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Abstract. In this paper a new approach to the problem of ordering data in neural
network training is presented. According to conducted research, generalization
error visibly depends on the order of the training examples. Construction of an
order gives some possibility to incorporate knowledge about structure of input
and output space into the training process. Simulation results conducted for the
isolated handwritten digit recognition problem confirmed the above claims.

1 Introduction

The problem of optimal ordering of the training data has a great meaning in sequential
supervised learning. It has been shown ([1],[2]), that improper order of elements in the
training process can lead to catastrophic interference. This mechanism can also occur
during each training epoch and disturb neural network training process. Random or-
der of elements prevents from interference but can lead to non-optimal generalization.
Consequently, for example, most of efficient algorithms for training RBF networks ar-
bitrarily choose initial patterns ([3]).

In this paper a new approach to patterns ordering is proposed and experimentally
evaluated in the context of supervised training with feed-forward neural networks. The
idea relies on interleaving two training sequences: one of particular order and the other
one chosen at random.

In order to show the feasibility of this approach four models of an order are defined
in the next section together with a sample test problem - isolated handwritten digit
recognition. Numerical results of proposed interleaved training are presented in Sect. 2.
Conclusions and directions for future research are placed in the last section.

Input and output spaces of a network can be considered as metric spaces. It is always
possible to introduce a metrics since each of them can be immersed in Rn (where n is
a space dimension) with natural metrics

M : Rn × Rn → R+ ∪ {0}, M : ((x)n
k=1, (y)n

k=1) 7→
√√√√

n∑

k=1

(xk − yk)2.



Moreover, if some other knowledge about the data is possessed - e.g. if input data
consists of p, (p > 1) values of different scales - metrics with normalization or non-
euclidean metrics may be used, which would model the space considerably better. In
such a case it is possible to divide a space into p subspaces and calculate the following
metrics:

M : (x, y) 7→
√√√√

p∑

i=1

(di(x, y)
di

)2

, (1)

where di(x, y) denotes the distance between elements x and y according to the i-th
metric and di represents the average pairwise distance between elements belonging to
the i-th scale data.

After choosing and normalizing metrics on input and output spaces it is possible to
introduce metrics on pattern space as it was done on space divided into subspaces.

1.1 Four models of an order

In this section four schemes of ordering training patterns together with their character-
istics are introduced.

Let input and output spaces be denoted by I and O, resp., and let {Tk} be the set
of training patterns. The models presented below rely on the fact that given a metrical
space of patterns it is possible to determine a pattern that is the nearest to the center of
the average probability of occurrence - analogously to the mass center point.

Model I. Let us denote by SI
k a sum of distances from a given element Tk to the rest

of elements of the set:

SI
k =

n∑

l=1

M(Tk, Tl)

A sequence of q training patterns (Tl)
q
l=1 that fulfils the following set of inequalities:

∀1≤l≤q−1 SI
l ≥ SI

l+1 (2)

is called ordered set of model I. A sequence created with rule (2) will begin with out-
lying patterns and end with close-to-average ones. Since the ending of the sequence
finally tunes weights of the network (and if not randomly chosen can have a biased
impact on the final network’s weights) it is important to characterize these average ele-
ments. In the space of patterns an ending of the sequence is expected to concentrate on
the following two kinds of neighborhoods:

1. Global maxima of probability density. In such a neighborhood an average distance
should be minimized.

2. Geometrical centers. These points minimize the sum of distances to all other points.
If probability of patterns is uniformly distributed the sequence ending would be
concentrated on geometrical centers.



In case of multicluster data it is expected that the training sequence ending would
be dominated by elements of one of the clusters (except for the cases of symmetrical
distributions of clusters). In such a case the sequence ordered in the above way will
generalize an approximated function better than a randomly ordered sequence only on
elements of preferred cluster.

Since the construction of an ordered set according to model I is straightforward its
description is omitted.

Model II. Given a metrics M defined on pattern space and a set {Tk} an average
pairwise distance SII

n between the first n elements of the sequence can be expressed as:

SII
n =

2
(n− 1)n

n∑

k=1

n∑

l=k+1

M(Tk, Tl).

A sequence of q training patterns (Tl)
q
l=1 that fulfils the set of inequalities:

∀1≤l≤q−1 SII
l ≥ SII

l+1 (3)

is called ordered set of model II. Similarly to the previous model a sequence created
with rule (3) is expected to prefer outlying patterns at the beginning of the sequence and
place the average ones at the sequence ending. Rule (3) is more sensitive to geometrical
centers than probability centers compared to rule (2). A reason for such statement is an
observation that elements in the sequence ordered using rule (3) that occur after given
element do not have an influence on its position (as if they had been removed from the
set). What is more, a selection of an element according to presented algorithm implies
that the difference in the average distance after selection is minimal - the change of
geometrical center of a set should also be small. Removal of an element changes local
density of probability.

Algorithm for ordering a set in Model II. Given set {Tk} can be ordered to suffi-
ciently approximate ordered set of model II with the use of the following algorithm:

1. Put all q elements in any sequence (Tl)
q
l=1.

2. Create an empty sequence O.
3. Create distance array D[1..q]:

∀1≤l≤q Dl :=
q∑

k=1

M(Tl, Tk)

4. Choose a minimal value of element of D:

v := min1≤l≤q Dl.

5. Pick one element k from the set {1 ≤ l ≤ q |Dl = v}.
6. Update distance matrix:

∀1≤l≤q Dl := Dl −M(Tk, Tl)



7. Take element Tk out of sequence T and place it at the beginning of sequence O.
8. Remove element Dk from distance array.
9. Put q := q − 1.

10. Repeat steps 4-10 until q = 0.

Model III. Ordered set of model III is obtained by reverting ordered set of model I.
Model IV. Ordered set of model IV is obtained by reverting ordered set of model II.

1.2 Test problem

In order to test an influence of training data ordering on the learning process, a sample
problem consisting in isolated handwritten digits recognition was chosen. The pattern
set consisted of 6000 elements, randomly divided into training set T , |T | = 5500 and
test set V , |V | = 500. Binary {0, 1} input vectors of size 19×17 represented bitmaps of
patterns, and the 10-element binary {0, 1} output vector represented the classification
of the input digit (i.e. exactly one of its elements was equal to 1). All patterns were
centered. It should be noted that no other preprocessing took place. In particular digits
were not scaled, rotated or skewed appropriately. A detailed description of this data set
and results achieved by other recognition approaches can be found in [4].

An ensemble of neural networks with 1 hidden layer composed of 30 neurons
was trained using backpropagation method. Both hidden and output neurons were sig-
moidal.

Input subspace became metrical with the use of the following metrics:

I(v, w) = minx,y∈{−2,−1,0,1,2}H(v, R(x, y, w)) + |x|+ |y|

where H(·, ·) denotes Hamming distance, and R(x, y, w) denotes translation of vector
w by x rows and y columns. In the output subspace a discrete metrics O(v, w) was
used. Based on metrics defined on subspaces a metrics on pattern space was defined
according to (1) as follows:

M : (x, y) 7→
√(I(x, y)

I

)2

+
(O(x, y)

O

)2

.

For the training set it was obtained I = 62.55, O = 0.9.

2 Results

All numerical results concerning RMSE and STDEV are presented as the averages over
100 networks, each with randomly selected initial weights. Unless otherwise stated
each training period was composed of 600 epochs. For comparison purposes all figures
representing one pass of training/testing for different orders of the training data are
presented for the same, randomly selected network (i.e. with the same initial choice of
weights).

According to previously formulated hypothesis in case of ordered sequences ele-
ments of particular clusters were not uniformly distributed over the sequence, which is
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Fig. 1. Clusters’ elements distribution over sequences

illustrated in Fig. 1. For example, elements representing digits 1 and 7 are concentrated
at the endings of both ordered sequences (Fig. 1(b) and Fig. 1(c)) and elements repre-
senting 0 and 2 are located mainly at the beginnings, whereas distributions of all digits
in case of random order (Fig. 1(a)) are uniform. Distributions of ordered sequences are
similar to each other, but they remarkably differ on digits 8 and 9.

2.1 Initial results for pure random and ordered training data

The case of randomly ordered training data (henceforth referred to as pure random case)
proves that the considered problem can be solved using assumed network architecture
and learning algorithm. This case also provides a possibility of comparison between
ordered training models and the pure random one. The plot of RMSE of the training
and test data in pure random order case are presented in Fig. 2.

The plots of RMSE of the network trained with sequence ordered according to
model II are presented in Fig. 3. It can be concluded from the figure that conver-
gence of training is worse compared to random order.

In hope to improve the convergence of the training process switching of training
sequences with a random one was tried. Fig. 4 presents changes of RMSE in case the
first 300 training epochs was performed with the sequence defined according to model
IV, which was then replaced with a randomly ordered sequence for the remaining 300
epochs. Please note the high decrease of the error in the middle of the plot - i.e.
when the model IV training sequence was replaced by the random one.



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  100  200  300  400  500  600

R
M

S
E

cycle

RMSE on teach set

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  100  200  300  400  500  600

R
M

S
E

cycle

RMSE on test set

Fig. 2. RMSE obtained in each cycle using randomly ordered training data
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Fig. 3. RMSE when using training data ordered according to Model II

Following the idea of switchings sequences applied in the previous experiment a
simulation of the training process with more frequent sequence exchange was per-
formed. In this case the sequence ordered according to model II was exchanged with
the random sequence after every 20 training epochs. The results in terms of RMSE plot
are presented in Fig. 5. A comparison of RMSE in the above case with a pure random
case is presented in Fig. 6. It is remarkable that after each alteration of model II se-
quence with a random one RMSE becomes lower than in pure random case. The
possible explanation is that non-uniformity of elements’ distribution has the effect in
local changes of weights’ change direction during presentation of training sequences
which consequently allows the network to escape from local shallow minima.

2.2 Proposition of training sequence switching

Due to observed activity of ordered sequences it should be considered to interleave them
with random ones in the training process. It is therefore proposed to apply a model with
decreasing probability of using ordered sequences in the training process. Let

P (t) = pe−ηt (4)

be the probability of presenting ordered sequence, where t is the number of the training
epoch, p - the initial probability, η - positive coefficient of probability decrease. Hav-
ing two training sequences - one ordered according to any of the above described four
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Fig. 4. RMSE in case the training data ordered according to Model IV is used in the first 300
epochs followed by training with the random sequence in the remaining 300 epochs
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Fig. 5. RMSE in case when training data ordered according to Model II is periodically (after every
20 cycles) exchanged with a random sequence

models and the other one being a purely random) in each epoch the ordered training
sequence is chosen according to the above probability. Since the remainder of the paper
will be devoted to the proposed algorithm, henceforth, model I, model II, model III and
model IV will refer to the above training method in which the respectively ordered se-
quence is interleaved with the random one. As a special case also two randomly chosen
(fixed) sequences are considered as the two interleaved sequences. This case will be
denoted by switched random.

3 Performance of proposed algorithm

In each case training process consisted of 600 epochs, initial probability p was equal to
1.0 and η was chosen so that P (600) = 0.03.

3.1 Independent training

Statistics (mean RMSEs and Standard Deviations) of populations of neural networks
obtained by training with given model of an order are presented in Table 1. Sequences
are ordered according to RMSE values on the test set. Visualization of the RMSE values
is presented Figure 4, in which all populations are presented. Each dot represents one
neural network. Initial weights of these networks were independently chosen at random.



-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0  100  200  300  400  500  600

di
ffe

re
nc

e 
of

 R
M

S
E

cycle

difference of RMSE on teach set

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0  100  200  300  400  500  600

di
ffe

re
nc

e 
of

 R
M

S
E

cycle

difference of RMSE on test set

Fig. 6. Difference between RMSEs calculated in Fig. 2 (pure random case) and Fig. 5 (model II
interleaved with random sequence).

Table 1. Statistics of RMSE

model mean RMSE SD RMSE mean RMSE SD RMSE
on train set on train set on test set on test set

model III 0.0798 0.0140 0.2591 0.0109
model I 0.0844 0.0115 0.2602 0.0116

model IV 0.0818 0.0138 0.2621 0.0098
model II 0.0841 0.0206 0.2640 0.0128

switched random 0.0882 0.0244 0.2640 0.0165
pure random 0.0939 0.0209 0.2668 0.0118

It is remarkable that among populations obtained with use of randomly ordered
sequences and ones obtained using sequences ordered according to proposed mod-
els exists a statistically significant difference. P-values for hypothesis about signifi-
cant difference (obtained from t-Student test) are presented in Table 2.

Table 2. P-value of hypothesis that distributions of RMSE on the training set are different.

model switched model model model pure
III random IV II I random

model III 1
switched random 0.002 1

model IV 0.288 0.0170 1
model II 0.069 0.1688 0.3256 1
model I 0.009 0.1449 0.130 0.874 1

pure random 0.000 0.0613 0.000 0.000 0.000 1

It can be concluded that an improvement of average RMSE in the best case of ran-
domly ordered sequence and the best case of the ordered one (model III vs switched
random) is equal to 9.52% and 1.84%, resp. on the training and tests sets.



The average pattern classification result of the best model (model III) on the test set
was equal to 92.55%.
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(c) data ordered according to Model I
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(d) data ordered according to Model II
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(e) data ordered according to Model III
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Fig. 7. RMSE on training and test sets in last epoch in case of using ordered sequence switched
by random one according to formula (4).

3.2 Training represented as dependent variables

In order to eliminate randomness of neural network initial weights (which can be con-
sidered as a noise in case of independent samples) the research of dependent samples
was performed. Population consisted of 64 neural networks and each of them has been
trained 6 times (once for each training model) - each time with the same set of initial
weights.



In order to analyze the influence of ordering on possibility of obtaining a network
with good generalization abilities the top 20 recognition results on the test set were
selected. The average and the maximum pattern classification results on the test set of
these networks were equal to 93.93% and 94.49%, resp. Fractions of networks trained
according to particular models’ orders, which belonged to this group are presented in
Table 3. Note, that reverted models are dominating (70%) and also no neural net-
work trained exclusively with random sequences has qualified to the set.

Table 3. Percentage of sequences among the top 20 networks on the test set.

model switched model model model pure
III random IV II I random

percentage 25% 0% 45% 10% 20% 0%

4 Conclusions

The problem of ordering training patterns is essential in supervised learning with neural
networks. In the paper a new method of ordering training patterns is proposed and
experimentally evaluated. It was shown that proposed approach produces in average
better results than training without its use in the sample problem representing clustered
pattern space. Some theoretical considerations supporting this result has been provided.

Tests in other problem domains are under research. Other possible uses of ordered
sequences (e.g. as a measure of generalization ability of network architecture) are con-
sidered as future research plans.
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