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Problem statement

• We have a series of 2D images of a scene.

• We would like to be able to render this scene.

• This includes viewpoints not present in the original 2D images.
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Problem statement

Source: [Mildenhall et al., 2020].
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Ray tracing

Source: An Overview of the Ray-Tracing Rendering Technique
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Ray tracing

Source: Ray-Tracing: Generating Camera Rays
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Ray tracing

Source: Ray-Tracing: Generating Camera Rays
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Ray tracing

Source: An Overview of the Ray-Tracing Rendering Technique
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Ray tracing

Setup with object detection:

• Requires information on object positioning relative to one

another.

• Allows to color specific pixels.

• Does not take into account light effects.
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Ray tracing

Physical process of light reaching an observer:

• Light originates from a source.

• Multiple rays are cast from the source to the environment.

• These rays bounce of surfaces.

• Some of them reach an observer.

• The more light bounces off a specific surface point, the more

illuminated it is to the observer.
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Ray tracing

Source: Sarthaks
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Ray tracing

Replicating the physical process:

• In principle should allow for realistic lighting effects.

• Leads to significant inefficiencies.

• A vast majority of rays cast from a light source will never

reach the camera.
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Ray tracing

Source: Ray-Tracing: Generating Camera Rays
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Ray tracing

Reverse the physical process:

• Cast rays from camera rather than from light source.

• Bounce those rays around in the environment.

• Proceed until rays reach a light source.

• The more direct the route between the camera and the light

source, the more illuminated the point.

• In practice, this is more complicated: different light absorption

of materials, ray splitting, etc.
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Ray tracing

Source: Wikipedia
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Image rendering

For our specific flavor of image rendering we require two

components:

• World model.

• Ray casting procedure.

Let us adopt these abstract blocks to the stated problem.
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Problem statement

Source: [Mildenhall et al., 2020].
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Neural radiance fields

We will consider the following components:

• Volumetric scene function.

• Volumetric ray casting.
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Volumetric scene function

To include lighting effects, each point in a 3D scene can be

represented in terms of:

• Its spatial location.

• A viewing direction - the direction from which this point is

observed.

• The spatial location can be represented as a 3D vector

x = (x , y , z).

• The viewing direction can be represented by two angles (θ, ϕ).

• In practice, viewing direction is represented by a 3D unit

vector d.
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Volumetric scene function

The volumetric scene function outputs the radiance at each point

(x , y , z) emitted in direction (θ, ϕ), along with information how

much radiance is present:

• Emitted color c = (r , g , b).

• Volume density σ.
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Volumetric scene function

Continuous scene representation:

FΘ : (x,d) → (c, σ) (1)
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Volumetric scene function

Practical considerations:

• Can be approximated by an MLP.

• Restrictions on internal structure of the MLP might be

beneficial.

• In particular: density does not seem to depend on viewing

direction, while the emitted color does.

• We may want to constrain the model to predict σ based on

x = (x , y , z) alone.

• Predictions of the color c = (r , g , b) can still rely on d.

• Operating directly on input turns out to underperform.

• Positional encodings of input perform significantly better.
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Volumetric scene function

Positional encoding:

γ(p)=(sin (20πp),cos (20πp),...,sin (2L−1πp),cos (2L−1πp)) (2)

• Applied to each element of x and d.

• For x, L = 10. Results in a 60-element encoding.

• For d, L = 4. Results in a 24-element encoding.
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Volumetric scene function

Source: [Mildenhall et al., 2020].
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Volumetric ray casting

Given the volumetric scene function:

• It is possible to render the color of any ray passing through

the scene.

• The volume density σ(x) can be interpreted as the probability

of a ray terminating at location x.
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Training procedure

Source: [Mildenhall et al., 2020].
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Volumetric ray casting

The expected color of a camera ray r(t) = o+ td is:

Expected color of a camera ray:

C (r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt (3)

where

T (t) = exp

(
−
∫ t

tn

σ(r(s))ds

)
(4)

and fn and ff are the near and far bounds, respectively. T (t) can

be interpreted as the probability that a ray travels from tn to t.
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Volumetric ray casting

Procedure for estimating the integral:

• Stratified sampling approach.

• Partition [tn; tf ] into N evenly-spaced bins.

• Draw one sample uniformly from each bin:

ti ∼ U
[
tn +

i

N
(tf − tn); tn +

i − 1

N
(tf − tn)

]
(5)
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Volumetric ray casting

Use quadrature rule to perform actual estimation:

Estimated color of a camera ray:

Ĉ (r) =
N∑
i=1

Ti (1− exp (−σiδi )) ci (6)

where

Ti = exp

−
i−1∑
j=1

σjδj

 (7)

and δi = ti+1 − ti is the distance between adjacent samples.
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Volumetric ray casting

The proposed sampling scheme has a major drawback:

• It does not take the positioning of objects into account.

• Free space and occluded objects are sampled repeatedly.

• They do not actually contribute to the image.

• To mitigate this, hierarchical sampling can be used.
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Volumetric ray casting

Improved sampling scheme:

• Instead of one, apply two networks: coarse and fine.

• Sample set of Nc locations using the standard stratified

sampling approach.

• Evaluate the coarse network at these locations.

• Rewrite colors from the coarse network:

Ĉ (r) =
Nc∑
i=1

wici (8)

wi = Ti (1− exp (−σiδi )) (9)
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Volumetric ray casting

Improved sampling scheme:

• Normalize: ŵi = wi/
∑Nc

j=1 wj .

• We now have a piecewise-constant PDF along the ray.

• Sample set of Nf locations from this distribution using inverse

transform sampling.

• Evaluate the fine network the union of Nc + Nf sample

locations.

• Compute the final rendered color of the ray Ĉf (r) using the

standard ray casting approach but for all Nc + Nf samples.

• This guides the sampling procedure toward regions where we

already expect visible content.
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Training procedure

Optimize network:

• Use a dataset of RGB images of a specific scene.

• Use structure-from-motion to estimate camera poses, bounds,

etc. for this scene.

• One possibility is to use COLMAP

[Schonberger and Frahm, 2016].

• Sample a batch of pixels from all images in the dataset.

• Each pixel can be associated with a ray through the scene.

• Hierarchically sample locations along the rays.

• Use volumetric rendering to determine the color of each ray.
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Training procedure

Optimize network:

• Since we have a ground truth pixel, we can now calculate the

loss:

Loss function:

L =
∑
r∈R

[∥∥∥Ĉc(r)− C (r)
∥∥∥2
2
+
∥∥∥Ĉf (r)− C (r)

∥∥∥2
2

]
(10)

where R is the batch of rays C (r) is the ground truth, Ĉc(r) is the

coarse color prediction and Ĉf (r) is the fine color prediction for a

given ray r.
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Training procedure

Source: [Mildenhall et al., 2020].

34



Training procedure

Practical considerations:

• Batch size = 4096.

• Numbers of sampled locations: Nc = 64,Nf = 128.

• Optimized with Adam. Inital learning rate = 5× 10−4.

Exponantial decay to 5× 10−5. Other hyperparameters left at

defaults: β1 = 0.9, β2 = 0.999, ϵ = 10−7.

• Steps to convergence: 100− 300k.

• Hardware: NVIDIA V100 GPU.

• Wall-clock time: 1− 2 days.
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Training procedure

Datasets:

• Synthetic:
• DeepVoxels [Sitzmann et al., 2019]: 4 Lambertian objects with

simple geometry; 512× 512 pixels; for each scene, viewpoints

sampled on the upper hemisphere (479 for training and 1000

for testing).

• Own dataset: 8 non-Lambertian objects with complicated

geometry; 800× 800 pixels; viewpoints sampled on the upper

hemisphere for 6 scenes, on the full sphere for 2 scenes; for

each scene, 100 viewpoints for training and 200 for testing.

• Real:
• New dataset: 8 complex real-world scenes, recorded with

handheld phones, 5 from the LLFF dataset

[Mildenhall et al., 2019], 3 newly captured; 1008× 756 pixels;

20− 62 images per scene, 1/8 used for testing.
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Results

Source: [Mildenhall et al., 2020].
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Results

Which components are crucial for achieving favorable results?

• Positional encoding.

• Hierarchical sampling.
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Results

Source: [Mildenhall et al., 2020].

39



Considerations

• Why would you use a neural network to represent a scene?
• Quality of generated scenes.

• Size of representation. LLFF [Mildenhall et al., 2019]

generates a 3D voxel grid of > 15GB. For the same scene,

NeRF requires 5MB for network weights.

• Is the training slow?
• Relatively. NeRF takes at least 12 hours to train for one scene.

LLFF takes around 10 minutes to generate a scene.

• Ongoing work to cut this down.

• Is inference slow?
• Initially, yes. Order of magnitude: 30 seconds per frame.

• Massive improvement in subsequent works. Speeds > 100 FPS

are now achievable [Kerbl et al., 2023].

• It is still one scene per network?
• Yes. Ongoing work on making this more general, e.g. using

hyper networks [Lorraine et al., 2023, Bao et al., 2023]. 40
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