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Independent mechanisms

Mechanisms:

• Humans are able to adapt to new domains with little to no

retraining.

• This might be because we rely on mechanisms that are

independent of the particular domain.

• For instance, people are able to recognize distorted images

from the get-go.

• It can be hypothesized that these mechanisms are modular,

reusable and broadly applicable.
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Independent mechanisms

The independent mechanisms (IM) assumption:

• The causal generative process of a system’s variables is

composed of autonomous modules that do not inform or

influence each other.
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Independent mechanisms

Let us consider variables x1, . . . , xd . If their joint density is

Markovian w.r.t. a directed acyclic graph G, we can write:

p(x) = p (x1, . . . , xd) =
d∏

j=1

p
(
xj |pajG

)
(1)

where pajG denotes the parents of variable xj in the graph.

• In the general case, for a given joint density function, we can

find many graphs (decompositions) of such form.

• If the edges of G denote direct causation, then G is called a

causal graph and each conditional probability p
(
xj |pajG

)
can

be understood as a causal mechanism generating xj from its

parents.

• The presented factorization is a generative model in the sense

of describing an actual physical generative process. 4



Independent mechanisms

Consequences of the IM assumption:

• The causal conditionals are autonomous modules that do not

influence or inform each other.

• Knowledge of one mechanism does not contain information

about another one.

• Changes in one mechanism do not affect the other

mechanisms - invariance.

• An intervention in one mechanism does not impact other ones.

• If we change p
(
xj |pajG

)
, other mechanisms p

(
xi |paiG

)
, i 6= j

do not change.

• Consider that this is not true for other factorizations that do

not capture the causal structure.
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Independent mechanisms

Machine learning models expressed in terms of causal mechanisms

could:

• Facilitate transfer learning, domain adaptation, generalization.

• Provide modularity and the opportunity to train parallel

components, which could be recombined into larger systems.

• Offer more interpretability.

• Increase sample efficiency.

• Help in overcoming catastrophic forgetting.
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Elephant in the room

Given a causal graph learning can be extremely efficient, but:

• Nobody gives us this graph.

• Exhaustive search is not feasible.

• Methods like the maximum width spanning tree algorithm can

be used together with measures based on mutual information.

• None of them seem to work for really large problems.

• We would be interested to learn the causal mechanisms from

data without blowing up.
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Making it more concrete

We could focus on a particular class of causal mechanisms and the

ability to learn them from data:

• Let us consider image transformations.

• We would like to identify inverse transformations from data.

• We do not know the transformations in advance.

• We do not know which transformation produces which image.

• We do not have a pairing between the base image and the

transformed image.

• We do not even see the base images corresponding to the

seen transformed images.

• We only get a sample from the reference distribution and a

sample of other transformed images.
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Formalization

• Consider a canonical distribution P(X) of image data, where

X ∈ Rd .

• Define N measurable functions M1, . . . ,MN : Rd → Rd .

These functions (transformations) represent independent

causal mechanisms.

• Based on the transformations, we can define the distributions

Q1, . . . ,QN , where Qj = Mj(P).

• At training time, we receive a dataset DQ = (xi )
n
i=1 drawn

from a mixture of Q1, . . . ,QN and a dataset DP sampled from

the canonical distribution.

• We want to identify M1, . . . ,MN and learn the inverse

mappings M−1
1 , . . . ,M−1

N .
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Approach

Let us approach the problem of learning the inverse mappings by

applying a training procedure with:

• N
′

functions E1, . . . ,EN′ parametrized by θ1, . . . , θN′ - these

functions will be called experts.

• In general N 6= N
′
.

• Maximize the objective function c : Rd → R with the property

that c takes high values on the support of the canonical

distribution P , and low values outside.

• Each x
′ ∈ DQ is fed to all the experts.

• The values cj = c(Ej(x
′
)) are computed for all experts and

the winning expert Ej∗ is selected based on j∗ = argmaxj(cj).

• The parameters θj∗ of the winning expert are updated to

maximize c(Ej∗(x
′
)). We train c as well.
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Approach

The objective function for the experts can be formulated as:

θ∗1, . . . , θ
∗
N′

= argmax
θ∗1 ,...,θ

∗
N
′

Ex ′∼Q

(
max

j∈{1,...,N′}
c(Eθj (x

′
))

)
(2)
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Approach

Source: [Parascandolo et al., 2018] 12



Adversarial training

The general training procedure can be cast in an adversarial

framework:

• Each expert is represented by a generator network Gj

conditioned on the input image rather than a noise vector.

• The output of each generator is fed into a discriminator

network D.

• For a given input x , the winning generator Gj∗ is updated with

backpropagation while other generators remain frozen.

• The discriminator D is trained against all the generators.

The discriminator is trained to maximize:

max
θD

Ex∼P [log (DθD (x))] +
1

N ′

N
′∑

j=1

Ex ′∼Q

[
log
(

1− DθD (Eθj (x
′
))
)]

(3) 13



Neural network details

• Each expert: CNN with 5 convolutional layers, 32 filters per

layer of size 3× 3, ELU activations, batch normalization and

zero padding.

• Discriminator: CNN with average pooling every 2

convolutional layers, a growing number of filters and a

fully-connected layer of size 1024 as the last hidden layer.

• Trained with Adam with default hyperparameters.

• Approximate identity initialization: following a random

initialization, the experts are trained on transformed data only

to approximate identity transformations.
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Results on MNIST

Source: [Parascandolo et al., 2018]
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Results on MNIST

Source: [Parascandolo et al., 2018]
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Results on MNIST

Source: [Parascandolo et al., 2018]
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Results on MNIST

Source: [Parascandolo et al., 2018] 18
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