
Multigame playing by means of UCT enhanced
with automatically generated evaluation

functions

Karol Walȩdzik and Jacek Mańdziuk

Faculty of Mathematic and Information Science,
Warsaw University of Technology,

Pl. Politechniki 1, 00-661 Warsaw, Poland,
{k.waledzik,j.mandziuk}@mini.pw.edu.pl

Abstract. General Game Playing (GGP) contest provides a research
framework suitable for developing and testing AGI approaches in game
domain. In this paper, we propose and validate a new modification
of UCT game-tree analysis algorithm working in cooperation with a
knowledge-free method of building approximate evaluation functions for
GGP games. The process of function development consists of two, au-
tonomously performed, stages: generalization and specification.

1 Introduction

Games have long been a fascinating topic for Artificial Intelligence (AI) and
Computational Intelligence (CI) research. Majority of spectacular accomplish-
ments of AI in games, however, lacked universal learning mechanisms (most of
the top playing programs in classical board games do not apply any learning
whatsoever) and generality of approach also known as multigame playing ability.

In this paper we adopt autonomous learning approach to building evaluation
function for the General Game Playing (GGP) contest [6]. Our approach inter-
weaves generalization mechanism, which allows building a large pool of candidate
features, with specification stage (which selects a reasonable subset of pertinent
features). Both stages are performed without human intervention as they are
based on generally applicable heuristical meta-rules. What is more, contrary
to approach of many GGP competitors [16, 9], our method operates strictly on
game descriptions only, without any implicit expectations about their structure
or rules, such as expecting them to be played on boards, use pieces and so on.

The evaluation function devised based on the above described subset of fea-
tures is subsequently employed by what we call a Guided UCT algorithm - our
modification of the state-of-the-art UCT tree search method described in sec-
tion 3. Results of simulations performed in three game domains: chess, checkers
and connect-4 prove a clear upper hand of the enhanced UCT method over its
plain version, even in the case of not restrictive time regime.

While, due to space limitations, the description of some parts of our solution
must remain very brief and omit all non-crucial details, we invite users who



find our approach interesting to acquaint themselves with the full version of this
article available at AGI’2011 conference webpage.

2 General Game Playing Competition

GGP, one of the latest and most popular approaches to the multigame playing
topic, was proposed at Stanford University in 2005 in the form of General Game
Playing Competition [8]. General Game Playing applications are able to interpret
game rules encoded in Game Description Language (GDL) [11] statements and
devise a strategy allowing them to play those games effectively without human
intervention. Game states are represented by sets of facts while algorithms for
computing legal moves, subsequent game states, termination conditions and final
scores for players are defined by logical rules.

3 UCT

Upper Confidence bounds for Trees (UCT) is a simulation-based game playing
algorithm that proved to be quite successful in case of some difficult game-based
tasks, including Go [4] and GGP tournament (being employed by two-times-in-
a-row champion CadiaPlayer [3]). In each game state UCT advises to first try
each action once and then, whenever the same position in encountered again,
choose action according to the following formula: a∗ = argmaxa∈A(s){Q(s, a) +

C
√

lnN(s)
N(s,a) }, where A(s) denotes the set of all actions possible in state s, Q(s, a)

– average return of the state-action pair so far, N(s) – number of times state
s has been visited by the algorithm and N(s, a) - number of times action a
has been selected in state s. In realistic cases it is of course impossible to store
information about all game states in memory at the same time, therefore the
in-memory tree is actually expanded according to a kind of best-first strategy
and paths below it are sampled via traditional Monte-Carlo simulations only.

4 Guided UCT

UCT algorithm in its basic form requires no expert game-specific knowledge. We,
however, investigate the possibility of augmenting UCT with automatically
inferred game-specific state evaluation function. Approaches similar in idea,
but very different in realization, have been employed by several programs, e.g.
aforementioned CadiaPlayer [3] and MoGo [5]. For the sake of clarity, we will
refer to any version of our augmented UCT algorithm as Guided UCT (GUCT).

Once defined, the evaluation function F (s) can be employed by the GUCT
method in several ways, both in strict UCT and Monte-Carlo simulation phases.
Q(s, a) can be redefined as a weighted average of the evaluation function value
and the current simulation results or, alternatively, F can be used to pre-initialize
the data stored in the game tree built by the UCT whenever a new node is



added to it. F can also be used to influence the probability of selecting possible
actions in the Monte-Carlo phase so that it is (in some way) proportional to
their estimated value. In yet another approach the routine can be modified so
that in each and every state there is a (relatively low) probability that the
simulation will be stopped and the evaluation function’s value returned instead.
This approach, relying on the expectation that the F (s) values are more reliable
for positions closer to the end of game, can lead to improvements in algorithm
speed and, thus, allows for increasing the number of simulations.

5 Evaluation function

Due to the nature of GGP environment, there is virtually no practical way of
including significant expert domain-specific knowledge in the program itself. The
evaluation function must be automatically generated by some kind of AI-based
routine. Still, some GGP agents’ developers choose to specifically tune their ap-
plication towards certain classes of problems, expecting tournament organizers
to be inspired by real-world human games incorporating concepts such as boards,
pieces and counters [10, 16, 9]. In our application, however, we decided to con-
centrate on developing the evaluation function in as knowledge-free a manner as
possible and with as few preconceptions as possible. We construct the function
as a linear combination of a number of numerical characteristics of game states
called features. Features are by their nature game-specific and are inferred from
the game rules by a set of procedures described in the following sections.

5.1 Features generation

Our approach to game state features identification was inspired by prior work
in the GGP area, most notably [10], [2] and [16]. We aim to obtain features
represented by expressions similar to those in GDL, e.g. (cell ?x ?y b). In order
to find the value of such a feature in a given game state, we would attempt to
find all values of ?x and ?y variables for which this expression would be true.
The number of solutions to the expression is considered the feature value.

Finding the initial set of possible features consists in simple analysis of the
game definition (in GDL) and extraction of all suitable statements directly from
it. Afterwards, we proceed to the generalization phase, i.e. generate new features
by replacing all constants in existing expressions with variables, generating all
possible combinations of variables and constants. Next, we want to specialize the
features, i.e. generate features containing less variables than those in the original
set. In order to do this in a reasonable way, without generating a huge number
of features that would by definition always have zero value, we need to identify
valid domains of each and every argument of the predicates we try to specialize.
We do it in a simplified and approximate way, according to a routine inspired
by [16], relying on identification of how variables are shared between predicates.

Once a set of potential features has been generated, we perform some sim-
ple simulations in order to analyze them and compute a number of statistics.



Two of the statistics gathered at this point require more attention. Firstly, we
calculate each feature’s correlation with the expected final score for each player.
Secondly, we calculate a characteristic called stability. Stability reflects the ratio
of feature’s variation measured across all game states to average variation within
randomly generated game sequences. The idea is that more stable features are
more promising components of the evaluation function.

5.2 Evaluation function generation

Having identified a set of potential game state features, the last step in building
a linear evaluation function is selection of the most useful of them and assigning
a weight to each of them. While we plan to employ more advanced CI-based
approaches to this problem, as the first phase of our research we decided to em-
ploy for the task a very simplistic heuristical approach in order to validate the
feasibility of our ideas. The actual procedure we use for building the evaluation
function first orders the features by the minimum of their stability and absolute
value of their correlation with the final score (we prefer both these character-
istics to be as high as possible) and then rejects all but the first 30 features
(out of several thousand available). The linear combination of those features is
created by assigning them weights equal to the product of their stabilities and
correlations with the final score.

6 Experiment

In order to test the quality of the GUCT algorithm in cooperation with the simple
generated evaluation functions, we decided to run a small competition comparing
players using GUCT and UCT in 3 games of various complexity: connect-4,
checkers and chess. All game definitions have been downloaded from [7].

For the sake of fair comparison, both competing agents were based on the
same single-threaded implementation of the UCT algorithm. GUCT player made
use of the evaluation function only in the Monte-Carlo simulations phase, stop-
ping the simulation and using the evaluation function’s value as the result with
the probability of 0.1 in each searched node. All in all, the tournament consisted
of 60 matches in total, 20 matches for each game - 4 per time limit for move of
1s, 10s, 15s, 30s and 60s. Players swapped sides after each game. GUCT player
regenerated its evaluation function from scratch before each and every match.
Each player was rewarded 1 point for a victory, -1 point for a loss and 0 – for a
draw.

The tournament results for GUCT player are presented in figure 1. Please
keep in mind that any score above 0 indicates player’s supremacy over plain
UCT approach. First and most obvious observation here is that, considering the
simplicity of the evaluation function generation procedure, GUCT player fares
unexpectedly well, significantly outperforming its opponent in all games.

More detailed analysis of the results leads to two interesting observations
regarding the dependence of the algorithm’s performance on time limit per move.



Fig. 1. GUCT player scores for each game depending on time allotted for a move (in
seconds)

Both of them can only be treated as hypotheses considering limited experimental
data but anecdotal data gathered during development and preliminary testing
of the system strongly supports them as well.

Firstly, in case of very low time limits and sophisticated games, results of
the games are often insignificant (typically being a draw), as neither player has
enough time for analysis to play in a reasonable way. This effect is clearly visible
in the case of chess. At the same time, as the time limit per move is increased,
another effect can be observed – especially in the case of simpler games (e.g.
connect-4). While the UCT player is able to perform more and more simulations,
obtaining more and more precise results, GUCT-based agent still heavily relies
on the very rudimentary evaluation function, whose quality remains constant.

7 Conclusions and future research plans

As presented above, the experiments we have performed so far, strongly suggest
that our approaches to both modification of the UCT tree search algorithm and
automated game-independent process of creating evaluation function have high
potential. Our feature-building strategy follows two principles typical for human
thinking: generalization and specialization. While the former process is useful
for generating new concepts by ignoring certain details of the problem aspects,
the latter allows applying the concepts to specific situations and finding special
cases and exceptions to the rules. It is the unique synergy of the two approaches
that facilitates solving even seemingly distant and unrelated tasks.

At the moment, our immediate research plans include two paths of further
system development. Firstly, we intend to further enhance feature generation
system by including compound features, defined as differences or ratios of re-
lated simple features. Secondly, we are working on more sophisticated, CI-based
methods of evaluation functions generation. In the immediate future, we con-
sider employing co-evolutionary and/or Layered Learning [13] schemes, as well
as replacing linear evaluation functions with artificial neural networks.



References

1. P. Auer, N. Cesa-Bianchi, P. Fischer: Finite-time analysis of the multiarmed bandit
problem. Machine Learning 47(2/3), pages 235–256, 2002

2. J. Clune: Heuristic evaluation functions for General Game Playing. In Proceed- ings
of the Twenty-Second AAAI Conference on Articial Intelligence (AAAI- 07), pages
1134–1139, Vancouver, BC, Canada, 2007. AAAI Press.

3. H. Finnsson, Y. Björnsson: Simulation-based approach to General Game Playing. In
Proceedings of the Twenty-Third AAAI Conference on Articial Intelligence (AAAI-
08), pages 259–264, Chicago, IL, 2008. AAAI Press.

4. S. Gelly, Y. Wang: Exploration exploitation in Go: UCT for Monte-Carlo Go. In
Neural Information Processsing Systems 2006 Workshop on On-line trading of explo-
ration and exploitation, 2006

5. S. Gelly, Y. Wang, R. Munos, O. Teytaud: Modification of UCT with patterns on
Monte Carlo Go. Technical Report 6062, INRIA, 2006

6. General Game Playing website by Stanford University. http://games.stanford.edu/.
7. General Game Playing website by Dresden University of Technology.
http://www.general-game-playing.de/.

8. M. Genesereth, N. Love: General Game Playing: Overview of the AAAI Competi-
tion. http://games.stanford.edu/competition/misc/aaai.pdf, 2005.

9. D. Kaiser: The Design and Implementation of a Successful General Game Playing
Agent. In Proceedings of FLAIRS Conference, pages 110–115, 2007

10. G. Kuhlmann, K. Dresner, and P. Stone: Automatic heuristic construction in a
complete General Game Player. In Proceedings of the Twenty-First AAAI Confer-
ence on Artificial Intelligence (AAAI-06), pages 1457–1462, Boston, MA, 2006. AAAI
Press.

11. N. Love, T. Hinrichs, D. Haley, E. Schkufza, M. Genesereth:
General Game Playing: Game Description Language Specification.
http://games.stanford.edu/language/spec/gdl spec 2008 03.pdf, 2008.

12. J. Mańdziuk, Knowledge-Free and Learning-Based Methods in Intelligenet Game
Playing, ser. Studies in Computational Intelligence. Berlin, Heidelberg: Springer-
Verlag, 2010, vol. 276.

13. J. Mańdziuk, M. Kusiak, K. Walȩdzik: Evolutionary-based heuristic generators
for checkers and give-away checkers. Expert Systems, 24(4): 189–211, Blackwell-
Publishing, 2007.

14. J. Reisinger, E. Bahçeci, I. Karpov and R. Miikkulainen: Coevolving strategies for
general game playing. In Proceedings of the IEEE Symposium on Computational In-
telligence and Games (CIG’07), pages 320–327, Honolulu, Hawaii, 2007. IEEE Press.

15. J. Schaeffer, N. Burch, Y. Björnsson, A. Kishimoto, M. Müller, R. Lake, P. Lu,
and S. Sutphen. Checkers is solved. Science, 317:1518–1522, 2007.

16. S. Schiffel, M.Thielscher: Automatic Construction of a Heuristic Search Func-
tion for General Game Playing. In Seventh IJCAI International Workshop on Non-
monotonic Reasoning, Action and Change (NRAC07).


