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Independent mechanisms

Mechanisms:

• Humans are able to adapt to new domains with little to no

retraining.

• This might be because we rely on mechanisms that are

independent of the particular domain.

• For instance, people are able to recognize distorted images

from the get-go.

• It can be hypothesized that these mechanisms are modular,

reusable and broadly applicable.
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Independent mechanisms

The independent mechanisms (IM) assumption:

• The causal generative process of a system’s variables is

composed of autonomous modules that do not inform or

influence each other.
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Independent mechanisms

Let us consider variables x1, . . . , xd . If their joint density is

Markovian w.r.t. a directed acyclic graph G, we can write:

p(x) = p (x1, . . . , xd) =
d∏

j=1

p
(
xj |pajG

)
(1)

where pajG denotes the parents of variable xj in the graph.

• In the general case, for a given joint density function, we can

find many graphs (decompositions) of such form.

• If the edges of G denote direct causation, then G is called a

causal graph and each conditional probability p
(
xj |pajG

)
can

be understood as a causal mechanism generating xj from its

parents.

• The presented factorization is a generative model in the sense

of describing an actual physical generative process. 4



Independent mechanisms

Consequences of the IM assumption:

• The causal conditionals are autonomous modules that do not

influence or inform each other.

• Knowledge of one mechanism does not contain information

about another one.

• Changes in one mechanism do not affect the other

mechanisms - invariance.

• An intervention on one mechanism does not impact other

ones.

• If we change p
(
xj |pajG

)
, other mechanisms p

(
xi |paiG

)
, i ̸= j

do not change.

• Consider that this is not true for other factorizations that do

not capture the causal structure.
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Independent mechanisms

Machine learning models expressed in terms of causal mechanisms

could:

• Facilitate transfer learning, domain adaptation, generalization.

• Provide modularity and the opportunity to train parallel

components, which could be recombined into larger systems.

• Offer more interpretability.

• Increase sample efficiency.

• Help in overcoming catastrophic forgetting.
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Inverse mechanisms

Source: [Parascandolo et al., 2018] 7



Inverse mechanisms

Source: [Parascandolo et al., 2018]
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Why not one big model?

All that we have covered so far is fine and all but can we just not

use one big model to learn the independent mechanisms?

• Consider a simple network.

• Model k independent mechanisms with this net.

• For the hidden states to compartmentalize the different

processes, we potentially need to set a portion of weights to 0.

• The fraction to be set to 0 is actually k−1
k .

• lim
k→∞

k−1
k = 1.
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Recurrent independent mechanisms

We adopt independent mechanisms to model a recurrent process.

• Divide the model into k modules.

• Each of these modules is recurrent (RIM).

• RIM k at time step has a vector-valued state ht,k .

• Parametrized by θk shared across all time steps.

• Individual RIMs compete to process input at time step t.

• Only a number of RIMs are activated at each step.

• Sparse communication between RIMs.

• Extensive use of attention.
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Recurrent independent mechanisms

Source: [Goyal et al., 2021]
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Attention

Neural networks are able to operate on sets of typed objects.

• Each query represented in a row matrix QNr×d .

• Nr - number of queries, d - dimensionality of each query.

• Set of No objects (values) associated with a key matrix

KNo×d , a row matrix of keys.

• Each key is associated with an object (value) vi , which is a

row of the value matrix VNo×d∗ .
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Attention

Attention produces combinations of values.

attention(Q,V ,K ) = softmax(
QKT

√
d

)V

• Softmax applied to rows of QKT
√
d
.

• Convex combination of the values in the rows of V .

• d dimensions can be split into heads with separate attention

matrices and write values.
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RIMs as functions

RIMs can operate on values similarly to variables in a programming

language:

• Each RIM can be interpreted as a function.

• Values are interchangeable arguments to functions.

• Arguments have a distributed representation for their name

(or type) and value.

• Query vector of a RIM specifies the required type.

• RIM applied to a fitting vector.

• Each attention head corresponds to one typed parameter of

the function represented by the RIM.

• When the key of an object matches the query of head k, it

can be used as the k-th input vector argument for the RIM.
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Recurrent independent mechanisms

Source: [Goyal et al., 2021]
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Recurrent independent mechanisms

Application of attention in RIMs.

• Multi-head attention for input.

• Input augmented with a zero row.

• Attention calculated for all RIMs.

• Attention scores averaged over heads.

• kA out of k RIMs with lowest attention scores on the zero row

are activated.

• Multi-head attention for communication.

• Attention calculated for active RIMs over all RIMs.
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Copying task

Source: [Goyal et al., 2021]
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Sequential MNIST

Source: [Goyal et al., 2021]
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Bouncing balls environment

Source: [Goyal et al., 2021]
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Bouncing balls environment

Source: [Goyal et al., 2021]
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Robustness to distractors

Source: [Goyal et al., 2021]
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Atari

Source: [Goyal et al., 2021]
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General results

Ablations:

• Sparse activation is necessary, but works for a wide range of

hyperparameters.

• Input-attention is necessary.

• Communication between RIMs improves performance.
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