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Preliminaries: text-to-image (T2I) models

1. Large models trained on web-scale image-text pairs
2. Diffusion models learn a data distribution by gradually denoising a normally 

distributed variable, i.e. “noise”, to generate the output
3. Pixel diffusion models denoise in the pixel space
4. Latent diffusion models denoise in the latent space
5. Conditional diffusion models denoise conditioned on the input c

Diffusion models: Denoising Diffusion Probabilistic Models 
https://pages.mini.pw.edu.pl/~mandziukj/2022-11-30.pdf
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Text-to-video (T2V) models

1. Adapt T2I models by using video-text pairs
2. Use diffusion models to generate all frames at once
3. Autoregressive generation



Challenges in T2V generation

1. The scarcity and weak relevance of text-video datasets
2. Big computational cost of training from scratch
3. Autoregressive video generation is prohibitively expensive
4. Higher spatio-temporal output space as compared to T2I
5. Weak conditioning, text-only
6. Fine-tuning T2I models decreases quality due to lower diversity of T2V data
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Motivation

1. Utilize a pre-trained T2I model (latent diffusion model with frozen weights)
2. Explicitly generate the starting frame
3. Condition on the text and the initial generated image



Dolphins jumping in the ocean – w/o image conditioning



Unicorns running along a beach – w/o image conditioning



T2I model

Dai, X., Hou, J., Ma, C. Y., Tsai, S., Wang, J., Wang, R., ... & Parikh, D. (2023). 
Emu: Enhancing image generation models using photogenic needles in a 
haystack. arXiv preprint arXiv:2309.15807.

1. Pre-train a on 1.1B image-text pairs
2. Latent diffusion model
3. U-Net backbone with 2.7B parameters
4. Condition on text embedded with CLIP and T5-XL
5. Fine-tune with a few thousand high-quality images
6. Emu achieves win rate of 82.9% compared to the pre-trained only counterpart



Step 1: Generate the starting frame with the T2I model



Step 2: Predict T subsequent frames



T2V model

1. Add new learnable parameters 
a. 1D temporal convolution after every spatial convolution
b. 1D temporal attention layer after every spatial attention layer
c. 1.7B of new learnable parameters
d. 4.3B parameters including the T2I model

2. T2I layers are kept frozen and applied to each frame independently
3. New learnable zero-initialised channels are added to the UNet’s input layer
4. Identity initialisation for temporal parameters (improves convergence by 2X)
5. The model produces videos with T = 8 or 16 frames of 512px resolution



Pseudo-3D Convolutional Layer



Depth-wise separable convolution

Image from: Hossain, D., Imtiaz, M. H., Ghosh, T., Bhaskar, V., & Sazonov, E. (2020, July). Real-time food intake monitoring using wearable egocnetric camera. 
In 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (pp. 4191-4195). IEEE.



Pseudo-3D Attention Layer



Dataset

1. 34M licensed video-text pairs
2. Videos range from 5 to 60 seconds
3. Covers a variety of natural world concepts
4. Unfiltered



Training: Multi-stage multi-resolution

1. Uses video clips of 1, 2 or 4 seconds sampled at 8fps or 4fps
2. First stage:

a. 70K iterations
b. 256px 8fps 1s videos
c. Classical noise schedule (from LDM, Rombach et al. 2021)
d. Smaller spatial resolution reduces per-iteration time by 3.5x

3. Second stage
a. 15K iterations
b. 512px 4fps 2s videos
c. Zero terminal-SNR

4. Optional third stage
a. 25K iterations
b. 512px 4fps 4s videos
c. Increases video duration



Performance vs. training iterations in the low-resolution 
stage



Training: Fine-tuning for better quality

1. Fine-tuning for better quality
2. Small subset of high motion high quality videos
3. 1.6K videos from the training set
4. Filtering based on automatic metrics (e.g. CLIP similarity between the video’s 

text and the first frame)



Dolphins jumping in the ocean – w/o HQ Finetune



Unicorns running along a beach – w/o HQ Finetune



Training: Zero terminal-SNR noise schedule

1. At training the noise schedule has non-zero signal-to-noise (SNR) ratio even 
at the terminal diffusion time step N

2. At test-time, however, the initial noise has 0 SNR
3. This issue is exacerbated in the video domain, as videos have spurious pixels 

across space and time
4. To mitigate, the noise schedule is scaled so that SNR in the final noised input 

is 0



Dolphins jumping in the ocean – w/o Zero SNR



Unicorns running along a beach – w/o Zero SNR



Interpolation model – analogous to the T2V model

1. Initialised from the video model F and only the temporal parameters are 
fine-tuned

2. Takes 8 frames as input
3. Outputs 37 frames at 16fps as output



Inference

1. The T2I model is run without the temporal layers to generate the initial image
2. The T2V model generates the video frames
3. Interpolation model increases the frame rate
4. All models are implicitly conditioned on the text due to the underlying T2I 

model



Evaluation: Human preference tests

1. Robust human evaluation scheme, where evaluators are asked to JUstify 
their choICE (JUICE) in the pairwise comparisons

2. Pre-defined justification reasons
a. Quality: pixel sharpness, motion smoothness, recognisable objects/scenes, frame 

consistency, amount of motion
b. Faithfulness: spatial text alignment, temporal text alignment

3. Win-rate in terms of quality and faithfulness (alignment of the generated video 
to the text prompt)

4. Majority vote from 5 evaluators for each comparison



Human evaluations



Ablation study – preference on adopting a design decision



Human agreement in Emu Video vs. Make-A-Video



Why human evaluators prefer EmuVideo?



Evaluation: Automated metrics

1. Faithfulness (CLIP-Text)
2. Temporal coherency (CLIP-Image)
3. Temporal coherency (Pixel-MSE)



Automated metrics vs. Human evaluation



Performance vs. training data



Evaluation: Strong retrieval baseline

1. A nearest neighbor baseline retrieves videos from the training set (34M 
videos)

2. Relies on the text’s CLIP similarity to the training prompts
3. Human evaluators prefer EmuVideo over real videos (81.1% in Faithfulness)



Evaluation: Commercial solutions

1. The models behind commercial solutions are often kept private and only 
examples (probably the best ones) of their generations are shared

2. Reuse the text prompt and the input image to generate a video



Conclusions

1. Stronger conditioning of image and text shifts the task towards predicting how 
an image evolves into the future

2. Key design decisions:
a. Multi-stage multi-resolution training
b. High-quality fine-tuning
c. Adjusted noise schedules for diffusion
d. No need for a deep cascade of models



Future work

1. Stronger text conditioning
a. During training, they use a video frame sampled from real videos
b. During inference, the initial frame is generated with a T2I model
c. The generated image, however, may not be representative of the text prompt

2. Autoregressive generation
a. The generated videos are rather short (16 frames)
b. Longer videos require interpolation between frames


