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Maciej Żelaszczyk

April 27, 2022

PhD Student in Computer Science

Division of Artificial Intelligence and Computational Methods

Faculty of Mathematics and Information Science

m.zelaszczyk@mini.pw.edu.pl

1

m.zelaszczyk@mini.pw.edu.pl


State of deep learning

• Enormous success.

• Mostly relies on CNNs (vision) and Transformers (NLP).

• Relatively large models (e.g. 1.75 trillion parameters).

• Computationally expensive.

• Architectures geared toward dataset or task.

• Supervised learning.
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Supervised vs. unsupervised

Supervised:

• We have explicit labels and use them to guide training.

• Requires huge datasets.

• Extensive training.

• Annotating is costly.

• Limit to how much data we can obtain.

• Does not scale.

• Ignores physical world.

• RL makes this ridiculous.

• Driving a car off a cliff.
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Supervised vs. unsupervised

How do children learn?

• A lot of evolutionary knowledge.

• Vision, hearing, touch etc. in place.

• Extensive observation.

• Build a model of the world.

• Model vs. physical world.

• Surprise, curiosity guide learning.

• Continuous refinement of model.

• Limited reinforcement learning.

• All initial learning is unsupervised.
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Supervised vs. unsupervised

Unsupervised:

• In practice, very little labelled data available.

• Need to create model of world, confront it with reality.

• Update model when it does not agree with reality.

• Exploit physical structure of world to obtain links.

• Learn from little external reward.

• Learn from very few labelled examples.
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Importance of unsupervised learning

What if importance of various kinds of learning is like a cake?

• Pure reinforcement learning = cherry.

• Supervised learning = icing.

• Unsupervised/self-supervised/predictive learning = génoise.

Source: LeCun, Y., The Next Step Towards Artificial Intelligence
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Self-supervised learning

Self-supervised is the new unsupervised:

• Supervised: data and labels.

• Unsupervised: data without labels.

• Self-supervised: use data as labels.

• In reality: use data transformations to obtain labels.

• Predict characteristics based on transformed data and the

obtained labels.

• Quite different from standard labels.

• Pre-train to use on downstream tasks.
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NLP as success story for SSL

Source: [Mikolov et al., 2013]
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NLP as success story for SSL

Source: [Devlin et al., 2019]
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NLP as success story for SSL

Why NLP?

• Sentences naturally represented as sequences.

• There is significant structure to the data.

• Possible to approximately identify the vocabulary.

• Predicting a masked word from the context can be cast as a

classification problem.

• Manageable dimensionality.

• We can use quite similar techniques as for supervised learning.

• Softmax, loss function, etc.

• Supervised training with SSL pre-training beats vanilla

supervised training.

• Useful for downstream tasks.
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SSL for vision

Why is it more difficult to use predictive self-supervised learning for

vision?

• For images, it is considerably harder to divide them into

meaningful parts than for sentences.

• There is no immediate analogue of a vocabulary.

• Predicting a masked part of an image from the context is not

easily cast as a classification problem.

• In particular: dimensionality blows up for the predictive

problem.

• We cannot use techniques from supervised learning out of the

box.

• Predictive problem not completely out of the question, only

significantly harder.
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Energy-based models

A potentially unifying view of self-supervised learning methods.

• Trainable system.

• Outputs whether two inputs x and y are compatible.

• Scalar assessment of agreement between inputs - energy.

• F (x, y) - energy function.

• High energy function values for incompatible inputs, low

energy values for compatible inputs.
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Energy-based models

Source: LeCun, Y. and Misra, I., Self-supervised learning: The dark matter of intelligence
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SSL in NLP as EBM

Source: LeCun, Y. and Misra, I., Self-supervised learning: The dark matter of intelligence
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Joint embedding architecture

A more concrete application for vision.

• Two identical or close to identical encoders.

• One processes x, the other y.

• Each produces an embedding, hx and hy, respectively.

• C (hx,hy) - distance between embeddings - energy function.

• Relatively easy to train the system to output low energy for

transformed version of the same image, different views of the

same object, etc - positive samples.

• We need negative samples as well to avoid collapse.

• Collapse - system ignores input and outputs the same

assessment.

• Approaches to avoid collapse: contrastive and non-contrastive.
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Joint embedding architecture

Source: LeCun, Y. and Misra, I., Self-supervised learning: The dark matter of intelligence
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Contrastive SSL

Circumvent the collapse problem.

• Apart from positive samples, we specifically construct negative

samples.

• Ensure the energy is low for positive samples.

• Ensure the energy is high for negative samples.

• There are less-than-obvious difficulties.

• One challenge: What if the difference between positive samles

and negative samples is to stark?

• Training might quickly allow the system to distinguish between

positive and negative samples without additional benefits.

• We need difficult negative samples.

• Costly to construct.
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SimCLR

[Chen et al., 2020]
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SimCLR
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Non-contrastive SSL

More diverse in approaches than contrastive methods.

• Does not rely on explicit negative samples.

• Might allow for computationally more efficient learning.

• One approach is to use regularization to constrain the

parameters of the models and the representation space.

• Relatively little research done on non-contrastive methods but

this is changing.
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Barlow Twins

[Zbontar et al., 2021]
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SEER

[Goyal et al., 2021]
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SEER

[Goyal et al., 2021]
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SEER-10B

[Goyal et al., 2022]
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Latent-variable predictive models

Source: LeCun, Y. and Misra, I., Self-supervised learning: The dark matter of intelligence
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