Causality in Neural Networks

Recurrent independent mechanisms

Maciej Żelaszczyk

December 1, 2021

PhD Student in Computer Science Division of Artificial Intelligence and Computational Methods Faculty of Mathematics and Information Science

m.zelaszczyk@mini.pw.edu.pl

Warsaw University of Technology

Mechanisms:

- Humans are able to adapt to new domains with little to no retraining.
- This might be because we rely on mechanisms that are independent of the particular domain.
- For instance, people are able to recognize distorted images from the get-go.
- It can be hypothesized that these mechanisms are modular, reusable and broadly applicable.

The *independent mechanisms* (IM) assumption:

• The causal generative process of a system's variables is composed of autonomous modules that do not inform or influence each other. Let us consider variables x_1, \ldots, x_d . If their joint density is Markovian w.r.t. a directed acyclic graph \mathcal{G} , we can write:

$$p(\mathbf{x}) = p(x_1, \dots, x_d) = \prod_{j=1}^d p\left(x_j | \mathsf{pa}_{\mathcal{G}}^j\right) \tag{1}$$

where pa_G^J denotes the parents of variable x_j in the graph.

- In the general case, for a given joint density function, we can find many graphs (decompositions) of such form.
- If the edges of \mathcal{G} denote direct causation, then \mathcal{G} is called a *causal* graph and each conditional probability $p\left(x_j | pa_{\mathcal{G}}^j\right)$ can be understood as a *causal mechanism* generating x_j from its parents.
- The presented factorization is a *generative* model in the sense of describing an actual physical *generative* process.

Consequences of the IM assumption:

- The causal conditionals are autonomous modules that do not influence or inform each other.
- Knowledge of one mechanism does not contain information about another one.
- Changes in one mechanism do not affect the other mechanisms *invariance*.
- An intervention on one mechanism does not impact other ones.
- If we change p (x_i|pa^j_G), other mechanisms p (x_i|paⁱ_G), i ≠ j do not change.
- Consider that this is not true for other factorizations that do not capture the causal structure.

Machine learning models expressed in terms of causal mechanisms could:

- Facilitate transfer learning, domain adaptation, generalization.
- Provide modularity and the opportunity to train parallel components, which could be recombined into larger systems.
- Offer more interpretability.
- Increase sample efficiency.
- Help in overcoming catastrophic forgetting.

Inverse mechanisms

Source: [Parascandolo et al., 2018]

Inverse mechanisms

Source: [Parascandolo et al., 2018]

All that we have covered so far is fine and all but can we just not use one big model to learn the independent mechanisms?

- Consider a simple network.
- Model k independent mechanisms with this net.
- For the hidden states to compartmentalize the different processes, we potentially need to set a portion of weights to 0.
- The fraction to be set to 0 is actually $\frac{k-1}{k}$.
- $\lim_{k \to \infty} \frac{k-1}{k} = 1.$

We adopt independent mechanisms to model a recurrent process.

- Divide the model into *k* modules.
- Each of these modules is recurrent (RIM).
- RIM k at time step has a vector-valued state $h_{t,k}$.
- Parametrized by θ_k shared across all time steps.
- Individual RIMs compete to process input at time step *t*.
- Only a number of RIMs are activated at each step.
- Sparse communication between RIMs.
- Extensive use of attention.

Recurrent independent mechanisms

Source: [Goyal et al., 2021]

Attention

Neural networks are able to operate on sets of typed objects.

- Each query represented in a row matrix $Q_{N_r \times d}$.
- N_r number of queries, d dimensionality of each query.
- Set of N_o objects (values) associated with a key matrix K_{No×d}, a row matrix of keys.
- Each key is associated with an object (value) v_i, which is a row of the value matrix V_{No×d*}.

Attention

Attention produces combinations of values.

$$\operatorname{attention}(Q, V, K) = \operatorname{softmax}(rac{QK^T}{\sqrt{d}})V$$

- Softmax applied to rows of $\frac{QK^T}{\sqrt{d}}$.
- Convex combination of the values in the rows of V.
- *d* dimensions can be split into heads with separate attention matrices and write values.

RIMs can operate on values similarly to variables in a programming language:

- Each RIM can be interpreted as a function.
- Values are interchangeable arguments to functions.
- Arguments have a distributed representation for their name (or type) and value.
- Query vector of a RIM specifies the required type.
- RIM applied to a fitting vector.
- Each attention head corresponds to one typed parameter of the function represented by the RIM.
- When the key of an object matches the query of head k, it can be used as the k-th input vector argument for the RIM.

Recurrent independent mechanisms

Source: [Goyal et al., 2021]

Application of attention in RIMs.

- Multi-head attention for input.
- Input augmented with a zero row.
- Attention calculated for all RIMs.
- Attention scores averaged over heads.
- *k_A* out of *k* RIMs with lowest attention scores on the zero row are activated.
- Multi-head attention for communication.
- Attention calculated for active RIMs over all RIMs.

Copyin			Train(50)	Test(200)	
$k_{ m T}$		k_{A}	h_{size}	CE	CE
RIMs	6	4	600	0.00	0.00
	6	3	600	0.00	0.00
	6	2	600	0.00	0.00
	5	2	500	0.00	0.00
LSTM	-	-	300	0.00	4.32
	-	-	600	0.00	3.56
NTM	-	-	-	0.00	2.54
RMC	-	-	-	0.00	0.13
Transfo	orm	ers -	-	0.00	0.54

Source: [Goyal et al., 2021]

Sequer	ntial	MNIS	ST	16 x 16	19 x 19	24 x 24
$k_{ m T}$		$k_{ m A}$	$h_{ m size}$	Accuracy	Accuracy	Accuracy
	6	6	600	85.5	56.2	30.9
DIM.	6	5	600	88.3	43.1	22.1
KINIS	6	4	600	90.0	73.4	38.1
тетм	-	-	300	86.8	42.3	25.2
LSIM	-	-	600	84.5	52.2	21.9
EntNet	t -	-	-	89.2	52.4	23.5
RMC	-	-	-	89.58	54.23	27.75
DNC	-	-	-	87.2	44.1	19.8
Transf	orm	ers -	-	91.2	51.6	22.9

Source: [Goyal et al., 2021]

Bouncing balls environment

Source: [Goyal et al., 2021]

Robustness to distractors

Source: [Goyal et al., 2021]

Atari

Source: [Goyal et al., 2021]

Ablations:

- Sparse activation is necessary, but works for a wide range of hyperparameters.
- Input-attention is necessary.
- Communication between RIMs improves performance.

Goyal, A., Lamb, A., Hoffmann, J., Sodhani, S., Levine, S., Bengio, Y., and Schölkopf, B. (2021).

Recurrent independent mechanisms.

In 9th International Conference on Learning Representations (ICLR).

Parascandolo, G., Kilbertus, N., Rojas-Carulla, M., and Schölkopf, B. (2018).

Learning independent causal mechanisms.

In Dy, J. and Krause, A., editors, *Proceedings of the 35th International Conference on Machine Learning*, volume 80 of *Proceedings of Machine Learning Research*, pages 4036–4044, Stockholmsmässan, Stockholm Sweden. PMLR.