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State of deep learning

e Enormous success.

Mostly relies on CNNs (vision) and Transformers (NLP).

Relatively large models (e.g. 1.75 trillion parameters).
e Computationally expensive.

Architectures geared toward dataset or task.

Supervised learning.



Supervised vs. unsupervised

Supervised:

e We have explicit labels and use them to guide training.
e Requires huge datasets.

e Extensive training.

e Annotating is costly.

e Limit to how much data we can obtain.

e Does not scale.

e Ignores physical world.

e RL makes this ridiculous.

e Driving a car off a cliff.



Supervised vs. unsupervised

How do children learn?

e A lot of evolutionary knowledge.

e Vision, hearing, touch etc. in place.
e Extensive observation.

e Build a model of the world.

e Model vs. physical world.

e Surprise, curiosity guide learning.

e Continuous refinement of model.

e Limited reinforcement learning.

e All initial learning is unsupervised.



Supervised vs. unsupervised

Unsupervised:

e In practice, very little labelled data available.

e Need to create model of world, confront it with reality.
e Update model when it does not agree with reality.

e Exploit physical structure of world to obtain links.

e Learn from little external reward.

e Learn from very few labelled examples.



Importance of unsupervised learning

What if importance of various kinds of learning is like a cake?
e Pure reinforcement learning = cherry.
e Supervised learning = icing.

e Unsupervised /self-supervised /predictive learning = génoise.

Source: LeCun, Y., The Next Step Towards Artificial Intelligence



Self-supervised learning

Self-supervised is the new unsupervised:

e Supervised: data and labels.

e Unsupervised: data without labels.

e Self-supervised: use data as labels.

e In reality: use data transformations to obtain labels.

e Predict characteristics based on transformed data and the
obtained labels.

e Quite different from standard labels.

e Pre-train to use on downstream tasks.



NLP as success story for SSL
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NLP as success story for SSL
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NLP as success story for SSL

Why NLP?

e Sentences naturally represented as sequences.

e There is significant structure to the data.

e Possible to approximately identify the vocabulary.

e Predicting a masked word from the context can be cast as a
classification problem.

e Manageable dimensionality.

e We can use quite similar techniques as for supervised learning.

e Softmax, loss function, etc.

e Supervised training with SSL pre-training beats vanilla
supervised training.

e Useful for downstream tasks.
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SSL for vision

Why is it more difficult to use predictive self-supervised learning for

vision?

e For images, it is considerably harder to divide them into
meaningful parts than for sentences.

e There is no immediate analogue of a vocabulary.

e Predicting a masked part of an image from the context is not
easily cast as a classification problem.

e In particular: dimensionality blows up for the predictive
problem.

e We cannot use techniques from supervised learning out of the
box.

e Predictive problem not completely out of the question, only

significantly harder.
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Energy-based models

A potentially unifying view of self-supervised learning methods.

e Trainable system.

e Outputs whether two inputs x and y are compatible.

e Scalar assessment of agreement between inputs - energy.
e F(x,y) - energy function.
e High energy function values for incompatible inputs, low

energy values for compatible inputs.
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Energy-based models
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SSL in NLP as EBM
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Joint embedding architecture

A more concrete application for vision.

Two identical or close to identical encoders.

One processes x, the other y.

Each produces an embedding, hy and hy, respectively.

C(hy, hy) - distance between embeddings - energy function.
Relatively easy to train the system to output low energy for
transformed version of the same image, different views of the
same object, etc - positive samples.

We need negative samples as well to avoid collapse.

Collapse - system ignores input and outputs the same
assessment.

Approaches to avoid collapse: contrastive and non-contrastive.

ii5)



Joint embedding architecture
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Source: LeCun, Y. and Misra, |., Self-supervised learning: The dark matter of intelligence

16



Contrastive SSL

Circumvent the collapse problem.

e Apart from positive samples, we specifically construct negative
samples.

e Ensure the energy is low for positive samples.

e Ensure the energy is high for negative samples.

e There are less-than-obvious difficulties.

e One challenge: What if the difference between positive samles
and negative samples is to stark?

e Training might quickly allow the system to distinguish between
positive and negative samples without additional benefits.

e We need difficult negative samples.

e Costly to construct.
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SimCLR

Maximize agreement
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[Chen et al., 2020]
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SimCLR

Algorithm 1 SimCLR’s main learning algorithm.

input: batch size N, constant 7, structure of f, g, T.
for sampled minibatch {x;}1_, do
forallk € {1,...,N} do
draw two augmentation functions t~7, t' ~T
# the first augmentation
ZTop-1 = t(xr)
hok—1 = f(Zar—1) # representation
zok—1 = g(hag—1) # projection
# the second augmentation
o = t’(mk)

hor = f(&2r) # representation
zar, = g(har) # projection
end for
foralli e {1,...,2N}andj € {1,...,2N} do
si; =2 zj/(|lz:l11%1) # pairwise similarity
end for
define £(i, ) as £(i, j) = —log w2/

SN Lkzi) oxp(sik/7)
L= S0 U2k —1,2k) + €(2k, 2k —1))]
update networks f and g to minimize £
end for
return encoder network f(-), and throw away ¢(-)

[Chen et al., 2020] 19



SimCLR
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SimCLR

Label fraction

Architecture 1% 10% 100%
Topl TopS5 Topl Top5 Topl Top5
ResNet-50 494 766  66.1 88.1 76.0  93.1

ResNet-50 (2x) 594 837 718 912 79.1 94.8
ResNet-50 (4x)  64.1 86.6 748 928 804 954

Table B.2. Classification accuracy obtained by fine-tuning the SimCLR (which is pretrained with broader data augmentations) on 1%,
10% and full of ImageNet. As a reference, our ResNet-50 (4 x) trained from scratch on 100% labels achieves 78.4% top-1/94.2% top-5.

[Chen et al., 2020]
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Non-contrastive SSL

More diverse in approaches than contrastive methods.

e Does not rely on explicit negative samples.
e Might allow for computationally more efficient learning.

e One approach is to use regularization to constrain the
parameters of the models and the representation space.

e Relatively little research done on non-contrastive methods but
this is changing.
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Barlow Twins
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Barlow Twins

CBTéZ(l—Cﬁ)Q‘F A chijQ

i )
_\,_/ N’
invariance term redundancy reduction term
B
> Zb i %D, j

v JZ{; (zh;) JZ{:

[Zbontar et al., 2021]
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Barlow Twins

Method Top-1 Top-5
Supervised 76.5

MoCo 60.6

PIRL 63.6 -
SIMCLR 69.3 89.0
MoCo v2 71.1 90.1
SIMSIAM 71.3 -
SWAV (w/o multi-crop)  71.8 -
BYOL 74.3 91.6
SWAV 753

BARLOW TWINS (ours) 73.2 91.0

[Zbontar et al., 2021]
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Barlow Twins

Method Top-1 Top-5
1% 10% 1% 10%
Supervised 254 564 484 804
PIRL - - 572 83.8
SIMCLR 483 656 755 878
BYOL 532 68.8 784 89.0
SWAV 539 702 785 89.9

BARLOW TWINS (ours) 55.0 69.7 79.2 89.3

[Zbontar et al., 2021]
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SEER-10B
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[Goyal et al., 2022]

SEER vs SOTA SUP
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Latent-variable predictive models
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Source: LeCun, Y. and Misra, |., Self-supervised learning: The dark matter of intelligence
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