
Neural rendering

Neural radiance fields

Maciej Żelaszczyk

November 29, 2023

PhD Student in Computer Science

Division of Artificial Intelligence and Computational Methods

Faculty of Mathematics and Information Science

m.zelaszczyk@mini.pw.edu.pl

1

m.zelaszczyk@mini.pw.edu.pl


Problem statement

• We have a series of 2D images of a scene.

• We would like to be able to render this scene.

• This includes viewpoints not present in the original 2D images.

2



Problem statement

Source: [Mildenhall et al., 2020].

3



Ray tracing

Source: An Overview of the Ray-Tracing Rendering Technique

4



Ray tracing

Source: Ray-Tracing: Generating Camera Rays

5



Ray tracing

Source: Ray-Tracing: Generating Camera Rays

6



Ray tracing

Source: An Overview of the Ray-Tracing Rendering Technique

7



Ray tracing

Setup with object detection:

• Requires information on object positioning relative to one

another.

• Allows to color specific pixels.

• Does not take into account light effects.

8



Ray tracing

Physical process of light reaching an observer:

• Light originates from a source.

• Multiple rays are cast from the source to the environment.

• These rays bounce of surfaces.

• Some of them reach an observer.

• The more light bounces off a specific surface point, the more

illuminated it is to the observer.

9



Ray tracing

Source: Sarthaks

10



Ray tracing

Replicating the physical process:

• In principle should allow for realistic lighting effects.

• Leads to significant inefficiencies.

• A vast majority of rays cast from a light source will never

reach the camera.

11



Ray tracing

Source: Ray-Tracing: Generating Camera Rays

12



Ray tracing

Reverse the physical process:

• Cast rays from camera rather than from light source.

• Bounce those rays around in the environment.

• Proceed until rays reach a light source.

• The more direct the route between the camera and the light

source, the more illuminated the point.

• In practice, this is more complicated: different light absorption

of materials, ray splitting, etc.

13



Ray tracing

Source: Wikipedia

14



Image rendering

For our specific flavor of image rendering we require two

components:

• World model.

• Ray casting procedure.

Let us adopt these abstract blocks to the stated problem.

15



Problem statement

Source: [Mildenhall et al., 2020].

16



Neural radiance fields

We will consider the following components:

• Volumetric scene function.

• Volumetric ray casting.

17



Volumetric scene function

To include lighting effects, each point in a 3D scene can be

represented in terms of:

• Its spatial location.

• A viewing direction - the direction from which this point is

observed.

• The spatial location can be represented as a 3D vector

x = (x , y , z).

• The viewing direction can be represented by two angles (θ, ϕ).

• In practice, viewing direction is represented by a 3D unit

vector d.

18



Volumetric scene function

The volumetric scene function outputs the radiance at each point

(x , y , z) emitted in direction (θ, ϕ), along with information how

much radiance is present:

• Emitted color c = (r , g , b).

• Volume density σ.

19



Volumetric scene function

Continuous scene representation:

FΘ : (x,d) → (c, σ) (1)

20



Volumetric scene function

Practical considerations:

• Can be approximated by an MLP.

• Restrictions on internal structure of the MLP might be

beneficial.

• In particular: density does not seem to depend on viewing

direction, while the emitted color does.

• We may want to constrain the model to predict σ based on

x = (x , y , z) alone.

• Predictions of the color c = (r , g , b) can still rely on d.

• Operating directly on input turns out to underperform.

• Positional encodings of input perform significantly better.

21



Volumetric scene function

Positional encoding:

γ(p)=(sin (20πp),cos (20πp),...,sin (2L−1πp),cos (2L−1πp)) (2)

• Applied to each element of x and d.

• For x, L = 10. Results in a 60-element encoding.

• For d, L = 4. Results in a 24-element encoding.

22



Volumetric scene function

Source: [Mildenhall et al., 2020].

23



Volumetric ray casting

Given the volumetric scene function:

• It is possible to render the color of any ray passing through

the scene.

• The volume density σ(x) can be interpreted as the probability

of a ray terminating at location x.

24



Training procedure

Source: [Mildenhall et al., 2020].

25



Volumetric ray casting

The expected color of a camera ray r(t) = o+ td is:

Expected color of a camera ray:

C (r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt (3)

where

T (t) = exp

(
−
∫ t

tn

σ(r(s))ds

)
(4)

and fn and ff are the near and far bounds, respectively. T (t) can

be interpreted as the probability that a ray travels from tn to t.

26



Volumetric ray casting

Procedure for estimating the integral:

• Stratified sampling approach.

• Partition [tn; tf ] into N evenly-spaced bins.

• Draw one sample uniformly from each bin:

ti ∼ U
[
tn +

i

N
(tf − tn); tn +

i − 1

N
(tf − tn)

]
(5)

27



Volumetric ray casting

Use quadrature rule to perform actual estimation:

Estimated color of a camera ray:

Ĉ (r) =
N∑
i=1

Ti (1− exp (−σiδi )) ci (6)

where

Ti = exp

−
i−1∑
j=1

σjδj

 (7)

and δi = ti+1 − ti is the distance between adjacent samples.
28



Volumetric ray casting

The proposed sampling scheme has a major drawback:

• It does not take the positioning of objects into account.

• Free space and occluded objects are sampled repeatedly.

• They do not actually contribute to the image.

• To mitigate this, hierarchical sampling can be used.

29



Volumetric ray casting

Improved sampling scheme:

• Instead of one, apply two networks: coarse and fine.

• Sample set of Nc locations using the standard stratified

sampling approach.

• Evaluate the coarse network at these locations.

• Rewrite colors from the coarse network:

Ĉ (r) =
Nc∑
i=1

wici (8)

wi = Ti (1− exp (−σiδi )) (9)

30



Volumetric ray casting

Improved sampling scheme:

• Normalize: ŵi = wi/
∑Nc

j=1 wj .

• We now have a piecewise-constant PDF along the ray.

• Sample set of Nf locations from this distribution using inverse

transform sampling.

• Evaluate the fine network the union of Nc + Nf sample

locations.

• Compute the final rendered color of the ray Ĉf (r) using the

standard ray casting approach but for all Nc + Nf samples.

• This guides the sampling procedure toward regions where we

already expect visible content.

31



Training procedure

Optimize network:

• Use a dataset of RGB images of a specific scene.

• Use structure-from-motion to estimate camera poses, bounds,

etc. for this scene.

• One possibility is to use COLMAP

[Schonberger and Frahm, 2016].

• Sample a batch of pixels from all images in the dataset.

• Each pixel can be associated with a ray through the scene.

• Hierarchically sample locations along the rays.

• Use volumetric rendering to determine the color of each ray.

32



Training procedure

Optimize network:

• Since we have a ground truth pixel, we can now calculate the

loss:

Loss function:

L =
∑
r∈R

[∥∥∥Ĉc(r)− C (r)
∥∥∥2
2
+
∥∥∥Ĉf (r)− C (r)

∥∥∥2
2

]
(10)

where R is the batch of rays C (r) is the ground truth, Ĉc(r) is the

coarse color prediction and Ĉf (r) is the fine color prediction for a

given ray r.

33



Training procedure

Source: [Mildenhall et al., 2020].

34



Training procedure

Practical considerations:

• Batch size = 4096.

• Numbers of sampled locations: Nc = 64,Nf = 128.

• Optimized with Adam. Inital learning rate = 5× 10−4.

Exponantial decay to 5× 10−5. Other hyperparameters left at

defaults: β1 = 0.9, β2 = 0.999, ϵ = 10−7.

• Steps to convergence: 100− 300k.

• Hardware: NVIDIA V100 GPU.

• Wall-clock time: 1− 2 days.

35



Training procedure

Datasets:

• Synthetic:
• DeepVoxels [Sitzmann et al., 2019]: 4 Lambertian objects with

simple geometry; 512× 512 pixels; for each scene, viewpoints

sampled on the upper hemisphere (479 for training and 1000

for testing).

• Own dataset: 8 non-Lambertian objects with complicated

geometry; 800× 800 pixels; viewpoints sampled on the upper

hemisphere for 6 scenes, on the full sphere for 2 scenes; for

each scene, 100 viewpoints for training and 200 for testing.

• Real:
• New dataset: 8 complex real-world scenes, recorded with

handheld phones, 5 from the LLFF dataset

[Mildenhall et al., 2019], 3 newly captured; 1008× 756 pixels;

20− 62 images per scene, 1/8 used for testing.
36



Results

Source: [Mildenhall et al., 2020].

37



Results

Which components are crucial for achieving favorable results?

• Positional encoding.

• Hierarchical sampling.

38



Results

Source: [Mildenhall et al., 2020].

39



Considerations

• Why would you use a neural network to represent a scene?
• Quality of generated scenes.

• Size of representation. LLFF [Mildenhall et al., 2019]

generates a 3D voxel grid of > 15GB. For the same scene,

NeRF requires 5MB for network weights.

• Is the training slow?
• Relatively. NeRF takes at least 12 hours to train for one scene.

LLFF takes around 10 minutes to generate a scene.

• Ongoing work to cut this down.

• Is inference slow?
• Initially, yes. Order of magnitude: 30 seconds per frame.

• Massive improvement in subsequent works. Speeds > 100 FPS

are now achievable [Kerbl et al., 2023].

• It is still one scene per network?
• Yes. Ongoing work on making this more general, e.g. using

hyper networks [Lorraine et al., 2023, Bao et al., 2023]. 40



Bao, Y., Ding, T., Huo, J., Li, W., Li, Y., and Gao, Y. (2023).

Insertnerf: Instilling generalizability into nerf with

hypernet modules.

Kerbl, B., Kopanas, G., Leimkühler, T., and Drettakis, G.

(2023).

3d gaussian splatting for real-time radiance field

rendering.

ACM Transactions on Graphics, 42(4).

Lorraine, J., Xie, K., Zeng, X., Lin, C.-H., Takikawa, T., Sharp,

N., Lin, T.-Y., Liu, M.-Y., Fidler, S., and Lucas, J. (2023).

Att3d: Amortized text-to-3d object synthesis.

In Proceedings of the IEEE/CVF International Conference on

Computer Vision (ICCV), pages 17946–17956.

40



Mildenhall, B., Srinivasan, P. P., Ortiz-Cayon, R., Kalantari,

N. K., Ramamoorthi, R., Ng, R., and Kar, A. (2019).

Local light field fusion: Practical view synthesis with

prescriptive sampling guidelines.

ACM Trans. Graph., 38(4).

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T.,

Ramamoorthi, R., and Ng, R. (2020).

Nerf: Representing scenes as neural radiance fields for

view synthesis.

In ECCV.

Schonberger, J. L. and Frahm, J.-M. (2016).

Structure-from-motion revisited.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR).

40



Sitzmann, V., Thies, J., Heide, F., Niessner, M., Wetzstein,

G., and Zollhofer, M. (2019).

Deepvoxels: Learning persistent 3d feature embeddings.

In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR).

40


