Causality in Neural Networks

Inverse mechanisms

Maciej Żelaszczyk March 11, 2020

PhD Student in Computer Science Division of Artificial Intelligence and Computational Methods Faculty of Mathematics and Information Science

m.zelaszczyk@mini.pw.edu.pl

Warsaw University of Technology

Mechanisms:

- Humans are able to adapt to new domains with little to no retraining.
- This might be because we rely on mechanisms that are independent of the particular domain.
- For instance, people are able to recognize distorted images from the get-go.
- It can be hypothesized that these mechanisms are modular, reusable and broadly applicable.

The *independent mechanisms* (IM) assumption:

• The causal generative process of a system's variables is composed of autonomous modules that do not inform or influence each other. Let us consider variables x_1, \ldots, x_d . If their joint density is Markovian w.r.t. a directed acyclic graph \mathcal{G} , we can write:

$$p(\mathbf{x}) = p(x_1, \dots, x_d) = \prod_{j=1}^d p\left(x_j | \mathsf{pa}_{\mathcal{G}}^j\right) \tag{1}$$

where pa_G^J denotes the parents of variable x_j in the graph.

- In the general case, for a given joint density function, we can find many graphs (decompositions) of such form.
- If the edges of \mathcal{G} denote direct causation, then \mathcal{G} is called a *causal* graph and each conditional probability $p\left(x_j | \mathsf{pa}_{\mathcal{G}}^j\right)$ can be understood as a *causal mechanism* generating x_j from its parents.
- The presented factorization is a *generative* model in the sense of describing an actual physical *generative* process.

Consequences of the IM assumption:

- The causal conditionals are autonomous modules that do not influence or inform each other.
- Knowledge of one mechanism does not contain information about another one.
- Changes in one mechanism do not affect the other mechanisms invariance.
- An intervention in one mechanism does not impact other ones.
- If we change p (x_i|pa^j_G), other mechanisms p (x_i|pa^j_G), i ≠ j do not change.
- Consider that this is not true for other factorizations that do not capture the causal structure.

Machine learning models expressed in terms of causal mechanisms could:

- Facilitate transfer learning, domain adaptation, generalization.
- Provide modularity and the opportunity to train parallel components, which could be recombined into larger systems.
- Offer more interpretability.
- Increase sample efficiency.
- Help in overcoming catastrophic forgetting.

Given a causal graph learning can be extremely efficient, but:

- Nobody gives us this graph.
- Exhaustive search is not feasible.
- Methods like the *maximum width spanning tree* algorithm can be used together with measures based on mutual information.
- None of them seem to work for really large problems.
- We would be interested to learn the causal mechanisms from data without blowing up.

We could focus on a particular class of causal mechanisms and the ability to learn them from data:

- Let us consider image transformations.
- We would like to identify inverse transformations from data.
- We do not know the transformations in advance.
- We do not know which transformation produces which image.
- We do not have a pairing between the base image and the transformed image.
- We do not even see the base images corresponding to the seen transformed images.
- We only get a sample from the reference distribution and a sample of other transformed images.

- Consider a canonical distribution P(X) of image data, where $X \in \mathbb{R}^d$.
- Define N measurable functions M₁,..., M_N : ℝ^d → ℝ^d. These functions (transformations) represent independent causal mechanisms.
- Based on the transformations, we can define the distributions Q_1, \ldots, Q_N , where $Q_j = M_j(P)$.
- At training time, we receive a dataset D_Q = (x_i)ⁿ_{i=1} drawn from a mixture of Q₁,..., Q_N and a dataset D_P sampled from the canonical distribution.
- We want to identify M_1, \ldots, M_N and learn the inverse mappings $M_1^{-1}, \ldots, M_N^{-1}$.

Let us approach the problem of learning the inverse mappings by applying a training procedure with:

- N' functions E₁,..., E_{N'} parametrized by θ₁,..., θ_{N'} these functions will be called *experts*.
- In general $N \neq N'$.
- Maximize the objective function c : ℝ^d → ℝ with the property that c takes high values on the support of the canonical distribution P , and low values outside.
- Each $x' \in \mathcal{D}_Q$ is fed to all the experts.
- The values c_j = c(E_j(x')) are computed for all experts and the winning expert E_{j*} is selected based on j* = argmax_i(c_j).
- The parameters θ_{j*} of the winning expert are updated to maximize c(E_{j*}(x')). We train c as well.

Approach

The objective function for the experts can be formulated as:

$$\theta_1^*, \dots, \theta_{N'}^* = \operatorname*{argmax}_{\theta_1^*, \dots, \theta_{N'}^*} \mathbb{E}_{x' \sim Q} \left(\max_{j \in \{1, \dots, N'\}} c(E_{\theta_j}(x')) \right)$$
(2)

Approach

The general training procedure can be cast in an adversarial framework:

- Each expert is represented by a *generator* network G_j conditioned on the input image rather than a noise vector.
- The output of each generator is fed into a *discriminator* network *D*.
- For a given input x, the winning generator G_{j^*} is updated with backpropagation while other generators remain frozen.
- The discriminator D is trained against all the generators.

The discriminator is trained to maximize:

$$\max_{\theta_D} \left(\mathbb{E}_{\mathbf{x} \sim P} \left[\log \left(D_{\theta_D}(\mathbf{x}) \right) \right] + \frac{1}{N'} \sum_{j=1}^{N'} \mathbb{E}_{\mathbf{x}' \sim Q} \left[\log \left(1 - D_{\theta_D}(E_{\theta_j}(\mathbf{x}')) \right) \right] \right)$$
(3)

Neural network details

- Each expert: CNN with 5 convolutional layers, 32 filters per layer of size 3×3 , ELU activations, batch normalization and zero padding.
- Discriminator: CNN with average pooling every 2 convolutional layers, a growing number of filters and a fully-connected layer of size 1024 as the last hidden layer.
- Trained with Adam with default hyperparameters.
- Approximate identity initialization: following a random initialization, the experts are trained on transformed data only to approximate identity transformations.

Source: [Parascandolo et al., 2018]

Source: [Parascandolo et al., 2018]

Source: [Parascandolo et al., 2018]

Inputs Exp_0 Exp₁

nputs	rut	ण	સ	Ĭ	6	3	ł	Ø	Ł	է
Exp_0	wh	দ	સ	7	ŝ	ল	ł	Ø	\mathbf{F}	է
Exp_1	your	ण	સ		5	ब	ŀ	U	F	Ę
Exp_2	var	দ	સ	Ĭ	6	ज	ŀ	9	Ъ	Ł
Exp_3	var	ण	સ	Ĭ	6	ગ્ર	ł	V	Τ	Ł
Exp_4	m	ण	સ	J	6	ल	ł	V	Ъ	է
Exp_5	val	ण	સ	ī	6	ह	ł	Q	Ъ	Ł
Exp_6	mr	ਧ	æ	ŗ	2	ગ્ર	ŀ	Ø	7	է
Exp_7	your	ण	સ	Ţ	6	ગ્ર	ł	U	Ч	է
Exp_8	var	ण	ゃ	Ĭ	6	ગ્ર	ł	ଓ	Ψ	է
Exp_9	run	দ	સ	Ţ	6	এ	ł	V	Ъ	է

Parascandolo, G., Kilbertus, N., Rojas-Carulla, M., and Schölkopf, B. (2018).

Learning independent causal mechanisms.

In Dy, J. and Krause, A., editors, *Proceedings of the 35th International Conference on Machine Learning*, volume 80 of *Proceedings of Machine Learning Research*, pages 4036–4044, Stockholmsmässan, Stockholm Sweden. PMLR.