{x}_{p}
and

$$
y_{i p}=\sum_{j=1}^{i} 1_{i j} z_{j p} \quad d_{i p}=\sum_{j=1}^{n} a_{i j} x_{i p}
$$

Cellular Neural Networks

Cellular Neural Networks (CNN) are a parallel computing paradigm similar to

Cellular Neural Networks

From an architecture standpoint, CNN processors are a system of a finite, fixednumber, fixed-location, fixed-topology, locally interconnected, multiple-input, single-output, nonlinear processing units.
Cells are defined in a normed space, commonly a two-dimensional Euclidean geometry, like a grid.

Cellural Neural Networks-CNN

Gells are defined in a normed space, commonly a twodimensional geometry, like a grid. The cells are not limited to two-dimensional spaces however; they can be defined in an arbitrary number of dimensions and can be square, triangle, hexagonal, or any other spatially invariant arrangement. Topologically, cells can be arranged on an infinite plane or on a toroidal space. Cell interconnect is local, meaning that all connections between cells are within a specified radius (with distance measured topologically). Connections can also be timedelayed to allow for processing in the temporal domain.

Network topology

Typically the two-dimensional network is organized in an eight-neighbour rectangular grid

A cell $c_{i+k, j+l}$ situated in $i+k$ row and $j+l$
column belongs to the cell neighbourhood, when

$$
c_{i+k, j+l} \in N_{r}(i, j) \Leftrightarrow|k| \leq r,|l| \leq r
$$ and j-th column interacts directly only with the cells within its radius of neighbourhood r.

When $r=1$, which is a common assumption, the neighbourhood includes the cell itself and its eght nearest neighbouring cells

where r jest natural number called radius of neighbourhood, $N_{r}(i, j)$ denotes neighbourhood of the $c_{i j}$ of the radius r.

Network topology

In order to calculate the state of the cells on the boundary, it is necessary to define the boundary conditions of the network, as shown in the figure.
Local connections of an edge cell. Observe that three of its neighbors are boundary cells (dashed).

Network topology

In the standard model, the boundary conditions can be:

- Fixed (or Dirichlet), if the value of the boundary cells is a prescribed constant;
- Zero-flux (or Neumann), if the value of the boundary cells is the same as the edge cells;
- Periodic (or toroidal), if the value of the boundary cells is the same as the edge cells on the opposite side (e.g., top boundary cells have the value of bottom edge cells).

Network operation

All cells are transforming signals the same way, generating output signal The output signal $y_{i j}$ depends from cells' state $x_{i j}$. Cell state is determined by the integration of the sum of cell control signals multiplied by the proper coefficients

For input signals $u_{i j}$ and initial conditions of a cell state $x_{i j}$ for $t=0$, following conditions are imposed

$$
\left|x_{i j}(0)\right| \leq 1, \quad\left|u_{i j}(t)\right| \leq 1
$$

Network operation

Network operation

Weights of input signals are called control operators and denoted

$$
B_{i, j ; i+k, j+l}
$$

where
subscripts i, j refer to the cell $c_{i j}$ being controlled subscripts $i+k, j+l$ refer to the cells controlling the cell $c_{i j}$.
Bias signal z has usually constant value but not necessary identical for every cell in the network.

The CNN dynamics is described by a system of nonlinear
differential equations. Using the simplest first-order cell dynamics and linear interactions, the state equation of a cell n position (i, j) is as follows

$$
\begin{aligned}
C \frac{d x_{i j}}{d t}=-\frac{x_{i j}}{R_{x}} & +\sum_{k=-r l=-r}^{r} \sum_{i j ; i+k, j+l}^{r} y_{i+k, j+l}+ \\
& +\sum_{k=-r}^{r} \sum_{l=-r}^{r} B_{i j ; i+k, j+l} u_{i+k, j+l}+z
\end{aligned}
$$

CNN dynamics

The expression for the output $y_{i j}$ defined by the piece-wise linear function is

$$
y_{i j}=\mathrm{f}\left(x_{i j}\right)=0,5 *\left(\left|x_{i j}+1\right|-\left|x_{i j}-1\right|\right)
$$

Where $\mathrm{f}(*)$ is the standard nonlinearity for the output equation.

Network operation

We can neglect subscripts $i j$ and $I J$ leaving only $k l$, where $-r \leq k, l \leq r$.
Weights $A_{k l}$ i $B_{k l}$ are usually represented in a matrix form \mathbf{A} (feedback operator) and \mathbf{B} (control operator) with dimension $(2 r+1) x(2 r+1)$.
The central element of neighborhood has the indexes $k=0$ and $l=0$, and A_{00} denotes power of the cell $c_{i j}$ self-control.

Network operation

To describe the network structure it is enough to define the cloning template:

- bias term \boldsymbol{z} (usually identical for each cell),
- control operator A, describing the weights in the feedback connections,
- feedback operator B, describing the feedforward connections,
- initial conditions.

To start the calculations it is necessary to define:

- initial state \boldsymbol{x} for each cell,
- input signal \boldsymbol{u} for each cell.

\square Network operation

The g function is define by:

$$
\begin{array}{r}
x_{i j}(t+1)=x_{i j}(t)+\sum_{k=-r l=-r}^{r} \sum_{i j ; i+k, j+l}^{r} y_{i+k, j+l}+ \\
+\sum_{k=-r}^{r} \sum_{l=-r}^{r} B_{i j ; i+k, j+l} u_{i+k, j+l}+z
\end{array}
$$

Weights A and B are invariable and their selection depends on the problem to be solved.

Representation

Matrix and vector (genotype) notation of the weights

Applications

Cellular neural networks are used in many areas, but mainly in:

- image processing
- feature extraction
- modeling physical phenomena

Applications

But also:

missile tracking, flash detection, level and gain number of connections).
adjustments, color constancy detection, contrast enhancement, deconvolution, image compression, motion estimation, image encoding, image decoding, image segmentation, orientation preference maps, pattern learning/recognition, multi-target tracking, image stabilization, resolution enhancement, image deformations and mapping, image inpainting, optical flow, contouring, moving object detection, axis of symmetry detection, and image fusion.

Potential use

Linear templates B 3x3, A 3x3, gray-levels patterns

half-toning
inverse half-toning
texture extraction of similar shade

Nonlinear templates B 3x3, A 3x3, binary patterns

histogram creation
pixel-wise parity detection (XOR for neighbor pixels)
row-wise parity detection

CNNs scientific applications

- feature extraction \& classification
- motion detection \& estimation
- collision avoidance
- object counting \& size estimation
- path tracking
- detecting minima and maxima
- detecting area with gradients that exceed a given threshold
- thermographic maps
- antenna-array images
- medical maps and images

