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Neural Networks  
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Summary 

of modelling of neural 

networks 



3 

Structures 
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Main problems faced building a feedforward 
network (without feedback loops).  

• how many layers is necessary for proper 
network`s work? 

• how many elements have to bee in these layers? 

Network structure 
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What is a network layer? 

A layer  - it is the part of network structure 
which contains active elements performing 
some operation. Usually the first layer elements 
(nodes) are passive and they propagates the 
signal through the network only. 

Network structure 
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Network structure 
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Linear network? 

Linear network it is a network where input signals are 
multiplied by the weights, added, and next the result is send to 
the axon as the output signal of the neuron. Eventually some 
threshold can be used. 

Typical examples of a linear network are a simple perceptron 
and an Adeline network. 

Network structure 
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Or Nonlinear Network? 

In a nonlinear network the output signal is calculated by a 
nonlinear function f( ).  The function f( ) is called neuron 
transfer function and its operations have to be similar to the 
operations of a biological neuron. 

Typical example of a nonlinear network is a sigmoidal 
network.  

Network structure 
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Radial networks 

For special purposes sometimes we are using the radial 
neurons i.e. neurons with Radial Basis Function RBF. They 
have non typical aggregation methods of input data, they 
uses non typical transfer function (Gauss function) and they 
learned by the special way. 

Data aggregation consist on the calculation of a distance 
between an input signal (vector X), and established in a 
learning process centroid of a certain set T. 

Network structure 
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Sigmoid and radial neuron 

Sigmoidal neuron represents in the multidimensional space 
hyperplane separating space into two categories (Fig.A). Radial 
neuron represents hypersphere performing circular separation 
around the central point (Fig.B). 

Fig. A Fig. B 

Network structure 
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Sigmoid and radial neuron 

Sigmoid neuron builds its classification from hyperplane, defined 
by the weighted sum of input signal which is argument to 
nonlinear function  (Fig.A), whereas the radial basis approach 
uses hyperellipsoids to partition the pattern space. (Fig.B). 

Fig. A Fig. B 

Network structure 
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Radial basis function network (RBF) uses radial basis 
functions as activation functions typically have three layers: 
an input layer, a hidden layer with a non-linear RBF 
activation function and a linear output layer.  

Functions that depend only on the distance from a center 
vector are radially symmetric about that vector, hence the 
name radial basis function. In the basic form all inputs are 
connected to each hidden neuron. The norm is typically 
taken to be the Euclidean distance and the radial basis 
function is commonly taken to be Gaussian. 

Radial basis function network 
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The output of the network is then a 
scalar function of the input vector, and 
is given by 
 
 
where N is the number of neurons in 

the hidden layer, ci is the center vector 

for neuron , and ai is the weight of 

neuron i in the linear output neuron. 

Functions that depend only on the 
distance from a center vector are 
radially symmetric about that vector. 
The radial basis function is commonly 
taken to be Gaussian. 

Radial basis function network 



14 

How many layers? 
 
The simplest feedforward network has at least two layers – an input and 
an output (nb. such a networks are called single layer networks – active 
neurons  are located only in an outputt layer.). 

Usually between these layers there are multiple intermediate or hidden 
layers. 

Hidden layers are very important they are considered to be categorizers or 
feature detectors. The output layer is considered a collector of the 
features detected and producer of the response 

Network structure 
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The Input Layer 
 
With respect to the number of neurons comprising this layer, 
this parameter is completely and uniquely determined once 
you know the shape of your training data. Specifically, the 
number of neurons comprising that layer is equal to the 
number of features (columns) in your data. Some neural 
networks configurations add one additional node for a bias 
term. 
 
In addition very often the input data are scaled to be in the 
range of [0;1] or  [-1;+1]. 

Network structure 
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The Output Layer 
Like the input layer, every neural network has exactly one output layer. 
Determining its size (number of neurons) is simple; it is completely 
determined by the chosen model configuration. 
The interesting solution is called „one out of N”. Unfortunately usually 
because of limited accuracy in network operation the non-zero signal can 
occur on each out elements. It is necessary to implement the special 
criteria for results post-processing and threshold of acceptance and 
rejection. 
 
Often the number of network inputs is greater than the problem to be 
solved. For example it cab be a result of splitting the output signal into 
some sub-ranges. 

Network structure 
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How to built the network? 
Too small network without hidden layer or to few neurons. 
Such a network is unable to solve a problem and even the 
very long learning time will not help. 
 
Too big network will cheat a teacher. Too many hidden layers 
or too many elements in the hidden layers yields to the 
simplification of task. The network will learn whole set of the 
learning patterns. It learns very a fast and precisely but is 
completely useless for solving any similar problem.  

* source: R.Tadeusiewicz Odkrywanie właściwości sieci neuronowych, PAU Kraków 2007 

Network structure 
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How many hidden layers? 
Too many hidden layer yields to significant deterioration of learning. 
There is a consensus is the performance difference from adding additional 
hidden layers: the situations in which performance improves with a second 
(or third, etc.) hidden layer are very small. One hidden layer is sufficient for 
the large majority of problems. 

Additional layer yields to an instability of gradient, and increase of the 
number of false minima. 
Two hidden layer are necessary only if the learning refers the function with 
points of discontinuity. 

* source: R.Tadeusiewicz Odkrywanie właściwości sieci neuronowych, PAU Kraków 2007 

Network structure 
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Size of the hidden layer - how many neurons? 

* source: R.Tadeusiewicz Odkrywanie właściwości sieci neuronowych, PAU Kraków 2007 

Network structure 

Too many neurons in the hidden layers may result in 
overfitting. Overfitting occurs when the neural network has so 
much information processing capacity that the limited amount 
of information contained in the training set is not enough to 
train all of the neurons in the hidden layers. A second problem 
can occur even when the training data is sufficient. An 
inordinately large number of neurons in the hidden layers can 
increase the time it takes to train the network.  
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Size of the hidden layer - how many neurons? 
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Number of neurons in a hidden layer 

Network error as a function of a number of  

neurons in a hidden layer 

* source: R.Tadeusiewicz Odkrywanie właściwości sieci neuronowych, PAU Kraków 2007 

Network structure 

Using too few neurons in the hidden layers will result in 
something called underfitting. Underfitting occurs when there 
are too few neurons in the hidden layers to adequately detect 

the signals in a complicated data set.  
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Rough prerequisite for the number of hidden 
neurons (for most of typical problems) is the rule of 
a geometric pyramid. The number of neurons in a 
consecutive layers has a shape of a pyramid and 
decrease from the direction of input to the output. 
The numbers of neurons in a consecutive layers are 
forming geometric sequence. 

Network structure 

* source: T.Masters Practical Neural Networks, Acad. Press, 1993. 
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For example, for the network with one hidden layer, with  
𝑛 – neurons in the input layer and 𝑚 – neurons in the output 
layer, in the hidden layer should be  

  NHN = 𝑛 ∗ 𝑚. 

For the network with two hidden layers 

NHN1= 𝑚*𝑟2,  NHN2= 𝑚*𝑟    where 𝑟 = 
𝑛

𝑚

3
 

Att: not for associative networks (numbers of input and 
output neurons are identical) 

Network structure 

* source: T.Masters Practical Neural Networks, Acad. Press, 1993. 
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For the network with one hidden layer, with 𝑛 – 
elements in the input layer, 𝑘 – elements in the 
hidden layer, the maximal number of separated 
classes M (equivalent to the number of output 
elements) 

 

 

for 𝑛 >> 𝑘   we have  M = 2𝑘. 

 

M =  𝑘
𝑖
   where for 𝑘 < 𝑖      𝑘

𝑖
= 0𝑛

𝑖=1  

Network structure 

* source: T.Masters Practical Neural Networks, Acad. Press, 1993. 
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It is possible to evaluate the number of elements in 
the hidden layer for 𝑘 < 𝑛  

   𝑘 = 𝑙𝑜𝑔2𝑀 

The number of hidden neurons should be between 
the size of the input layer and the size of the output 
layer or the number of neurons in that layer is the 
mean of the neurons in the input and output layers.   

Network structure 

* source: T.Masters Practical Neural Networks, Acad. Press, 1993. 
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Learning 
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One of the key elements of a neural network is its ability to 
learn. A neural network is not just a complex system, but a 
complex nonlinear adaptive system, meaning it can change its 
internal structure based on the information flowing through it. 

Multi-layer networks use a variety of learning techniques. 

A common method for measuring the discrepancy between the 
expected output and the actual output is using the squared 
error measure. 

Net learning 
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There are three major learning paradigms: 
 
Supervised Learning 
The learning algorithm would fall under this category if the 
desired output for the network is also provided with the 
input while training the network. By providing the neural 
network with both an input and output pair it is possible to 
calculate an error based on it's target output and actual 
output. It can then use that error to make corrections to the 
network by updating it's weights. 
  

Net learning 
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Unsupervised Learning 
In this paradigm the neural network is only given a set of inputs 
and it's the neural network's responsibility to find some kind of 
pattern within the inputs provided without any external aid. 
This type of learning paradigm is often used in data mining and 
is also used by many recommendation algorithms due to their 
ability to predict a user's preferences based on the preferences 
of other similar users it has grouped together. 
  

Net learning 
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Reinforcement Learning 
Reinforcement learning is similar to supervised learning in that 
some feedback is given, however instead of providing a target 
output a reward is given based on how well the system 
performed. The aim of reinforcement learning is to maximize 
the reward the system receives through trial-and-error. This 
paradigm relates strongly with how learning works in nature, 
for example an animal might remember the actions it's 
previously taken which helped it to find food (the reward). 
  

Net learning 
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Net learning - summary 

Typical learning algorithms:  

1. Backpropagation, an abbreviation for "backward propagation of 
errors", is a common method of training artificial neural networks 
employing gradient descent method. The method calculates the 
gradient of a error function with respects to all the weights in the 
network. The gradient is fed to the optimization method which in turn 
uses it to update the weights, in an attempt to minimize the loss 
function.  
Backpropagation requires a known, desired output for each input 
value in order to calculate the error function gradient. It is therefore 
usually considered to be a supervised learning method. 
The most important problem is that, under some circumstances, 
local minima appear in the error function which would not be there if 
the step function had been used. 
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Net learning - summary 

2. To speed up the process of learning, the momentum term is added 
to the weight update rule. Introduction of the momentum rate 
allows the attenuation of oscillations in the gradient descent. 
Introduction of the momentum rate allows the attenuation of 
oscillations in the gradient descent. The momentum rate is used to 
prevent the system from converging to a local minimum or saddle 
point.  

       
      General idea: 
   W′i=Wi − α Δ Wi + μ Δ Wi−1 

 
      where α is the learning rate, and μ is the momentum term. 
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3. Quasi-Newton methods require only the gradient (like 
steepest descent) of the objective to be computed at each 
iterate. By successive measurements of the gradient, 
Quasi-Newton methods build a quadratic model of the 
objective function which is sufficiently good that 
superlinear convergence is achieved. Quasi-Newton 
methods are much faster than steepest descent (and 
coordinate descent) methods. 

       Since second derivatives (the Hessian) are not required,  
       quasi-Newton methods are sometimes more efficient. 

Net learning - summary 
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4. The conjugate gradient method is one of the most 
popular and well known iterative techniques for learning 
networks with many connections. It is slower than Quasi-
Newton methods but much faster than backpropagation 
algorithm. The computational efficiency is enhanced by 
adaptively modifying initial search direction by calculation 
of the gradient descent of error with respect to the 
weights and the determination of a new search direction. 

Net learning - summary 
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5. Many modifications of backpropagation method have 
been proposed to increase the convergence rate of the 
standard algorithm, and Quickprop is one the most 
popular fast learning algorithms. The convergence rate of 
Quickprop is very fast; however, it is easily trapped into a 
local minimum and thus it cannot converge to the global 
minimum.  

       Quickprop is also one of the better training algorithms    
       and is loosely based on Newton's method. 

Net learning - summary 
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6. The RPROP (Resilent backPROPagation) algorithm takes a 
very different approach to improving backpropagation as 
compared to Quickprop. 

Instead of making more use of gradient information for 
better weight updates, RPROP only uses the sign of the 
gradient, because its size can be a poor and noisy 
estimator of required weight updates. 

Furthermore, RPROP assumes that different weights need 
different step sizes for updates, which vary throughout the 
learning process.    

Net learning - summary 
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7. The Levenberg - Marquardt algorithm is an iterative 
technique that locates the minimum of a multivariate 
function. It has become a standard technique for non-linear 
least-squares problems. It can be thought of as a 
combination of steepest descent and the Gauss-Newton 
method. When the current solution is far from the correct 
one, the algorithm behaves like a steepest descent method: 
slow, but guaranteed to converge. When the current solution 
is close to the correct solution, it becomes a Gauss-Newton 
method. 

 

Net learning - summary 
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Supervised networks 
Feedforward networks 

1. Linear 
• Hebb’s model (Hebb 1949, Fausett 1994) 

• Perceptron (Rosenblatt 1969, Minsky, Pappert 
1969/1988, Fausett 1994) 

• Adaline (Widrow, Hoff 1960, Fausett 1994)  
• Higher order network (Bishop 1995) 

• Functional link network (Pao 1989) 

in parenthesis: authors’ names and dates of invention/description 

Net learning - summary 
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Supervised networks 
Feedforward networks 

2.  MLP Multi-Layered Perceptron (Bishop 1995, 

Fausett 1994) 

• Back Propagation Network (Rumelhart, Hinton, 
Wiliams 1986) 

• Cascade Correlation Network (Fausett 1994) 

• Quickprop (Fehlman 1989) 

• RPROP  Resilient Back PROPagation (Riedmiller, 

Braun 1993) 

Net learning - summary 
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Supervised networks 
Feedforward networks 

3. Classification only networks 
• LVQ Learning Vector Quantization (Kohonen 1988, Fausett 

1994) 

• PNN Probabilistic Neural Network (Specht 1990, Masters 

1993, Hand 1991, Fausett 1994) 

Recurrent Networks (Hertz, Krogh, Palmer 1991) 

• BAM Bidirectional Associative Memory (Kosko 1992, Fausett 

1994) 

•  Boltzman Machine (Ackley 1985, Fausett 1994) 

Net learning - summary 
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Supervised networks 
Competition Networks  
• ARTMAP Adaptive Resonans Network (Carpenter, 

Grossberg 1991) 

• CP Counterpropagation (Hecht-Nielsen 1987, 1988, 1990, 
Fausett 1994) 

•  Neocognitron (Fukushima, Miyake, Ito 1983, Fukushima 
1988, Fausett 1994) 

Net learning - summary 
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Unsupervised networks 
Competition Networks  
1.  VQ Vector Quantization 

• Grossberg’s Network (Grossberg 1976) 

• Kohonen’s Network (Kohonen 1984) 

2.  SOM  Self-Organizing Map (Kohonen 1995, 
Fausett 1994) 

Net learning - summary 
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Unsupervised networks 
Competition Networks  
3. ART Adaptive Resonance Theory 

• ART 1 (Carpenter, Grossberg 1987, Moore 1988, Fausett 
1994) 

• ART. 2 (Carpenter, Grossberg 1987, Fausett 1994) 

• ART. 2A (Carpenter, Grossberg, Rosen 1991) 

• Fuzzy ART (Carpenter, Grossberg, Rosen 1991) 

Net learning - summary 
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Unsupervised networks 
Autoassociative Networks 

• Linear Autoassociative Network (Anderson 1977, 
Fausett 1994) 

• Hopfield’s (Hopfield 1982, Fausett 1994) 

Net learning - summary 
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Literature 
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Net learning - summary 
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Summary of 

Backpropagation 
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Summary of  backpropagation 

Algorithm (short version) 
1. The network is initialized with small random values. 
2. The input signal is presented at the net input. 
3. The set the output values from the network is calculated. 
4. The set the output from the network is compared to the 

desired output and the error is calculated. 
5. The errors of hidden elements are calculated. To calculate 

the errors in the layer (s) the knowledge of the errors in 
the next layer (s+1) is necessary. 

6. Weights are adjusted (modification). 
7. Return to the point 2. 
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Vector Notation of Neural 

Networks 
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Vector notation of neural network 

This diagram illustrates how a multilayer neural 

network can be represented in a vector notation. 

layer n 

layer n+1 

layer n+2 
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layer n 

layer n+1 

w12 w11 

w21 

w13 

w31 w32 
w33 

w23 w22 

w11 w12 w13 w21 w22 w23 w31 w32 w33 

This diagram illustrates how a 2-D neural network can be 

represented in a vector notation. 

Vector notation of neural network 
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Model mózgu 

CCortex™ to program 

komputerowy opracowany przez 

Artificial Development (AD). 

Podstawowym zadaniem jest 

symulacja działania ludzkiego 

mózgu, a dokładniej kory 

mózgowej i jest wspóldzialania z 

obwodowym systemem 

nerwowym. Program symuluje 

działania 20 miliardów (109) 

neuronów i 20 bilionów (1012) 

połaczeń neuronowych. 
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Model mózgu 

W roku 2013 naukowcy z Japonii i 

Niemiec wykorzystując 

superkomputer K computer 

(Fujitsu) w Instytucie Riken’a 

zasymulowali działanie jednej 

sekundy mózgu człowieka.  

Użyli do tego 82,000 procesorów (K komputer ma 705,024 

procesorów i pamięć RAM 1,4 milion GB, 

Naukowcy odtworzyli 1,73 miliarda komórek, z 10,4 bilionem 

synaps. Symulacja zajęła 40 minut czasu rzeczywistego 

symulując działanie jednej sekundy czasu „biologicznego” . 


