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Starting points

Some possible starting points for diffusion models:

• Physics

• VAEs

• GANs

2



Physics

Source: IXL
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Generative models

Models:

• Discriminative: P(Y |X = x)

• Generative. Joint probability distribution: X × Y ,P(X ,Y )

• No hard demarcation line.

Standard generative models in deep learning:

• Autoencoders.

• Variational autoencoders (VAEs).

• Generative adversarial networks (GANs).
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Variational Autoencoders

Introduced in [Kingma and Welling, 2014]:

• Latent variable matches unit Gaussian.

• Loss = generation loss + KL divergence.

Source: Frans, K., Variational Autoencoders Explained
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Generative Adversarial Nets

Introduced in [Goodfellow et al., 2014]. Loss functions do not have

an immediately intuitive interpretation.

Source: Brownlee, J., How to Identify and Diagnose GAN Failure Modes 6



Generative Adversarial Nets

Source: Brownlee, J., How to Identify and Diagnose GAN Failure Modes
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Diffusion as a generative model

Hypothetical steps:

• Successfully apply a forward process to a complex data

distribution.

• Arrive at a convenient target distribution.

• Employ a reverse process to move from the target distribution

to the initial one.

• Part of architecture: target → initial.

• Treat target distribution as a sampling distribution.

• The architecture accounts for the joint distribution –

generative model.
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Diffusion for vision

How can a forward/reverse process look for images?

Source: [Nichol and Dhariwal, 2021].
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Preliminaries

• Sequential process with steps indexed by t.

• xt – image at timestep t.

• x0 – initial (uncorrupted) image.

• xT – final (noise) image.

• q(xt |xt−1) – forward process.

• pθ(xt−1|xt) – reverse process.
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Forward/reverse process for images

Source: [Ho et al., 2020].
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Forward process

• The data (initial) distribution is defined as q(x0).

• A step in the forward process follows an isotropic Gaussian:

q(xt |xt−1) = N
(
xt ;

√
1− βtxt−1, βtI

)
(1)

• The variance follows a schedule: β1, . . . , βT .

• The actual forward process corresponds to the posterior:

q(x1:T |x0) =
T∏
t=1

q(xt |xt−1) (2)

• The mean of the forward process posterior µ̃t(xt , x0) satisfies:

q(xt−1|xt , x0) = N
(
xt−1; µ̃t(xt , x0), β̃tI

)
(3)
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β schedule & image scaling

• One β schedule: β1 = 0.0001 grows linearly to βT = 0.02

[Ho et al., 2020].

• Using a naive mean xt−1 for the Gaussian process could

explode the image.

• Hence, the scaling factor
√
1− βt is introduced.

βt

√
1− βt 13



Reverse process

• The target (noise) distribution is pθ(xT ) = N (xT ; 0, I).

• A step in the reverse process follows a Gaussian:

pθ(xt−1|xt) = N (xt−1;µθ(xt , t),Σθ(xt , t)) (4)

• The actual reverse process corresponds to the posterior:

pθ(x0:T ) = p(xT )
T∏
t=1

pθ(xt−1|xt) (5)

• Both q and pθ have the same functional form when βt are

small [Sohl-Dickstein et al., 2015].
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Diffusion model

A diffusion model can be stated as:

pθ(x0) =

∫
pθ(x0:T )dx1:T (6)
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Making it operational

• Given the choice of the distribution and the β schedule, the

forward process q(xt |xt−1) can be computed for an arbitrary

number of steps.

• For the reverse process pθ(xt−1) to satisfy the assumptions,

choices have to be made for µθ(xt , t) and Σθ(xt , t).

• A possible choice for the covariance matrix is Σθ(xt , t) = σ2
t I,

where σ2
t = βt – works for x0 ∼ N (0, I).

• For now, we treat µθ(xt , t) as a predictor with learnable

parameters θ.

• A training loss can be formulated:

Lt−1 = Eq

[
1

2σ2
t

∥µ̃t(xt , x0)− µθ(xt , t)∥2
]
+ C (7)
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Sampling from the forward process

• To naively sample from the forward process for an arbitrary

step t, sampling from q(xt |xt−1) would have to be chained.

• If we denote αt = 1− βt and ᾱt =
∏t

s=1 αs , we can write:

q(xt |x0) = N
(
xt ;

√
ᾱtx0, (1− ᾱt)I

)
(8)

• This admits direct sampling at an arbitrary step t.

• We can use the reparametrization trick

[Kingma and Welling, 2014]:

xt =
√
ᾱtx0 + (1− ᾱt)ϵ, ϵ ∼ N (0, I) (9)
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Loss function

Final loss for training

Ex0,ϵ

[
β2
t

2σ2
tαt(1− ᾱt)

∥ϵ− ϵθ(xt , t)∥2
]

(10)

where ϵθ is a model predicting ϵ from xt .

This uses both direct sampling from the forward process and

the reparametrization trick. In reality, the ∥ϵ − ϵθ(xt , t)∥2

term is sufficient for training.
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Training/sampling

Source: [Ho et al., 2020].
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Predictors

Various predictor formulations possible:

(xt , t) Pθ ϵ̂

(xt , t) Pθ ˆ̃µt

(xt , t) Pθ x̂t−1

(xt , t) Pθ x̂0

• Predicting the original image is not viable.

• Predicting the noise is a popular choice.
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U-Net

Source: [Ronneberger et al., 2015].
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Samples

Source: [Sohl-Dickstein et al., 2015].
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Samples

Source: [Ho et al., 2020].
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Improvements

Some improvements:

• Learning Σθ(xt , t).

• Cosine noise schedule.

Source: [Nichol and Dhariwal, 2021].

• Gradient noise reduction.

• Sampling speed.
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Improvements

Some improvements:

• Architecture size.

• BigGAN blocks [Brock et al., 2018].

• Alternative sampling schemes with fewer steps.
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Samples

Source: [Dhariwal and Nichol, 2021].
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SOTA

Source: PapersWithCode.
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Usage

Source: [Ramesh et al., 2022].
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Usage

Source: [Ramesh et al., 2022].
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Usage

Source: StableDiffusion 2.0, based on [Rombach et al., 2022].
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Usage

Source: StableDiffusion 2.0, based on [Rombach et al., 2022].
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