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Abstract. We examine efficacy of a classifier based on average of ker-
nel density estimators; each estimator corresponds to a different data
“resolution”. Parameters of the estimators are adjusted to minimize the
classification error. We propose properties of the data for which our al-
gorithm should yield better results than the basic version of the method.
Next, we generate data with postulated properties and conduct numeri-
cal experiments. Analysis of the results shows potential advantage of the
new algorithm when compared with the baseline classifier.
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1 Introduction

The main idea that inspired the work on the topic presented in this paper was
that combining views on the data with different “resolutions” should produce an
insight into the structure of the data. This insight, in turn, should aid solving
problems related to data analysis such as classification. To implement the idea of
data “resolution”, we have decided to use Kernel Density Estimator (KDE) with
its bandwidth parameter interpreted as the “resolution”. In density estimation
function generated by KDE, it can generally be observed that the larger (smaller)
the bandwidth, the more similar (dissimilar) values at distant points. This phe-
nomenon can be interpreted as manipulating the resolution. To combine different
resolutions, we simply average output of KDEs with different bandwidths. Note
that classifier based on KDE that we use was noticed by Specht in [1] to have
the form of a neural network.

In practice, the above idea underlying the algorithm is implemented as fol-
lows. For a given test point and for each class, we use KDEs with different
bandwidths to independently estimate density at the point. Then, for each class,
the estimates are averaged to form final density estimate. Next, these estimates
are inserted into the Bayes formula to produce probability estimate for each
class. The bandwidths used in this process are selected beforehand to minimize
the cross-validation classification error on the training set during the training



process. The minimization is carried out by the L-BFGS-B quasi-Newton opti-
mization algorithm introduced in [2]. For a detailed description of the training
and classification phases as well as an explanation of some of the design decisions
made while developing the algorithm (e.g. why we are using a single bandwidth
parameter per KDE instead of a matrix of parameters) see [3, Sect. 2].

The methods appearing in the literature that seem to be the most similar
to the proposed algorithm build upon an idea of combining different density
estimators. These approaches can be mostly divided into two groups. The first
one embraces methods that use a combination of density estimators, and their
main goal is to optimize quality of density estimation. Even if they are used in
a classification task, the classification error is not optimized directly what gen-
erally should result in obtaining suboptimal classification outcome. This group
includes the algorithm that uses a linear combination of Gaussian Mixture Mod-
els (GMMs) and KDEs with predefined bandwidths to estimate density [4]. An-
other example is the method in which the boosting algorithm is used on KDEs
with fixed bandwidths [5]. Yet another approach is developed in [6] where the
EM algorithm is used on an average of GMMs to optimize density estimation
quality. In the other group, there are methods where a combination of classifiers
based on density estimators is used. Classification error is optimized directly in
these approaches; however, the algorithms are combined on classifiers level in-
stead of being combined on a deeper level of density estimators. An example of
the algorithm in this group is the BoostKDC binary classifier, proposed in [7],
which uses Real AdaBoost method with classifiers based on KDEs.

We propose an algorithm that is situated between the above-mentioned
groups; namely, it combines different density estimators, but the parameters
of the estimators are selected directly to optimize the classification error (and
not the quality of density estimation). Such an approach is quite novel. To au-
thors’ knowledge, the only other algorithm that belongs to this category is a
binary classifier introduced in [8]. Our approach is significantly different from
the mentioned algorithm and much simpler.

The efficacy of our algorithm was tested using 19 popular benchmark data
sets. The goal of the experiments was to test whether using as little as two dif-
ferent KDEs improves real-world results of KDEs-based classifier and gives an
algorithm that is competitive when compared with the methods from the litera-
ture. A detailed description of these experiments can be found in [3, Sect. 3], but
the results can be recapitulated as follows. The introduced algorithm yielded sta-
tistically significantly better result that the baseline version. What is more, the
comparison between the results obtained and the literature results indicates that
the algorithm is competitive when compared with other classification methods.

In this article, we examine properties of the algorithm introduced in [9]
and [3]. In Sect. 2, we hypothesize about properties of data sets for which our
algorithm should produce superior results when compared with a baseline KDE-
based classifier. To confirm our hypotheses, we generate an artificial dataset with
postulated properties and test our algorithm on it in Sect. 3.



2 Data Characteristics

Let us consider a classification problem described by densities of two classes, each
density defined by a four-element, two-dimensional Gaussian Mixture Model. We
define two structures separated by a long distance. The first one is a large low-
density structure while the second one is a small high-density structure. Both
of them generate non-trivial optimal decision boundaries (see Fig. 1). In the
case of the low-density structure, a KDE with a large bandwidth would model
well the decision boundary, and in the case of high-density structure, a small
bandwidth would be appropriate. An average of these two KDEs should also
give good results since the KDE with the small bandwidth will dominate in the
high-density region while the KDE with the large bandwidth will dominate in
the low-density region.

Fig. 1. Optimal decision regions (dark gray and light gray colors) in artificial dataset
with a general view of the domain (top) and enlarged regions of low (bottom left)
and high (bottom right) density structures. Note that the scale in depiction of both
structures is different. Densities in each class are generated by a Gaussian Mixture
Model (white circles). The white area in the general view of the domain corresponds to
points where the density of both classes is negligibly small i.e. smaller than computer’s
machine precision.

The long distance that separates the structures is introduced for purely tech-
nical reasons. Our aim was to define a problem for which the optimal results are
obtained in the case of equal bandwidths for both classes. This way we can nar-
row down the search space. Additionally, in the case of two bandwidths per class
(E = 2), the misclassification error function depends on two parameters only;
thus, it can be easily visualized. Both introduced structures are distant enough
to be considered as separated because at every point, the density generated by
at least one of the structures is negligibly small (smaller than the computer’s
machine precision). Therefore, they can be analyzed independently. Addition-



ally, in each of the structures, the distribution of one class is a shifted version of
the other class’s distribution. In this case, the use of a common bandwidth for
both classes is justified (c.f. [10, p. 461]).

3 Experiments

The algorithm with two bandwidths (E = 2) per class was experimentally com-
pared with the basic version of one bandwidth (E = 1) per class in the best-case
scenario where the bandwidths were chosen optimally for the given classification
problem. We generated a few instances of the problem, each having a differ-
ent training set size. For each training set size, we generated independently 20
training sets, one testing set of size of 20 000 samples, and a set of bandwidth
pairs. Each bandwidth came from the same range that starts at 0 and is long
enough to contain the optimal bandwidth values for E = 2 and E = 1 cases (the
length was selected manually). 100 equidistant bandwidth values were selected
from this range to form a total number of 10 000 combinations of two band-
widths. A sample mean misclassification probability and a sample mean MSE
were computed for the model based on each bandwidth pair. The mean values
were computed over 20 training sets.

Figure 2 presents error functions computed for one of the training set sizes.
Note that the values of the error function attainable for the E = 1 version belong
to the half-line (a, a), a ∈ [0,∞). This half-line does not have to contain the
global minimum of E = 2 version, thus using more than one KDE can potentially
improve the results. Indeed, this is the case in the example presented in Fig. 2,
where the global minima are located far away from the above-mentioned half-line.
Another interesting observation is that in this case, the optimal solution consists
of a small and a large bandwidth; this is consistent with our expectations. A
surprising fact is that the minimum of the mean MSE function is located very
close to the minimum of the mean misclassification probability; the situation
is similar for other training set sizes. This property does not have to hold in a
general case (see e.g. [10, p. 459]), but here it additionally justifies our approach
to bandwidths selection where we minimize MSE instead of directly minimizing
the misclassification probability (see [3, Sect. 2-E] for details).

The main objective of the experiment was to compare the best-case scenario
results of E = 1 version of the algorithm with E = 2 version using training data
sets of different sizes. Analysis of these results (see Fig. 3) leads to interesting
observations. The most important one is that for each data set size except of the
smallest one, the E = 2 version yields results that are statistically significantly
better (paired t-test, p ≤ 1.56 · 10−09) by a large margin than the results of
the E = 1 version. For the larger data sets (800 samples and more), the E = 2
version yields misclassification error that is approximately two times smaller
than the error of the E = 1 version when normalized by subtracting the Bayes
risk. Moreover, in the case of the E = 2 version, minimizing the mean MSE gives
results that are not statistically significantly different (paired t-test, p ≥ 0.142)
from minimizing the mean misclassification probability.
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Fig. 2. Sample mean MSE (left) and sample mean misclassification probability (right)
computed on the testing data from the artificial data set with the training set size
equal 400. The darker the color of a point, the smaller the function value. The axes
correspond to bandwidth values for each KDE. Note that in both plots, the points
where one of the coordinates equals 0 correspond to high values of the function. The
global minima of the mean misclassification probability and mean MSE are marked
with a triangle and a circle respectively.
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Fig. 3. Average misclassification probabilities on the artificial data set for different
versions of the algorithm with optimally chosen bandwidths. Examined algorithm ver-
sions: 1) E = 2 with mean MSE optimized, 2) E = 2 with mean misclassification error
optimized directly, 3) E = 1 with mean MSE optimized, 4) E = 1 with mean misclassi-
fication error optimized directly. Additionally, a sample optimal Bayes risk rate is also
showed - line 5).

In summary, the proposed algorithm’s version (E = 2) gives better best-
case scenario results than the basic version (E = 1), which is consistent with
our expectations. Additionally, for the data set considered and E = 2 version,
minimizing the MSE gives results that are as good as the ones obtained by
minimizing directly the misclassification probability.



4 Conclusions and Future Work

We showed that best-case scenario results on an artificial data set yielded by
our algorithm are better than those yielded by the basic version. Currently, we
are working on a version of the algorithm where the number of bandwidths is
adjusted automatically to the data. This way no “expert knowledge” is required
to choose the number of bandwidths per class E for a classification problem
at hand. Another modification worth testing is selecting the starting point in a
different way (e.g. by Scott’s normal reference rule or Sheather-Jones method
(see [11, Sect. 3])).
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