
1

Lecture 7

Neural Networks

2

Summary

of modelling of neural

networks

3

Structures

4

Main problems faced building a feedforward
network (without feedback loops).

• how many layers is necessary for proper
network`s work?

• how many elements have to bee in these layers?

Network structure

5

What is a network layer?

A layer - it is the part of network structure
which contains active elements performing
some operation. Usually the first layer elements
(nodes) are passive and they propagates the
signal through the network only.

Network structure

6

Network structure

7

Linear network?

Linear network it is a network where input signals are
multiplied by the weights, added, and next the result is send to
the axon as the output signal of the neuron. Eventually some
threshold can be used.

Typical examples of a linear network are a simple perceptron
and an Adeline network.

Network structure

8

Or Nonlinear Network?

In a nonlinear network the output signal is calculated by a
nonlinear function f(). The function f() is called neuron
transfer function and its operations have to be similar to the
operations of a biological neuron.

Typical example of a nonlinear network is a sigmoidal
network.

Network structure

9

Radial networks

For special purposes sometimes we are using the radial
neurons i.e. neurons with Radial Basis Function RBF. They
have non typical aggregation methods of input data, they
uses non typical transfer function (Gauss function) and they
learned by the special way.

Data aggregation consist on the calculation of a distance
between an input signal (vector X), and established in a
learning process centroid of a certain set T.

Network structure

10

Sigmoid and radial neuron

Sigmoidal neuron represents in the multidimensional space
hyperplane separating space into two categories (Fig.A). Radial
neuron represents hypersphere performing circular separation
around the central point (Fig.B).

Fig. A Fig. B

Network structure

11

Sigmoid and radial neuron

Sigmoid neuron builds its classification from hyperplane, defined
by the weighted sum of input signal which is argument to
nonlinear function (Fig.A), whereas the radial basis approach
uses hyperellipsoids to partition the pattern space. (Fig.B).

Fig. A Fig. B

Network structure

12

Radial basis function network (RBF) uses radial basis
functions as activation functions typically have three layers:
an input layer, a hidden layer with a non-linear RBF
activation function and a linear output layer.

Functions that depend only on the distance from a center
vector are radially symmetric about that vector, hence the
name radial basis function. In the basic form all inputs are
connected to each hidden neuron. The norm is typically
taken to be the Euclidean distance and the radial basis
function is commonly taken to be Gaussian.

Radial basis function network

13

The output of the network is then a
scalar function of the input vector, and
is given by

where N is the number of neurons in

the hidden layer, ci is the center vector

for neuron , and ai is the weight of

neuron i in the linear output neuron.

Functions that depend only on the
distance from a center vector are
radially symmetric about that vector.
The radial basis function is commonly
taken to be Gaussian.

Radial basis function network

14

How many layers?

The simplest feedforward network has at least two layers – an input and
an output (nb. such a networks are called single layer networks – active
neurons are located only in an outputt layer.).

Usually between these layers there are multiple intermediate or hidden
layers.

Hidden layers are very important they are considered to be categorizers or
feature detectors. The output layer is considered a collector of the
features detected and producer of the response

Network structure

15

The Input Layer

With respect to the number of neurons comprising this layer,
this parameter is completely and uniquely determined once
you know the shape of your training data. Specifically, the
number of neurons comprising that layer is equal to the
number of features (columns) in your data. Some neural
networks configurations add one additional node for a bias
term.

In addition very often the input data are scaled to be in the
range of [0;1] or [-1;+1].

Network structure

16

The Output Layer
Like the input layer, every neural network has exactly one output layer.
Determining its size (number of neurons) is simple; it is completely
determined by the chosen model configuration.
The interesting solution is called „one out of N”. Unfortunately usually
because of limited accuracy in network operation the non-zero signal can
occur on each out elements. It is necessary to implement the special
criteria for results post-processing and threshold of acceptance and
rejection.

Often the number of network inputs is greater than the problem to be
solved. For example it cab be a result of splitting the output signal into
some sub-ranges.

Network structure

17

How to built the network?
Too small network without hidden layer or to few neurons.
Such a network is unable to solve a problem and even the
very long learning time will not help.

Too big network will cheat a teacher. Too many hidden layers
or too many elements in the hidden layers yields to the
simplification of task. The network will learn whole set of the
learning patterns. It learns very a fast and precisely but is
completely useless for solving any similar problem.

* source: R.Tadeusiewicz Odkrywanie właściwości sieci neuronowych, PAU Kraków 2007

Network structure

18

How many hidden layers?
Too many hidden layer yields to significant deterioration of learning.
There is a consensus is the performance difference from adding additional
hidden layers: the situations in which performance improves with a second
(or third, etc.) hidden layer are very small. One hidden layer is sufficient for
the large majority of problems.

Additional layer yields to an instability of gradient, and increase of the
number of false minima.
Two hidden layer are necessary only if the learning refers the function with
points of discontinuity.

* source: R.Tadeusiewicz Odkrywanie właściwości sieci neuronowych, PAU Kraków 2007

Network structure

19

Size of the hidden layer - how many neurons?

* source: R.Tadeusiewicz Odkrywanie właściwości sieci neuronowych, PAU Kraków 2007

Network structure

Too many neurons in the hidden layers may result in
overfitting. Overfitting occurs when the neural network has so
much information processing capacity that the limited amount
of information contained in the training set is not enough to
train all of the neurons in the hidden layers. A second problem
can occur even when the training data is sufficient. An
inordinately large number of neurons in the hidden layers can
increase the time it takes to train the network.

20

Size of the hidden layer - how many neurons?

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

E
rr

o
r

Number of neurons in a hidden layer

Network error as a function of a number of

neurons in a hidden layer

* source: R.Tadeusiewicz Odkrywanie właściwości sieci neuronowych, PAU Kraków 2007

Network structure

Using too few neurons in the hidden layers will result in
something called underfitting. Underfitting occurs when there
are too few neurons in the hidden layers to adequately detect

the signals in a complicated data set.

21

Rough prerequisite for the number of hidden
neurons (for most of typical problems) is the rule of
a geometric pyramid. The number of neurons in a
consecutive layers has a shape of a pyramid and
decrease from the direction of input to the output.
The numbers of neurons in a consecutive layers are
forming geometric sequence.

Network structure

* source: T.Masters Practical Neural Networks, Acad. Press, 1993.

22

For example, for the network with one hidden layer, with
𝑛 – neurons in the input layer and 𝑚 – neurons in the output
layer, in the hidden layer should be

 NHN = 𝑛 ∗ 𝑚.

For the network with two hidden layers

NHN1= 𝑚*𝑟2, NHN2= 𝑚*𝑟 where 𝑟 =
𝑛

𝑚

3

Att: not for associative networks (numbers of input and
output neurons are identical)

Network structure

* source: T.Masters Practical Neural Networks, Acad. Press, 1993.

23

For the network with one hidden layer, with 𝑛 –
elements in the input layer, 𝑘 – elements in the
hidden layer, the maximal number of separated
classes M (equivalent to the number of output
elements)

for 𝑛 >> 𝑘 we have M = 2𝑘.

M = 𝑘
𝑖
 where for 𝑘 < 𝑖 𝑘

𝑖
= 0𝑛

𝑖=1

Network structure

* source: T.Masters Practical Neural Networks, Acad. Press, 1993.

24

It is possible to evaluate the number of elements in
the hidden layer for 𝑘 < 𝑛

 𝑘 = 𝑙𝑜𝑔2𝑀

The number of hidden neurons should be between
the size of the input layer and the size of the output
layer or the number of neurons in that layer is the
mean of the neurons in the input and output layers.

Network structure

* source: T.Masters Practical Neural Networks, Acad. Press, 1993.

25

Learning

26

One of the key elements of a neural network is its ability to
learn. A neural network is not just a complex system, but a
complex nonlinear adaptive system, meaning it can change its
internal structure based on the information flowing through it.

Multi-layer networks use a variety of learning techniques.

A common method for measuring the discrepancy between the
expected output and the actual output is using the squared
error measure.

Net learning

27

There are three major learning paradigms:

Supervised Learning
The learning algorithm would fall under this category if the
desired output for the network is also provided with the
input while training the network. By providing the neural
network with both an input and output pair it is possible to
calculate an error based on it's target output and actual
output. It can then use that error to make corrections to the
network by updating it's weights.

Net learning

28

Unsupervised Learning
In this paradigm the neural network is only given a set of inputs
and it's the neural network's responsibility to find some kind of
pattern within the inputs provided without any external aid.
This type of learning paradigm is often used in data mining and
is also used by many recommendation algorithms due to their
ability to predict a user's preferences based on the preferences
of other similar users it has grouped together.

Net learning

29

Reinforcement Learning
Reinforcement learning is similar to supervised learning in that
some feedback is given, however instead of providing a target
output a reward is given based on how well the system
performed. The aim of reinforcement learning is to maximize
the reward the system receives through trial-and-error. This
paradigm relates strongly with how learning works in nature,
for example an animal might remember the actions it's
previously taken which helped it to find food (the reward).

Net learning

30

Net learning - summary

Typical learning algorithms:

1. Backpropagation, an abbreviation for "backward propagation of
errors", is a common method of training artificial neural networks
employing gradient descent method. The method calculates the
gradient of a error function with respects to all the weights in the
network. The gradient is fed to the optimization method which in turn
uses it to update the weights, in an attempt to minimize the loss
function.
Backpropagation requires a known, desired output for each input
value in order to calculate the error function gradient. It is therefore
usually considered to be a supervised learning method.
The most important problem is that, under some circumstances,
local minima appear in the error function which would not be there if
the step function had been used.

31

Net learning - summary

2. To speed up the process of learning, the momentum term is added
to the weight update rule. Introduction of the momentum rate
allows the attenuation of oscillations in the gradient descent.
Introduction of the momentum rate allows the attenuation of
oscillations in the gradient descent. The momentum rate is used to
prevent the system from converging to a local minimum or saddle
point.

 General idea:
 W′i=Wi − α Δ Wi + μ Δ Wi−1

 where α is the learning rate, and μ is the momentum term.

32

3. Quasi-Newton methods require only the gradient (like
steepest descent) of the objective to be computed at each
iterate. By successive measurements of the gradient,
Quasi-Newton methods build a quadratic model of the
objective function which is sufficiently good that
superlinear convergence is achieved. Quasi-Newton
methods are much faster than steepest descent (and
coordinate descent) methods.

 Since second derivatives (the Hessian) are not required,
 quasi-Newton methods are sometimes more efficient.

Net learning - summary

33

4. The conjugate gradient method is one of the most
popular and well known iterative techniques for learning
networks with many connections. It is slower than Quasi-
Newton methods but much faster than backpropagation
algorithm. The computational efficiency is enhanced by
adaptively modifying initial search direction by calculation
of the gradient descent of error with respect to the
weights and the determination of a new search direction.

Net learning - summary

34

5. Many modifications of backpropagation method have
been proposed to increase the convergence rate of the
standard algorithm, and Quickprop is one the most
popular fast learning algorithms. The convergence rate of
Quickprop is very fast; however, it is easily trapped into a
local minimum and thus it cannot converge to the global
minimum.

 Quickprop is also one of the better training algorithms
 and is loosely based on Newton's method.

Net learning - summary

35

6. The RPROP (Resilent backPROPagation) algorithm takes a
very different approach to improving backpropagation as
compared to Quickprop.

Instead of making more use of gradient information for
better weight updates, RPROP only uses the sign of the
gradient, because its size can be a poor and noisy
estimator of required weight updates.

Furthermore, RPROP assumes that different weights need
different step sizes for updates, which vary throughout the
learning process.

Net learning - summary

36

7. The Levenberg - Marquardt algorithm is an iterative
technique that locates the minimum of a multivariate
function. It has become a standard technique for non-linear
least-squares problems. It can be thought of as a
combination of steepest descent and the Gauss-Newton
method. When the current solution is far from the correct
one, the algorithm behaves like a steepest descent method:
slow, but guaranteed to converge. When the current solution
is close to the correct solution, it becomes a Gauss-Newton
method.

Net learning - summary

37

Supervised networks
Feedforward networks

1. Linear
• Hebb’s model (Hebb 1949, Fausett 1994)

• Perceptron (Rosenblatt 1969, Minsky, Pappert
1969/1988, Fausett 1994)

• Adaline (Widrow, Hoff 1960, Fausett 1994)
• Higher order network (Bishop 1995)

• Functional link network (Pao 1989)

in parenthesis: authors’ names and dates of invention/description

Net learning - summary

38

Supervised networks
Feedforward networks

2. MLP Multi-Layered Perceptron (Bishop 1995,

Fausett 1994)

• Back Propagation Network (Rumelhart, Hinton,
Wiliams 1986)

• Cascade Correlation Network (Fausett 1994)

• Quickprop (Fehlman 1989)

• RPROP Resilient Back PROPagation (Riedmiller,

Braun 1993)

Net learning - summary

39

Supervised networks
Feedforward networks

3. Classification only networks
• LVQ Learning Vector Quantization (Kohonen 1988, Fausett

1994)

• PNN Probabilistic Neural Network (Specht 1990, Masters

1993, Hand 1991, Fausett 1994)

Recurrent Networks (Hertz, Krogh, Palmer 1991)

• BAM Bidirectional Associative Memory (Kosko 1992, Fausett

1994)

• Boltzman Machine (Ackley 1985, Fausett 1994)

Net learning - summary

40

Supervised networks
Competition Networks
• ARTMAP Adaptive Resonans Network (Carpenter,

Grossberg 1991)

• CP Counterpropagation (Hecht-Nielsen 1987, 1988, 1990,
Fausett 1994)

• Neocognitron (Fukushima, Miyake, Ito 1983, Fukushima
1988, Fausett 1994)

Net learning - summary

41

Unsupervised networks
Competition Networks
1. VQ Vector Quantization

• Grossberg’s Network (Grossberg 1976)

• Kohonen’s Network (Kohonen 1984)

2. SOM Self-Organizing Map (Kohonen 1995,
Fausett 1994)

Net learning - summary

42

Unsupervised networks
Competition Networks
3. ART Adaptive Resonance Theory

• ART 1 (Carpenter, Grossberg 1987, Moore 1988, Fausett
1994)

• ART. 2 (Carpenter, Grossberg 1987, Fausett 1994)

• ART. 2A (Carpenter, Grossberg, Rosen 1991)

• Fuzzy ART (Carpenter, Grossberg, Rosen 1991)

Net learning - summary

43

Unsupervised networks
Autoassociative Networks

• Linear Autoassociative Network (Anderson 1977,
Fausett 1994)

• Hopfield’s (Hopfield 1982, Fausett 1994)

Net learning - summary

44

Literature

45

Net learning - summary

46

Summary of

Backpropagation

47

Summary of backpropagation

Algorithm (short version)
1. The network is initialized with small random values.
2. The input signal is presented at the net input.
3. The set the output values from the network is calculated.
4. The set the output from the network is compared to the

desired output and the error is calculated.
5. The errors of hidden elements are calculated. To calculate

the errors in the layer (s) the knowledge of the errors in
the next layer (s+1) is necessary.

6. Weights are adjusted (modification).
7. Return to the point 2.

48

1

2

3

5

4

6

x1

x2
4

65w

3

53w

3

43w

3

52w

3

51w

3

42w

2

32w

2

31w

2

22w

3

41w

2

21w

2

12w

layer 1

input

layer 2

hidden (1)

layer 3

hidden (2)

layer 4

output

2

11w2

11w

4

64w

y

2

11w

Summary of backpropagation

49

1

2

3

5

4

6

x1

x2
4

65w

2

122

2

1111 wxwxE

3

53w

3

43w

3

52w

3

51w

3

42w

2

32w

2

31w

2

22w

3

41w

2

21w

2

12w

2

11w

𝑈1 = 𝑓(𝐸1)

2

11w2

11w

4

64w

y

Ei – input signal of an element i

Ui – output signal of an element i

layer 1

input

layer 2

hidden (1)

layer 3

hidden (2)

layer 4

output

Summary of backpropagation

50

1

2

3

5

4

6

x1

x2
4

65w

2

222

2

2112 wxwxE

3

53w

3

43w

3

52w

3

51w

3

42w

2

32w

2

31w

2

22w

3

41w

2

21w

2

12w

2

11w

𝑈2 = 𝑓(𝐸2)

2

11w2

11w

4

64w

y

layer 1

input

layer 2

hidden (1)

layer 3

hidden (2)

layer 4

output

Summary of backpropagation

51

1

2

3

5

4

6

x1

x2
4

65w

3

433

3

422

3

4114 wUwUwUE

3

53w

3

43w

3

52w

3

51w

3

42w

2

32w

2

31w

2

22w

3

41w

2

21w

2

12w

𝑈4 = 𝑓(𝐸4)

2

11w2

11w

4

64w

y

2

11w

layer 1

input

layer 2

hidden (1)

layer 3

hidden (2)

layer 4

output

Summary of backpropagation

52

1

2

3

5

4

6

x1

x2
4

65w

........ 4

655

4

6446 wUwUE

3

53w

3

43w

3

52w

3

51w

3

42w

2

32w

2

31w

2

22w

3

41w

2

21w

2

12w

𝑈6 = 𝑦 = 𝑓(𝐸6)

2

11w

4

64w

y

2

11w

layer 1

input

layer 2

hidden (1)

layer 3

hidden (2)

layer 4

output

Summary of backpropagation

53

1

2

3

5

4

6

x1

x2
4

65w

3

53w

3

43w

3

52w

3

51w

3

42w

2

32w

2

31w

2

22w

3

41w

2

21w

2

12w

2

11w2

11w

4

64w

y

y*
 = y-y*

 = y - y*

2

11w

layer 1

input

layer 2

hidden (1)

layer 3

hidden (2)

layer 4

output

Summary of backpropagation

54

1

2

3

5

4

6

x1

x2
4

65w

3

53w

3

43w

3

52w

3

51w

3

42w

2

32w

2

31w

2

22w

3

41w

2

21w

2

12w

2

11w2

11w

4

64w

y

 = y - y*

𝛿4 = 𝛿𝑤64
4 2

11w

layer 1

input

layer 2

hidden (1)

layer 3

hidden (2)

layer 4

output

𝜹𝟒

𝜹

Summary of backpropagation

55

1

2

3

5

4

6

x1

x2
4

65w

3

53w

3

43w

3

52w

3

51w

3

42w

2

32w

2

31w

2

22w

3

41w

2

21w

2

12w

2

11w2

11w

4

64w

y

𝛿1 = ⋯+𝛿4𝑤41
3 + 𝛿5𝑤51

3 +⋯

2

11w

layer 1

input

layer 2

hidden (1)

layer 3

hidden (2)

layer 4

output

𝜹𝟏

𝜹𝟒

𝜹𝟓

𝜹

Summary of backpropagation

56

1

2

3

5

4

6

x1

x2
4

65w

3

53w

3

43w

3

52w

3

51w

3

42w

2

32w

2

31w

2

22w

3

41w

2

11w2

11w

4

64w

y

𝑤11
2

𝑤21
2

𝑤11
2 = 𝑤11

2 +1

𝑑𝑈1

𝑑𝐸1
𝑥1 = 𝑤11

2 + 1

𝜕𝑈1

𝜕𝑤11
2 𝑥1

𝑤12
2 = 𝑤12

2 +1

𝑑𝑈1

𝑑𝐸1
𝑥2 = 𝑤12

2 + 1

𝜕𝑈1

𝜕𝑤12
2 𝑥2

𝑤12
2

𝜹𝟑

𝜹𝟐

𝜹𝟏

𝜹𝟒

𝜹𝟓

𝜹

Summary of backpropagation

57

1

2

3

5

4

6

x1

x2
4

65w

3

53w

3

43w

3

52w

3

51w

3

42w

2

32w

2

31w

3

41w

2

11w2

11w

4

64w

y

𝑤11
2

𝑤21
2

𝑤21
2 = 𝑤21

2 +2

𝑑𝑈2

𝑑𝐸2
𝑥1 = 𝑤21

2 + 2

𝜕𝑈2

𝜕𝑤21
2 𝑥1

𝑤22
2 = 𝑤22

2 +1

𝑑𝑈1

𝑑𝐸1
𝑥2 = 𝑤22

2 + 1

𝜕𝑈1

𝜕𝑤22
2 𝑥2

𝑤12
2

𝑤22
2

𝜹𝟑

𝜹𝟐

𝜹𝟏

𝜹𝟒

𝜹𝟓

𝜹

Summary of backpropagation

58

1

2

3

5

4

6

x1

x2
4

65w

3

53w

3

52w

3

51w

2

32w

2

31w

4

64w

y

𝜹

𝑤11
2

𝑤21
2

𝑤12
2

𝑤22
2

𝑤41
3

𝑤42
3

𝑤43
3

𝜹𝟏

𝜹𝟐

𝜹𝟑

𝜹𝟒

𝜹𝟓

Summary of backpropagation

59

1

2

3

5

4

6

x1

x2

3

53w

3

52w

3

51w

2

32w

2

31w

y

𝜹

𝜹𝟒

𝜹𝟓

𝜹𝟏

𝜹𝟐

𝜹𝟑

𝑤11
2

𝑤21
2

𝑤12
2

𝑤22
2

𝑤41
3

𝑤42
3

𝑤43
3

𝑤64
4

𝑤65
4

Summary of backpropagation

60

Vector Notation of Neural

Networks

61

Vector notation of neural network

This diagram illustrates how a multilayer neural

network can be represented in a vector notation.

layer n

layer n+1

layer n+2

62

layer n

layer n+1

w12 w11

w21

w13

w31 w32
w33

w23 w22

w11 w12 w13 w21 w22 w23 w31 w32 w33

This diagram illustrates how a 2-D neural network can be

represented in a vector notation.

Vector notation of neural network

63

Model mózgu

CCortex™ to program

komputerowy opracowany przez

Artificial Development (AD).

Podstawowym zadaniem jest

symulacja działania ludzkiego

mózgu, a dokładniej kory

mózgowej i jest wspóldzialania z

obwodowym systemem

nerwowym. Program symuluje

działania 20 miliardów (109)

neuronów i 20 bilionów (1012)

połaczeń neuronowych.

64

Model mózgu

W roku 2013 naukowcy z Japonii i

Niemiec wykorzystując

superkomputer K computer

(Fujitsu) w Instytucie Riken’a

zasymulowali działanie jednej

sekundy mózgu człowieka.

Użyli do tego 82,000 procesorów (K komputer ma 705,024

procesorów i pamięć RAM 1,4 milion GB,

Naukowcy odtworzyli 1,73 miliarda komórek, z 10,4 bilionem

synaps. Symulacja zajęła 40 minut czasu rzeczywistego

symulując działanie jednej sekundy czasu „biologicznego” .

