
Diffusion models

Denoising Diffusion Probabilistic Models

Maciej Żelaszczyk

November 30, 2022

PhD Student in Computer Science

Division of Artificial Intelligence and Computational Methods

Faculty of Mathematics and Information Science

m.zelaszczyk@mini.pw.edu.pl

1

m.zelaszczyk@mini.pw.edu.pl


Starting points

Some possible starting points for diffusion models:

• Physics

• VAEs

• GANs

2



Physics

Source: IXL

3



Generative models

Models:

• Discriminative: P(Y |X = x)

• Generative. Joint probability distribution: X × Y ,P(X ,Y )

• No hard demarcation line.

Standard generative models in deep learning:

• Autoencoders.

• Variational autoencoders (VAEs).

• Generative adversarial networks (GANs).

4



Variational Autoencoders

Introduced in [Kingma and Welling, 2014]:

• Latent variable matches unit Gaussian.

• Loss = generation loss + KL divergence.

Source: Frans, K., Variational Autoencoders Explained

5



Generative Adversarial Nets

Introduced in [Goodfellow et al., 2014]. Loss functions do not have

an immediately intuitive interpretation.

Source: Brownlee, J., How to Identify and Diagnose GAN Failure Modes 6



Generative Adversarial Nets

Source: Brownlee, J., How to Identify and Diagnose GAN Failure Modes

7



Diffusion as a generative model

Hypothetical steps:

• Successfully apply a forward process to a complex data

distribution.

• Arrive at a convenient target distribution.

• Employ a reverse process to move from the target distribution

to the initial one.

• Part of architecture: target → initial.

• Treat target distribution as a sampling distribution.

• The architecture accounts for the joint distribution –

generative model.

8



Diffusion for vision

How can a forward/reverse process look for images?

Source: [Nichol and Dhariwal, 2021].

9



Preliminaries

• Sequential process with steps indexed by t.

• xt – image at timestep t.

• x0 – initial (uncorrupted) image.

• xT – final (noise) image.

• q(xt |xt−1) – forward process.

• pθ(xt−1|xt) – reverse process.

10



Forward/reverse process for images

Source: [Ho et al., 2020].

11



Forward process

• The data (initial) distribution is defined as q(x0).

• A step in the forward process follows an isotropic Gaussian:

q(xt |xt−1) = N
(
xt ;

√
1− βtxt−1, βtI

)
(1)

• The variance follows a schedule: β1, . . . , βT .

• The actual forward process corresponds to the posterior:

q(x1:T |x0) =
T∏
t=1

q(xt |xt−1) (2)

• The mean of the forward process posterior µ̃t(xt , x0) satisfies:

q(xt−1|xt , x0) = N
(
xt−1; µ̃t(xt , x0), β̃tI

)
(3)

12



β schedule & image scaling

• One β schedule: β1 = 0.0001 grows linearly to βT = 0.02

[Ho et al., 2020].

• Using a naive mean xt−1 for the Gaussian process could

explode the image.

• Hence, the scaling factor
√
1− βt is introduced.

βt

√
1− βt 13



Reverse process

• The target (noise) distribution is pθ(xT ) = N (xT ; 0, I).

• A step in the reverse process follows a Gaussian:

pθ(xt−1|xt) = N (xt−1;µθ(xt , t),Σθ(xt , t)) (4)

• The actual reverse process corresponds to the posterior:

pθ(x0:T ) = p(xT )
T∏
t=1

pθ(xt−1|xt) (5)

• Both q and pθ have the same functional form when βt are

small [Sohl-Dickstein et al., 2015].

14



Diffusion model

A diffusion model can be stated as:

pθ(x0) =

∫
pθ(x0:T )dx1:T (6)

15



Making it operational

• Given the choice of the distribution and the β schedule, the

forward process q(xt |xt−1) can be computed for an arbitrary

number of steps.

• For the reverse process pθ(xt−1) to satisfy the assumptions,

choices have to be made for µθ(xt , t) and Σθ(xt , t).

• A possible choice for the covariance matrix is Σθ(xt , t) = σ2
t I,

where σ2
t = βt – works for x0 ∼ N (0, I).

• For now, we treat µθ(xt , t) as a predictor with learnable

parameters θ.

• A training loss can be formulated:

Lt−1 = Eq

[
1

2σ2
t

∥µ̃t(xt , x0)− µθ(xt , t)∥2
]
+ C (7)

16



Sampling from the forward process

• To naively sample from the forward process for an arbitrary

step t, sampling from q(xt |xt−1) would have to be chained.

• If we denote αt = 1− βt and ᾱt =
∏t

s=1 αs , we can write:

q(xt |x0) = N
(
xt ;

√
ᾱtx0, (1− ᾱt)I

)
(8)

• This admits direct sampling at an arbitrary step t.

• We can use the reparametrization trick

[Kingma and Welling, 2014]:

xt =
√
ᾱtx0 + (1− ᾱt)ϵ, ϵ ∼ N (0, I) (9)

17



Loss function

Final loss for training

Ex0,ϵ

[
β2
t

2σ2
tαt(1− ᾱt)

∥ϵ− ϵθ(xt , t)∥2
]

(10)

where ϵθ is a model predicting ϵ from xt .

This uses both direct sampling from the forward process and

the reparametrization trick. In reality, the ∥ϵ − ϵθ(xt , t)∥2

term is sufficient for training.

18



Training/sampling

Source: [Ho et al., 2020].

19



Predictors

Various predictor formulations possible:

(xt , t) Pθ ϵ̂

(xt , t) Pθ ˆ̃µt

(xt , t) Pθ x̂t−1

(xt , t) Pθ x̂0

• Predicting the original image is not viable.

• Predicting the noise is a popular choice.
20



U-Net

Source: [Ronneberger et al., 2015].

21



Samples

Source: [Sohl-Dickstein et al., 2015].

22



Samples

Source: [Ho et al., 2020].

23



Improvements

Some improvements:

• Learning Σθ(xt , t).

• Cosine noise schedule.

Source: [Nichol and Dhariwal, 2021].

• Gradient noise reduction.

• Sampling speed.

24



Improvements

Some improvements:

• Architecture size.

• BigGAN blocks [Brock et al., 2018].

• Alternative sampling schemes with fewer steps.

25



Samples

Source: [Dhariwal and Nichol, 2021].

26



SOTA

Source: PapersWithCode.

27



Usage

Source: [Ramesh et al., 2022].

28



Usage

Source: [Ramesh et al., 2022].

29



Usage

Source: StableDiffusion 2.0, based on [Rombach et al., 2022].

30



Usage

Source: StableDiffusion 2.0, based on [Rombach et al., 2022].

31



Usage

Source: StableDiffusion 2.0, based on [Rombach et al., 2022].

32



Usage

Source: StableDiffusion 2.0, based on [Rombach et al., 2022].

33



Usage

Source: StableDiffusion 2.0, based on [Rombach et al., 2022].

34



Usage

Source: StableDiffusion 2.0, based on [Rombach et al., 2022].

35



Usage

Source: StableDiffusion 2.0, based on [Rombach et al., 2022].

36



Brock, A., Donahue, J., and Simonyan, K. (2018).

Large scale gan training for high fidelity natural image

synthesis.

arXiv.

Dhariwal, P. and Nichol, A. (2021).

Diffusion models beat gans on image synthesis.

In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., and

Vaughan, J. W., editors, Advances in Neural Information

Processing Systems, volume 34, pages 8780–8794. Curran

Associates, Inc.

Goodfellow, I. J., Pouget-Abadie, J., et al. (2014).

Generative adversarial networks.

NIPS.

Ho, J., Jain, A., and Abbeel, P. (2020).

Denoising diffusion probabilistic models.

36



In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and

Lin, H., editors, Advances in Neural Information Processing

Systems, volume 33, pages 6840–6851. Curran Associates, Inc.

Kingma, D. P. and Welling, M. (2014).

Auto-encoding variational bayes.

ICLR.

Nichol, A. Q. and Dhariwal, P. (2021).

Improved denoising diffusion probabilistic models.

In Meila, M. and Zhang, T., editors, Proceedings of the 38th

International Conference on Machine Learning, volume 139 of

Proceedings of Machine Learning Research, pages 8162–8171.

PMLR.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen, M.

(2022).

36



Hierarchical text-conditional image generation with clip

latents.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and

Ommer, B. (2022).

High-resolution image synthesis with latent diffusion

models.

In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pages 10684–10695.

Ronneberger, O., Fischer, P., and Brox, T. (2015).

U-net: Convolutional networks for biomedical image

segmentation.

In Navab, N., Hornegger, J., Wells, W. M., and Frangi, A. F.,

editors, Medical Image Computing and Computer-Assisted

Intervention – MICCAI 2015, pages 234–241, Cham. Springer

International Publishing.

36



Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and

Ganguli, S. (2015).

Deep unsupervised learning using nonequilibrium

thermodynamics.

In Bach, F. and Blei, D., editors, Proceedings of the 32nd

International Conference on Machine Learning, volume 37 of

Proceedings of Machine Learning Research, pages 2256–2265,

Lille, France. PMLR.

36


