

Optimization problems

The basic problem is to replace the task to the problem of minimization of an energy function describing the recurrent net treated as the *minimization network.*

Optimization problems

The following problems have to be solved

- 1. To define the problem by use of a neural network. Its final (stable) stage should determine the optimization problem
- 2. The energy function minimum value has to be equivalent of the solution of optimization problem

Optimization problems

- 3. The net structure, connection weights, threshold and out signals.
- 4. The elements dynamic have to assure the minimization of energy function
- 5. The definition of the initial values of elements

Optimization problems

For typical combinatorial optimization problems an energy function has a form

$$E = \sum_{i} A_i(V_i) + B * F$$

where V_i - *is* the measure of an *i*-th constraint F - is the objective function

 A_i - and B are the coefficients

The TSP Optimization Problem

The **"Travelling Salesman Problem**" (TSP) is a classic of difficult optimization.

Goal:

The set of N cities A, B, ... have (pairwise) distance separation $d_{AB'} d_{AC'} \dots d_{BC'} \dots$

The problem is to find a closed tour which visits each city once, returns to the starting city, and has a short (or minimum) total part length.

column by distance weights.

Neural Networks for Matrix Algebra Problems

These algorithms basing on the massively parallel data transformation assure the high speed (µsek) in practice – in the real-time.

For a given problem define the error (energy) function and proper multilayer network and during learning phase find the minimum of the error function

- is the learning signal (network input signal),
- is the desired output (target) signal
- i. e. it is the autoassociative network

Neural Networks for Matrix Algebra Problems

These layers are used to compute the vector **d**, according to

d = Au = ABx

Again we can apply a standard steepestdescent algorithm. The adaptation rule has the form $c_{ij}(t+1) = c_{ij}(t) + \eta(d_{ij} - y_{ip})x_{jp}$ where *p* is the number of a learning pattern.

Neural Networks for Matrix Algebra Problems

LU decomposition

The standard **LU** decomposition of a square matrix **A** into: lower-triangular matrix **L** and upper-triangular matrix **U** such that:

A = LU

generally the **LU** decomposition is not unique. However, if the **LU** is factorization for a lowertriangular matrix **L** with unit diagonal elements factorization is unique.

Neural Networks for Matrix Algebra Problems

Multiplying both sides by arbitrary nonzero vector $\mathbf{x} = [x_1, x_2, ..., x_n]$ and after some further transformation we get the energy function

$$\mathsf{E} = \frac{1}{2} (\left\| \mathsf{LUx} - \mathsf{Ax} \right\|_2)^2$$

Neural Networks for Matrix Algebra Problems

The two-layer linear network is more complicated than the network for the matrix inversion or multiplication.

Here, both layers are the subject of learning procedure. The connection weights of the first layer are described by the matrix **U** and the second layer by the matrix **L**.

Neural Networks for Matrix Algebra Problems

The first layer performs a simple linear transformation z = Ux, where x is a given input vector. The second layer performs transformation y = Lz = LUx.

The parallel layer with weights defined by the matrix A elements is used to calculate the desired (target) output **d** = Ax.

Neural Networks for Matrix Algebra Problems

The weights I_{ii} are fixed and equal to unity, and proper elements of the matrices **L** and **U** are equal to zero. To minimize the error function we will apply the simplified back-propagation algorithm.

Cellular Neural Networks

Cellular Neural Networks (CNN) are

- a parallel computing paradigm similar to neural networks, with the difference that communication is allowed between neighboring units only.
- CNN can be viewed as a special case of
- a continuous-time Hopfield network.
- It differs from the analog Hopfield network in its
- *local connectivity* property

Cellural Neural Networks – CNN

Cellural Neural Networks – **CNN** are built from identical nonlinear units called cells. It is a multi-input, dynamical system, and the behavior of the overall system is driven primarily through the weights of the processing unit's linear interconnect.

Cellular Neural Networks

From an architecture standpoint, CNN processors are a system of a finite, fixednumber, fixed-location, fixed-topology, locally interconnected, multiple-input, single-output, honlinear processing units.

Cells are defined in a normed space, commonly a two-dimensional Euclidean geometry, like a grid.

Cellural Neural Networks – CNN

Cells are defined in a normed space, commonly a twodimensional geometry, like a grid. The cells are not limited to two-dimensional spaces however; they can be defined in an arbitrary number of dimensions and can be square, triangle, hexagonal, or any other spatially invariant arrangement. Topologically, cells can be arranged on an infinite plane or on a toroidal space. Cell interconnect is local, meaning that all connections between cells are within a specified radius (with distance measured topologically). Connections can also be timedelayed to allow for processing in the temporal domain.

Network topology	
A cell $c_{i+k,j+l}$ situated in $i+k$ row and $j+l$ column belongs to the cell neighbourhood, when $c_{i+k,j+l} \in N_r(i,j) \Leftrightarrow k \leq r, l \leq r$	
where r jest natural number called radius of neighbourhood, $N_r(i,j)$ denotes neighbourhood of the c_{ij} of the radius r .	

Network topology

In order to calculate the state of the cells on the boundary, it is necessary to define the boundary conditions of the network, as shown in the figure.

Local connections of an *edge cell*. Observe that three of its neighbors are *boundary cells* (dashed).

We can neglect subscripts ij and IJ leaving only kl, where $-r \le k, l \le r$. Weights A_{kl} i B_{kl} are usually represented in a matrix form **A** (feedback operator) and **B** (control operator) with dimension (2r+1)x(2r+1). The central element of neighborhood has the indexes k = 0 and l = 0, and A_{00} denotes power of the cell c_{ij} self-control.

Representation	_
Rectangular CNN grid, weight matrices and bias $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 3,7 & 1 \\ 1 & 1 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} -0,1 & 0,1 & -0,1 \\ 0,1 & 10,0 & 0,1 \\ -0,1 & 0,1 & -0,1 \end{bmatrix} \qquad z = 0$	
	74

		E)	ample				_	
Filling	Filling of closed region							
001 290	၀၇၊ ရော္ input signal (100 x 100)							
			X	1 5	• • I • •	01 10		
t = 0	t = 10	t = 20	t = 30	t = 40	t = 50	t = 60		
01 • 01	final output signal, t = 71							
							82	

ine	ear templates B	3x3, A 1x1, k	pinary patterns
iı	mage segmentation	separate points removal	one-side edge detection
v	ertical translation	NOT operation	corner detection
h ti	orizontal ranslation	AND operation	image erosion
d	iagonal translation	OR operation	image fusion
s re	eparate points emaining	edge detection	image compression

	Pote	ntial use
inear tem.	iplates B 3x	3, A 3x3, binary patterns
shadow cas direction	ting in define	lines detection parallel to diagonal
vertical gap	detection	detection of fully filled objects
diagonal gap detection		filling of closed shapes
	oints	edge detection

Potential use						
Linear templates B 3x3, A 3x3, gray-levels patterns						
half-toning						
inverse half-toning						
texture extraction of similar shade						
Nonlinear templates B 3x3, A 3x3, binary patterns						
histogram creation						
pixel-wise parity detection (XOR for neighbor pixels)						
row-wise parity detection						
۱ <u>ــــــــــــــــــــــــــــــــــــ</u>	85					

