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Abstract. This paper is focused on a Double Dummy Bridge Problem
(DDBP) which consists in answering the question of how many tricks are
to be taken by a pair of players assuming perfect play of all four sides
with all cards being revealed. Several experiments are also presented in
a variant of DDBP in which the information about to whom of the two
players in a given pair a particular card belongs to is hidden. In con-
trast to our previous works, which were devoted to no trump contracts,
here we concentrate on suit contracts. Several interesting conclusions
are drawn from comparison of weight patterns of networks trained on
no trump contracts only vs. those trained exclusively on suit contracts.
The ultimate goal of this research is to construct a computer program
playing the game of contract bridge using neural networks and other
CI techniques with the basic assumption of using zero-human-knowledge
approach and to learn purely on examples.

1 Introduction

The game of bridge has attracted attention of many AI and CI researchers,
e.g. [1-5]. In particular, some interest was also devoted to DDBP [5, 6] which is
regarded as an interesting benchmark problem at initial stage of bridge playing
program’s development.

In this paper we continue our research efforts devoted to DDBP having in
mind the ultimate goal - construction of a bridge playing system without explicit
presentation of any human expert knowledge concerning the game.

It must be emphasized that the rules of the game were not presented in any
form. In all experiments the training data contained only deals (i.e. information
about which player each card belongs to) with target information about the
number of tricks to be taken by one pair of players.

2 Previous Work - No Trump Contracts

In this section we briefly describe previous results obtained for no trump con-
tracts, published in [7-9].

* This work was supported by the Warsaw University of Technology grant no. 504G
1120 0008 000



2.1 Various Approaches to DDBP

In [7] several neural network architectures were tested in the DDBP (from NS
viewpoint) for no trump contracts. The data was taken from GIB Library [10]
which includes 717,102 deals with revealed all hands. Additionally the library
provides a number of tricks taken by the pair NS in each contract under the
assumption of a perfect play of all sides.

Several feed-forward perceptron neural networks with logistic activation func-
tion were created, trained using RProp algorithm and tested in JNNS (Java Neu-
ral Network Simulator) environment. In most cases logistic (unipolar sigmoid)
activation function was used for all neurons except for the case of representation
of data using negative numbers, where the hyperbolic tangent (bipolar sigmoid)
activation function was applied.

Two main approaches to coding a deal suitable for neural network input
representation were applied. In the first approach each card of each hand was
represented by two real numbers: the value (2, 3,..., king, ace) and the suit -
S (Spades), H (Hearts), D (Diamonds), C (Clubs). Both real numbers were
calculated using a uniform linear transformation to the range [0.1,0.9] (see [7, 8]
for details).

In the other deal representation - which was superior to the above described
one - the positions of cards in the input layer were fixed, i.e. from the leftmost
input to the rightmost one the following cards were represented: 2 of Spades, 3
of Spades, ..., king of Clubs, ace of Clubs. An input value denoted the hand to
which a given card belonged: 1.0 for N, 0.8 for S, —1.0 for W, and —0.8 for E.
The simplest network 52 — 1 accomplished the result (94.15 | 76.15 | 31.29)!,
and the network with one hidden layer: 52 — 25 — 1 improved this score to
(95.81 | 79.95 | 34.02). A slight modification of the above way of coding a
deal consisted in extending the input representation to 104 neurons. The first
52 neurons represented assignment to a pair (value 1.0 for N.S pair and —1.0
for WE), and the other 52 ones represented a hand in a pair (1.0 for N or
W and —1.0 for S or E). The simplest network: 104-1 accomplished the result
(94.76 | 77.52 | 32.19), and two-hidden layer network 104 — 30 — 4 — 1, yielded
the result (95.64 | 79.63 | 33.74).

The number of iterations required to learn the training set without overfitting
depended mostly on the way of coding a deal. The networks with the first type
of coding needed a few tens of thousands iterations, and networks with coding
by cards’ assignment only several hundred ones.

A few more ways of coding a deal were also tested, but regardless of the
problem representation it was concluded that with the proposed approach
exceeding the level of (96 | 80 | 34) is a challenging task.

As a point of reference simple estimator based on Work point count (ace - 4
points, king - 3, queen - 2, jack - 1) was proposed. The number of tricks to be

! Each of the three values denotes the fraction in percent of test deals for which the
network was mistaken, respectively by no more than 2 tricks (94.15%), no more than
1 trick (76.15%), and was perfectly right (31.29%). This notation is used in the whole

paper.



taken by NS was estimated as (13/40) * points_of _NS. This estimator achieved
the result of (86.19 | 61.32 | 22.52) which was significantly inferior to the ones
achieved by neural architectures. This result suggests that networks learnt some
additional information besides simple estimation of Work points.

2.2 Analysis of Trained Networks

Except for numerical results it is interesting to explore what is the problem
representation in connection weights of trained networks. A closer look at this
data obtained for 52—25—1 architectures revealed some interesting observations
[8,9].

Firstly, weights of connections between input neurons representing aces and
kings had always the biggest absolute values. This feature was simple to explain
(for humans) - these cards were the most important in the game of bridge,
especially in no trump contracts.

Secondly, in each trained network there were exactly 4 connections from input
to hidden neurons which had absolute values noticeably bigger than all others
(about 25.0 vs less than 7.0). Not surprisingly these favored connections started
from 4 input neurons assigned to aces.

Thirdly, in all networks it was also possible to point out hidden neurons
focused on one particular suit, one neuron per suit. Such neuron had much
bigger absolute values of connections’ weights from inputs representing the suit
than weights’ values from the rest of inputs. These connections are marked using
long-chain lines in Fig. 1.

Another very interesting feature which appeared in all trained networks with
25 hidden neurons was the presence of four hidden neurons each specialized in
five cards from one suit: ten, jack, queen, king, and ace (in Fig. 1 the respective
connections are marked using the dotted line). In all these groups the most
important were queens and kings, jacks were less important, but still much more
relevant than aces and tens. The hypothesis is that these hidden neurons are
responsible for very important aspect of the play of bridge - the finesses.

Finally, there existed hidden neurons with values of connections to the output
close to zero. The authors were unable to find any pattern in their weights of
connections from the inputs. The number of such neurons increased in case of
more complicated networks.

3 Current Experiment - Suit Contracts

The new research results presented in this paper still concern the solution of
DDBP, but, unlike in the previous research, the focus is now on suit contracts.
For comparison with previous results in most cases the same network architec-
tures and similar ways of coding a deal are used. These results are presented and
discussed in section 3.2.

Another interesting issue is to check whether information about the exact
hand location of a given card is really important in the training data, or maybe



Table 1. Results (in %) obtained for the test sets for 52 — 25— 1 networks. NT denotes
No Trump contracts.

Description Results
NT; input values: N: 1.0, S:0.8, W: 1.0, E: —0.8 ||(95.81 ] 79.95 | 34.02)
NT; input values: N :1.0, 5:0.8, W:—-1.0, E: —-1.0 (95.97 | 80.46 | 34.35)
NT; input values: NS : 1.0, WE : —1.0 (96.07 | 80.88 | 34.66)
Suit contracts; input values: NS : 0.5, WE : —0.5 98.68 | 87.88 | 40.11)
the above network tested on N'T 91.64 | 69.21 | 26.06)
NT and suit contracts; input values: NS : 0.5, WE : —0.5([(97.72 | 84.90 | 37.56)
the above network tested on suit contracts only 98.57 | 87.24 | 39.43)
the above network tested on N'T only 94.30 | 75.50 | 30.09)
)
)
)
)
)
)
)

Spades contracts; input values: NS : 1.0, WE : —1.0 98.77 | 88.00 | 40.13
the above network tested on Hearts contracts 59.18 | 39.09 | 14.12

the above network tested on Diamonds contracts 58.89 | 38.67 | 13.51
the above network tested on Clubs contracts 58.86 | 38.90 | 13.77
Hearts contracts; input values: NS : 1.0, WE : —1.0 98.65 | 87.81 | 40.18
Diamonds contracts; input values: NS : 1.0, WE : —1.0 [[(98.66 | 87.68 | 39.96
Clubs contracts; input values: NS : 1.0, WE : —1.0 98.73 | 87.90 | 40.02
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it would be enough to locate cards as belonging to either VS or W E pairs. This
issue is discussed in section 3.1.

Finally, it seems worth investigating whether the results are repeatable, i.e.
whether within the ensemble of neural nets the results for a given contract would
be the same. This question is considered in section 3.3.

All results are summarized in Table. 1.

3.1 Hiding Opponents’ Cards in NT Contracts

In previous work with NT contracts and all 4 hands revealed each of 52 input
neurons pointed out the hand to which a given card was assigned, namely input
equal to 1.0 denoted N hand, 0.8: S hand, —1.0: W, and —0.8: E. Let us recall
that 52 — 25 — 1 network trained using this way of coding achieved the result of
(95.81 | 79.95 | 34.02).

Hiding opponent’s cards was carried out by applying the following values
for hands’ description: NV : 1.0, S : 0.8, W and E : —1.0. Results yielded by a
network with the same architecture (52-25-1) were slightly improved: (95.97 |
80.46 | 34.35).

Surprisingly, hiding also information about cards’ assignment in the pair NS,
i.e. using input values: N and S : 1.0, W and F : —1.0, yielded another slight
improvement: (96.07 | 80.88 | 34.66).

These results prove that for data representation chosen in the experiments
information about exact hand location of each card is not helpful and sometimes
even misleading. The explanation of this phenomenon is one of our current re-
search goals.
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Fig.1. NT contracts. Weights of connections of trained neural network with 25
hidden neurons (52 — 25 — 1). Each circle represents the weight of one connection. If
the circle is placed in the leftmost column, it represents the weight of connection from
hidden to output neuron, otherwise - from input to hidden neuron. The radius of the
circle represents the absolute value of connection weight. Black circles denote negative
and white ones positive weights.

3.2 Suit Contracts

In the experiments with suit contracts a deal was coded in the following way.
Cards of the trump suit had input values equal to 1.0 for players N, S or —1.0
for players W, E. Cards of other suits: 0.5 for N, S and —0.5 for W, E. When no
trump contract was presented to the network, all cards had input values equal
to 0.5 or —0.5, resp. for NS and W E pairs.

Neural network with 25 hidden neurons trained on 400, 000 examples (100, 000
deals repeated 4 times - once for each trump suit) accomplished the results
(98.68 | 87.88 | 40.11). Testing this network on no trump contracts (not present
in the training set) led to poorer score: (91.64 | 69.21 | 26.06).

When no trump contracts were added to the training and test sets, network
with the same architecture yielded the result of (97.72 | 84.90 | 37.56). Results
of testing this network separately on suit contracts were significantly better
(98.57 | 87.24 | 39.43) than results of tests on no trump contracts only (94.30 |
75.50 | 30.09).
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Fig. 2. Suit contracts. Weights of connections of trained network with 25 hidden
neurons (52 — 25 — 1). See description of Fig. 1.

The network trained only on Spades contracts achieved the result of (98.77 |
88.00 | 40.13). Results of testing this network based exclusively on Hearts con-
tracts: (59.18 | 39.09 | 14.12), Diamonds contracts: (58.89 | 38.67 | 13.51),
and Clubs ones: (58.86 | 38.90 | 13.77) confirmed the effect of “specializa-
tion”. Furthermore, the networks trained exclusively on other suits yielded sim-
ilar results, i.e. (98.65 | 87.81 | 40.18) for training on Hearts contracts only,
(98.66 | 87.68 | 39.96) for Diamonds contracts, and (98.73 | 87.90 | 40.02) for
Clubs contracts. It is an interesting observation that results of specialized net-
works presented above are on the same level as results of networks trained on all
suit contracts simultaneously. Closer investigation of this counterintuitive effect
is planned in the near future.

The above results imply that no trump contracts and suit contracts
should be treated separately. Connection weights of a network trained using
suit contracts only are presented in Fig. 2. The main difference between this
figure and Fig. 1 representing connection weights of a network trained exclusively
on no trump contracts is visibly bigger relative importance of the lowest cards in
a deal. This observation is also confirmed by Table. 2, where connection weights
of a network without hidden neurons (52-1) are compared. This conclusion is in
line with human bridge players’ experience. Moreover, it is clear from the table
that no significant differences between suits exist which again is a desirable effect.



Table 2. Values of connections between neurons of two networks without hidden neu-
rons 52 — 1 trained respectively on no trump and suit contracts. Values were linearly
scaled to interval (0,4).

NT Contracts Suit Contracts
Card’s value S H D C S H D C
0.342 | 0.327 | 0.329 | 0.342 || 1.660 | 1.670 | 1.668 | 1.667
0.340 | 0.334 | 0.328 | 0.353 || 1.664 | 1.667 | 1.663 | 1.660
0.347 | 0.314 | 0.351 | 0.345 || 1.669 | 1.655 | 1.669 | 1.685
0.341 | 0.332 | 0.341 | 0.344 || 1.660 | 1.673 | 1.676 | 1.663
0.356 | 0.349 | 0.339 | 0.329 || 1.684 | 1.685 | 1.680 | 1.688
0.380 | 0.331 | 0.354 | 0.356 || 1.680 | 1.684 | 1.687 | 1.697
0.358 | 0.361 | 0.375 | 0.400 || 1.709 | 1.719 | 1.718 | 1.723
0.496 | 0.469 | 0.461 | 0.473 || 1.782 | 1.791 | 1.780 | 1.783
0.660 | 0.663 | 0.671 | 0.684 || 1.921 | 1.916 | 1.918 | 1.938
1.047 | 1.032 | 1.056 | 1.030 || 2.174 | 2.167 | 2.177 | 2.172
1.676 | 1.688 | 1.675 | 1.656 || 2.569 | 2.569 | 2.572 | 2.565
2.643 | 2.643 | 2.677 | 2.655 || 3.207 | 3.210 | 3.220 | 3.216
3.975 | 3.971 | 3.966 | 3.989 || 3.982 | 3.984 | 3.973 | 3.995

= RO | S| o oo| 1| o| ot| | ol o

Coming back to comparisons between Fig. 1 and Fig. 2 there can also be
identified some common patterns in both figures, e.g. cards from aces to tens
are the most important - connections from input neurons representing them to
hidden neurons have the biggest absolute values. It is also possible to point out
hidden neurons specialized in one suit, additionally with connections from kings
and queens being the most important.

In summary, it should be emphasized that the above described weight pat-
terns were observed also when other training sets had been used.

3.3 Reliability of Results

In order to check the reliability of results, 4 networks with one hidden layer of 25
neurons each, differing only by initial, randomly chosen connection weights, were
trained based on the same set of deals. This experiment was aimed at checking
the number of deals from the training set for which all 4 networks would learn
the same number of tricks to be taken by IV S.

For no trump contracts all 4 networks estimated the same number of tricks in
61.23% of contracts. In 37.93% of contracts estimated numbers of tricks differed
by 1 trick, in 0.81% by 2 tricks and in 0.03% by 3 tricks. The same experiment for
suit contracts output the following results: for 63.40% of contracts all networks
were unanimous, for 36.56% of contracts there was a 1 trick difference, and for
0.04% of them the difference was equal to 2 tricks.

In 98.13% of testing deals for no trump contracts, and in 99.53% for suit
contracts, real output values of all 4 trained networks differed by no more than
0.06. In these experiments target number of tricks was calculated using a uniform



Table 3. Results for subsets of a testing set achieved by a network 52 — 25 — 1 trained

on Spades contracts.

Target number of tricks| Number of deals Results
0 1,138 (93.32] 66.61 | 12.30)
1 2,725 (97.39 | 81.21 | 34.53)
2 5, 156 (98.10 | 86.66 | 40.73)
3 8,043 (98.93 | 88.96 | 41.41)
4 10,447 (98.94 | 89.04 | 40.36)
5 12,201 (98.85 | 88.67 | 40.80)
6 12,927 (99.03 | 88.75 | 41.32)
7 12,709 (99.10 | 88.99 | 40.50)
8 11,467 |(99.28 | 89.29 | 40.46)
9 9,618 (99.14 | 89.19 | 42.14)
10 6, 866 (98.89 | 88.45 | 40.58)
11 1,225 (97.94 | 85.87 | 42.32)
12 1,935 (97.57 | 81.71 | 31.94)
13 543 (94.66 | 73.85 | 9.39)
All 100, 000 (98.77 | 88.00 | 40.13)

linear transformation to the range [0.1,0.9], so value 0.06 was the range of real
output values of networks for each number of tricks.

The results prove that the confidence in the learning process is high, and the
training results are repeatable.

3.4 Results by the Target Number of Tricks

Results of a network 52 — 25 — 1 trained on Spades contracts were investigated
in detail in order to test whether the efficacy of the system varies for different
numbers of target tricks. The test set containing 100,000 deals was divided into
subsets which were then tested individually. Results are presented in Table. 3.

Only the results for 0, 1, 12, and 13 tricks are significantly worse than the
result attained for the whole test set (the last row of the Table). Results for the
other subsets are on the similar level, in spite of considerable differences in the
number of deals in these subsets (e.g. 4,225 deals with 11 tricks vs. 12,927 ones
with 6 tricks).

3.5 Sample Deals

Two sample deals are presented in Fig. 3. The first deal (Fig. 3(a)) was included
in the reliability test described in previous section. Each of 4 networks estimated
different number of tricks to be taken by the pair NS, i.e. 5,6,7, and 8. A closer
analysis of this deal revealed that the number of tricks for N.S in no trump con-
tract depends on information who makes defender’s lead. Defender’s lead from
N or S hand enables to take 8 or 7 tricks, resp. On the other hand, defender’s
lead from W or E limits the number of tricks for VS to 6 or 5, resp. Information
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Fig. 3. Sample deals.

about defender’s lead wasn’t included in the input data (desired output values
were specified for defender’s lead from W hand). Hence the behavior of neural
networks can be “justified”.

The second deal (Fig. 3(b)) is a successful example of learning suit contracts
- the network predicted grand slam of spades for N.S with only 26 points (Work
point count). Please note that also grand slam of Hearts for NS is possible, but in
this case the network yielded only 12 tricks. It is an interesting observation
that the network estimated higher longer suit (Spades) than stronger
one (Hearts).

4 Conclusions and Future Research

Based on the results, it can be concluded that in the DDBP it is advisable to
train neural networks separately for no trump contracts and suit ones.

Reliability tests show that the confidence in training process is high and the
results are repeatable.

Interesting patterns found in figures presenting networks connection weights’
values (Fig. 1 and Fig. 2), and their reasonable explanation based on human
experience in the game of bridge, look very promising and suggest taking into
consideration the possibility of automatic, unguided discovering of knowledge
hidden in connection weights.

Currently we are focused on defining an automatic input data preprocessing
system capable to find functional similarities in deals and based on that allowing
to either preprocess (transform) training data or divide it into subsets suitable
for specialized networks. Similarity of results achieved for subsets of deals with
the same number of target tricks (Table. 3) implies that dividing training set
according to the number of target tricks and then applying specialized networks
to these subsets seems to be a promising direction.

The next “big” step is to advance this research into play phase.
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