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Abstract— Artificial neural networks, trained only on sample
deals, without presentation of any human knowledge or even
rules of the game, are used to estimate the number of tricks to
be taken by one pair of bridge players in the so-called Double
Dummy Bridge Problem (DDBP).

Four representations of a deal in the input layer were tested
leading to significant differences in achieved results.

In order to test networks’ abilities to extract knowledge from
sample deals, experiments with additional inputs representing es-
timators of hand’s strength used by humans were also performed.

The superior network trained solely on sample deals out-
performed all other architectures, including those using explicit
human knowledge of the game of bridge. Considering the suit
contracts this network, in a sample of 100, 000 testing deals
output a perfect answer in 53.11% of the cases and only in 3.52%
of them was mistaken by more than one trick. The respective
figures for notrump contracts were equal to 37.80% and 16.36%.

The above results were compared with the ones obtained by
24 professional human bridge players - members of The Polish
Bridge Union - on test sets of sizes between 27 and 864 deals
per player (depending on player’s time availability). In case of
suit contracts the perfect answer was obtained in 53.06% of the
testing deals for the 10 upper classified players and in 48.66%
of them, for the remaining 14 participants of the experiment.
For the notrump contracts the respective figures were equal to
73.68% and 60.78%.

Except for checking the ability of neural networks in solving
the DDBP, the other goal of this research was to analyze
connection weights in trained networks in a quest for weights’
patterns that are explainable by experienced human bridge
players. Quite surprisingly, several such patterns were discovered
(e.g. preference for groups of honors, drawing special attention
to Aces, favoring cards from a trump suit, gradual importance
of cards in one suit - from two to the Ace, etc.).

Both, the numerical figures and weight patterns are stable and
repeatable in a sample of neural architectures (differing only by
randomly chosen initial weights).

In summary, the piece of research described in this paper
provides a detailed comparison between various data representa-
tions of the DDBP solved by neural networks. On a more general
note, this approach can be extended to a certain class of binary
classification problems.

Index Terms— Game of bridge, Feedforward neural networks,
Knowledge representation, Double Dummy Bridge Problem,
Example-based learning, Knowledge-free approach

I. INTRODUCTION

THE game of bridge is one of the best known card games.
There are many interesting aspects of this game and

one of them is the estimation of hand’s strength. The so-
called Double Dummy Bridge Problem considered in this
paper consists in answering the question about the number
of tricks to be taken by a given pair of players on condition
that all four hands are revealed and all players play optimally
(see section II-B for more details).

In this paper description and results of experiments with
using artificial neural networks as DDBP estimators are pre-
sented. In some of the experiments human methods of esti-
mating hand’s strength are also used to check if this additional
input data based on the human knowledge of the game could
improve the quality of results.

In spite of very promising numerical outcomes, the other
goal was to check how the information about the problem
being solved is internally represented by the networks in their
weights spaces. It turned out that for some types of problem
representations in the input space, it was possible to find
interesting, repeatable patterns of connection weights, e.g. the
highlights of the Aces (the top cards in a deal) or the preference
for the trump suit cards or the preference for the suit honors
(the top cards in a suit), etc. Most of these patterns can be
justified by human knowledge of the game of bridge.

It is worth to underline that the focus of the paper is on
verification of neural networks’ abilities to learn the evaluation
function for the DDBP rather than perfect solving of this
problem. Actually, the DDBP can be effectively solved using
sophisticated exhaustive search methods without applying the
Computational Intelligence (CI) techniques [1].

On the other hand, due to numerous nuances of the bidding
and playing phases in bridge, the DDBP is, in our opinion,
an interesting and challenging problem for knowledge-free,
example-based learning methods. The so-far attempts to solve
the DDBP with the use of neural nets, based exclusively on
raw data [2], [3] were unsuccessful. The authors of the above
cited papers stated that “Neural networks in their purest form
take the raw input data, and learn to construct appropriate
outputs without doing anything more than recalculating the
weights of the connections between their nodes. However, it is
in practice considerably more efficient to perform a certain
amount of pre-processing on the input, so as to construct
values representing features which humans consider important
in the domain;”. These pre-computed features concerned for
example “specific high-cards or total suit-lengths”.
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On the contrary to the above statement our claim is that with
appropriate choice of neural architecture and in particular the
input representation of a deal it is possible to achieve a high
score in solving the DDBP without the need of any domain-
related pre-processing of the raw data.

The final motivation for writing this paper were comparative
results accomplished by professional bridge players in solving
DDBP under restrictive time constraints, considering two
variants of the problem - the classical one (all four hands
are revealed) and the more difficult, though more “realistic”
one (two hands of the pair being scored are revealed and the
remaining two are hidden - only the sum of the opponents’
hands is available as a result of subtracting both known
hands from the whole deal). Humans visibly outperform neural
networks in the classical variant and the notrump contracts,
but in the remaining three cases (a classical variant and the
suit contracts or partly covered variant and notrump or suit
contracts) the neural networks are very competitive to humans.

In summary, the goal of the paper is twofold. First, it
presents a successful application of neural networks to non-
trivial classification problem of practical importance. Second,
the in-depth exploration of internal networks’ structures and
in particular analysis of how domain-specific knowledge is
represented, may hopefully be of more general applicability
and interest, extending beyond the bridge community.

Initial results were published in our previous works devoted
respectively to notrump [4], [5] and suit [6] contracts. The
experiments described in the above cited papers were restricted
to simple neural architectures, namely the 52 and 104 codings
- described in section V. Preliminary results concerning more
elaborate networks were presented in [7].

This paper summarizes previously published accomplish-
ments and presents the latest experimental results. In particular
the efficacy of neural networks is compared here with the re-
sults attained by professional human bridge players (including
Grand Masters and International Masters). Also a comparison
between notrump and suit contracts is presented and possible
explanations of better performance accomplished by neural
networks in the latter case are proposed. Additionally, a com-
prehensive overview of the AI applications in bridge domain
is presented.

The reminder of the paper is organized as follows. Section II
provides a short description of the game of bridge followed by
a definition of the DDBP and characteristics of the source data
used in the experiments. Section III gives a look at hitherto
AI and CI research activities in the domain of computer
bridge, starting with a brief chronological presentation of the
main accomplishments, followed by a more detailed discussion
on selected issues. In particular previous efforts of applying
neural nets in bridge are also presented. In section IV details
concerning various ways of representing deals as inputs for ar-
tificial neural networks used in the paper with some illustrative
figures can be found. Section V describes various architectures
of neural networks used in the experiments. The schemas
of deals selection are described in section VI. Also the first
conclusions concerning application of neural nets to notrump
and suit contracts can be found there. Section VII contains
analysis of trained networks, emphasizing the existence of

some repeatable, characteristic patterns found in their weights.
These patterns represent various practical aspects of the game
of bridge (e.g. the relative importance of cards within one
suit) and can be intuitively explained by human players. In
section VIII human methods used to estimate strength of a
hand are described. Comparison between results achieved by
training on sample deals with and without these estimators
(i.e. with and without adding explicit human knowledge about
the game) is presented. The observations put forward in
sections VII and VIII are considered the main contribution
of the paper. The most interesting results are recapitulated
and assessed in section IX. In particular, neural networks’
efficiency is compared here with the results accomplished
by 10 internationally recognizable bridge players (ranked as
Grand Masters, International Masters or Masters, playing in
the First or the Second Polish Bridge League) and 14 other
professional bridge players (members of the lower-ranked
bridge teams). Six sample deals illustrating strong and weak
points of the trained networks are presented and discussed in
section X. The last section summarizes the main conclusions.

II. PROBLEM DEFINITION

A. The Game of Bridge
Contract bridge, usually known simply as bridge, is a trick-

taking card game.
There are four players in two fixed partnerships (pairs).

Partners sit facing each other. It is traditional to refer to the
players according to their position at the table as North(N),
East(E), South(S), and West(W ), so N and S are partners
playing against E and W .

A standard 52 card pack is used. The cards in each suit
rank from highest to lowest: Ace(A), King(K), Queen(Q),
Jack(J), 10, 9, 8, 7, 6, 5, 4, 3, 2. The dealer deals out all the
cards one at a time so that each player receives 13 of them.

Next an auction to decide who will be the declarer takes
place. A bid specifies a number of tricks and a trump suit (or
that there will be no trumps). The side which bids highest will
try to win at least that number of tricks bid, with the specified
suit as trumps.

There are 5 possible trump suits: spades (♠), hearts (♥),
diamonds (♦), clubs (♣), and “notrump” which is the term
for contracts played without a trump.

After three consecutive passes, the last bid becomes the
contract. The team who made the final bid will now try to
make the contract. The first player of this team who mentioned
the denomination (suit or notrump) of the contract becomes
the declarer. The declarer’s partner is known as the dummy.

The player to the left of the declarer leads to the first trick.
Immediately after this opening lead, the dummy’s cards are
exposed.

The play proceeds clockwise. Each player must, if possible,
play a card of the suit led. A player with no card of the suit
led may play any card. A trick consists of four cards, and is
won by the highest trump in it, or if no trumps were played,
by the highest card of the suit led. The winner of a trick leads
to the next.

The aim of the declarer is to take at least the number of
tricks announced during the bidding phase. The players of
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the opposite pair try to prevent him from doing it. Details of
scoring depends on the variant of the game. The most popular
ones are: the rubber bridge and the duplicate bridge. For more
details about the game please refer, for example, to [8] or [9].

B. The Double Dummy Bridge Problem

The Double Dummy Bridge Problem (DDBP) is not a
variant of the game of bridge. It is rather an auxiliary problem
closely connected with the bidding phase of the game. More
specifically the problem consists in answering the following
question: “How many tricks are to be taken by one pair of
players assuming perfect play of all four sides, with all four
hands being revealed?”.

There is an important difference between solving DDBP and
the real bridge playing, since in the latter, the exact placement
of most of the cards is unknown. Consequently, in a real play,
the player has to calculate probabilities of cards’ distributions
and choose a strategy with the highest expected outcome. In
DDBP there is no hidden data and the best strategy can be
pointed out.

Estimating hand’s strength is a crucial aspect of the bidding
phase of the game of bridge, since the contract bridge is a
game with incomplete information and during the bidding
phase each player can see only his/her cards and has to
make several assumptions about placement of other cards.
This incompleteness of information forces considering many
variants of a deal (cards distributions). The player should
take into account all these variants and quickly estimate the
expected number of tricks to be taken in each case.

In actual play among professional players the location of
crucial cards can be partly inferred from the bidding phase.
Considering that it is worth to note, that assuming any particu-
lar variant of cards’ location is equivalent to the case of having
all four hands revealed, ergo the DDBP. This observation, first
discussed in [10], led to the following idea: use the assumption
of particular cards’ placements combined with Monte Carlo
simulations and a fast DDBP solver in order to estimate the
most probable (the most effective) contract [10]. This idea was
used by Ginsberg in his computer world champion playing
program [11].

C. The GIB Library

The data used in solving the DDBP was taken from the
GIB Library [12], created by the Ginsberg’s Intelligent Bridge-
player [11] - the above mentioned computer bridge champion
in 1998 and 1999.

The GIB Library includes 717, 102 deals and for each
of them provides the numbers of tricks to be taken by the
NS pair for each combination of the trump suit (including
notrump contracts) and the hand which makes the opening
lead. Together there are 20 numbers for each deal (5 trump
suits by 4 sides). All these numbers were calculated by the
GIB program under the assumption of a perfect play of all
players.

In most experiments reported in this paper, 100, 000 deals
from the library (with numbers from 1 to 100, 000) were
used for training and another 100, 000 ones (numbered from

600, 001 to 700, 000) were used for testing. Training and
testing sets sizes were chosen after some preliminary tests
which confirmed no further improvement in case of bigger
sets.

D. Representation of Results

All results presented in this paper consist of three numbers
(A | B | C) representing the fractions in percent of test
deals for which the prediction error did not exceed 2 tricks
(A), 1 trick (B), and zero tricks (C). The most interesting
is obviously the last number, i.e. the level of perfect answers,
however it should be emphasized that there are deals for which
it is very hard (even for experienced human players) to point
out the correct number of tricks. A small difference in the
cards’ location, e.g. exchange of two plain cards, can change
the result by one or more tricks. Under these circumstances,
the two remaining figures (B and C) are also worth attention.

III. PREVIOUS WORKS

This section presents an overview of AI and CI papers in
computer bridge domain. First, various accomplishments are
mentioned very briefly in chronological order. Next, several
achievements related to particular aspects of the game are
discussed in more detail in the four subsections devoted
respectively to the bidding phase, the play phase, the DDBP
and application of neural nets in the game of bridge.

Contract bridge has not attracted high attention of AI and
CI researchers. For some reasons other games, like chess or
go or even poker, have much longer lists of publications. It
is a bit surprising since there are many interesting nuances of
the game of bridge from the AI point of view, e.g. imperfect
information, cooperation of players in pairs, two completely
different phases of the game - the bidding and the play (both
should be played excellent to gain the best possible result).

The oldest work which appeared in the literature was created
in 1962 - Carley wrote a M.Sc. thesis [13] on a computer
program playing bridge. In the next year Berlekamp [14],
also in a M.Sc. thesis, successfully solved notrump instances
of the DDBP. In 1969, Napjus [15], [16] used the machine
learning approach to write a bridge program that learned to
play any combination of declarer/dummy cards in a single suit.
In the beginning of 70s, Wasserman [17] created a program
for bidding. A few years later, Stanier wrote a program for
both bidding and playing which used the knowledge from the
bidding phase in the play phase [18]. He also tried to create a
strategy for the play stage using information gathered during
bidding [19]. The idea of using the bidding phase to help
playing was continued by Quinlan [20], who tried to locate
missing high cards. In 1983, Throop [21] recapitulated the
research in the field of computer bridge programs.

In 1983 Lindelof created a computer oriented bidding
system called COBRA [22]. In the mid-1980s Berlin [23]
invented tactics to solve subproblems of the card combinations
in individual suit. In the late 1980s Wheen [24] created a
program solving the DDBP using the a-b minimax algorithm,
and MacLeod [25] extended Stanier’s idea of taking advantage
of the information acquired during the bidding phase. In 1989
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Levy [10] gave a recipe for a computer bridge program that
would be able to defeat the best human bridge players. The
idea was quite simple - use the COBRA bidding system and a
fast DDBP solver for the play phase with limiting the problem
of imperfect information using the Monte Carlo algorithm.

Maybe the Levy’s paper was so influential or maybe the
reward of 1, 000, 000 pounds sterling offered by a world
bridge champion Mahmood Zia for a computer bridge program
which could beat him was very encouraging, nevertheless,
the number of papers devoted to computer bridge started to
increase rapidly.

In the M.Sc [26], [27] and Ph.D. theses [28], [29] Frank
created the FINESSE system able to suggest a strategy of
play (however, only for a few last tricks, not the whole deal).
He also investigated the Monte Carlo algorithm used by other
researchers [30], and proposed other heuristic algorithms for
games with imperfect information [31], [32], [33], [34]. Later
he fixed his attention to the problem of explaining the strategy
found by a computer program using natural language (in
English) [35], [36], [37].

Smith and Nau analyzed the game-tree search algorithms
for games with imperfect information and created the Tignum
system using the Hierarchical Task-Network planning which
was able to generate significantly reduced game-trees [38],
[39], [40]. Their ideas were successfully incorporated into
Bridge Baron [41], [42], the best computer bridge program
in the mid-1990s.

Ginsberg [43] followed the ideas presented by Levy and
used the Monte Carlo algorithm with a very fast DDBP solver
in a computer bridge program. He invented the partition search
algorithm which allowed to substantially restrict the game-tree
[44] and created the GIB computer bridge program which was
the computer bridge champion in the late 1990s [45], [11].

A. The Bidding Phase

In the first bridge program mentioned in the literature [13],
there were only 4 bidding rules with 13 cases in total. The
next attempt to create a computer bridge program [17] allowed
using some common patterns of bidding, such as take out
double and Ace asking. A rule-based bidding system was also
created in [46], where the aim was to achieve the beginner’s
level.

Also COBRA [22], the first bidding system created with
computer’s assistance, relied on rules. Tests of this system
showed that using it visibly improved the effectiveness of
bidding. On the other hand, COBRA is more complicated than
“human-type” systems and for this reason was not used by
other researchers [47].

Some of the researchers fixed their attention on the opening
bid as a problem which can be learned from examples. Various
methods were used to allow to learn the optimal opening
bid: abductive explanation-based learning [48], artificial neu-
ral networks [49], [50], probabilistic neural networks with
evolutionary programming-based clustering technique [51] or
rough-fuzzy set theory [52].

A very interesting issue of the bidding phase is cooperation
of players in a pair (N with S and W with E). In [53] each

player is modeled as an independent, active agent that takes
part in the communication process. Also other researchers
represented the bidding phase as cooperation of two agents
[54], [55] or cooperation of agents in competing pairs [56].
In [47] an agent-based algorithm was proposed, which was
able to achieve, after appropriate learning, a bidding ability
close to that of a human expert.

B. The Play Phase
The play phase seems to be much less interesting for the

AI researchers than the bidding phase. Smith and Nau were
probably the only researchers who created a successful AI
approach [38], [40], [41] to the whole play phase.

Other researchers limited their interest to the play of one
suit [16], [23], [27], [36], [57], [58], [59]. In most cases these
AI approaches tried to imitate human strategy of the play by
using some “tactics” [27], [60] or “thematic actions” [58].

Frank and Basin [35], [37] created a system which was
able to find a strategy of a play, and additionally a “human”
explanation of it. Unfortunately, they could not break some
complexity problems and their system worked for a single
suit only (cards from other suits were ignored).

C. The Double Dummy Bridge Problem
The DDBP also attracted some interest of researchers.

In 1963 Berlekamp [14] invented a heuristic non-exhaustive
theorem proving technique for solving DDBP in case of
notrump contracts. Later other techniques were used, e.g. the
a-b minimax algorithm [24] and the hash table [1].

An interesting system identifying complex positions in
DDBP was also developed in [61].

D. Applications of Neural Networks
Among other techniques and research tools also artificial

neural networks were used for solving bridge problems [62],
especially for the bidding phase [63], [64], [49].

Gambäck and Rayner [2], [3] used neural networks as
estimators for the number of tricks to be taken in the DDBP.
They used two networks, one for notrump contracts and one
for suit contracts. Each network took as input the sets of cards
from the four hands, and output a set of 14 real numbers,
representing the estimated probabilities that 0 to 13 tricks
will be collected by the playing pair. The authors concluded
that the networks in their purest form (using only raw input
data, without any preprocessing of the input or adding human
knowledge in any form) were not able to successfully serve
as estimators of the number of tricks. Adding some input data
which humans consider important in the domain (called “pre-
computed feature points” by the authors) improved the results.
Unfortunately there are no numerical results presented in [2],
[3], which does not allow for making any direct comparisons.

On the contrary to the above cited articles the results of ex-
periments described in this paper suggest that with appropriate
representation of a deal, neural networks can be very effective
in solving the DDBP relying solely on example-based training
and are capable of extracting necessary information from raw
data, without any human intervention or the use of human
knowledge about the game of bridge.
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(a) (26x4) Representation (b) 52 Representation

(c) 104 Representation (d) (52x4) Representation

Fig. 1. Example network architectures with different deal representations proposed in section IV. For 52 and 104 representations a standard feed-forward,
fully connected architectures are used. In the networks utilizing 52x4 or 26x4 representations the first hidden layer (for 52x4 case) or the first two hidden
layers (for 26x4 one) are connected selectively. They are responsible for collecting information about individual hands from “scattered” and redundant input.

IV. REPRESENTATION OF A DEAL

The following two sections are devoted to description of
neural network architectures and the learning schemes and
presentation of initial results. Particular emphasis is put on
the possible ways of problem representation in the input layer,
which - due to its relevance - is separately discussed in
this section. Presentation of network architectures and results
follows in the next section.

The way a deal was represented turned out to be crucial
for the quality of achieved results. During the experiments the
following four ways of coding a deal were invented and tested.

A. (26x4)

In the first way of deal representation, 104 input values
were used, grouped in 52 pairs. Each pair represented one
card. The first value in a given pair determined the rank of a
card (A, K, Q, etc.) and the second one represented the suit
of a card (♠, ♥, ♦, or ♣). Hence, 26 input neurons (13 pairs)
were necessary to fully describe the content of one hand (see
Fig. 1(a)).

A few schemes of transforming card’s rank and suit into
real numbers suitable as input values for the network were
tested. Finally the rank of a card was transformed using a
uniform linear transformation to the range [0.1, 0.9], with
biggest values for Aces (0.9), Kings (0.83) and smallest for
three spots (0.17) and two spots (0.1). Some other ranges,
e.g. [0, 1] or [0.2, 0.8], were also tested, but no significant
difference in results was noticed. A suit of the card was also

coded as a real number, usually by the following mapping: 0.3
for ♠, 0.5 for ♥, 0.7 for ♦, and 0.9 for ♣.

B. 52
In the second way of coding a deal, a different idea was

utilized. Each input neuron was assigned to a particular card
from a deal and a value presented to this neuron determined
the hand to which the respective card (assigned to this input)
belonged.

There were 52 input values, each representing one card
from a deck. Positions of cards in the input layer were fixed,
i.e. from the leftmost input neuron to the rightmost one the
following cards were represented: 2♠, 3♠, . . . , K♠, A♠, 2♥,
. . . , A♥, 2♦, . . . , A♦, 2♣, . . . , A♣ (see Fig. 1(b)).

A value presented to the input neuron denoted the hand to
which a given card belonged, i.e. 1.0 for North, 0.8 for South,
−1.0 for West, and −0.8 for East. Interestingly, as came out
from further experiments, using the same input value (−1.0)
for both West and East hands improved the results. Moreover,
hiding the information about exact cards’ assignment in the
NS pair, i.e. using the input value equal to 1.0 for both North
and South hands, yielded another slight improvement (c.f. the
first three rows of Table IV).

C. 104
The third proposed way of coding a deal was a straightfor-

ward extension of the 52 representation to the 104 one. The
first 52 input values represented assignments to pairs exactly in
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the same way as in the 52 representation (value 1.0 represented
NS and −1.0 - WE), and the remaining 52 ones pointed out
the hand (value 1.0 for N and W and −1.0 for S and E). In
both groups positions of cards were fixed according to the
same order (see Fig. 1(c)).

D. (52x4)
The last tested way of coding a deal arose from results

obtained by networks that used human estimators of hand’s
strength (discussed in section VIII). These results suggested
that it was difficult for networks using the above presented
ways of coding a deal to extract information about lengths of
suits on hands. On the other hand, this information is crucial,
especially for suit contracts, so there was a need to invent
another representation of a deal in which lengths of suits on
hands would be perceptible for neural networks, although still
basing on raw data.

In this deal coding 208 input neurons were divided into 4
groups, one group per hand, respectively for N, E, S and W
players. Four input neurons (one per hand) were assigned to
each card from a deck. The neuron representing a hand to
which this card actually belonged received input value equal
to 1.0. The other three neurons (representing the remaining
hands) were assigned input values equal to 0.0. This way, a
hand to which the card was assigned in a deal was explicitly
pointed out.

In this representation one suit on one hand was represented
by 13 input neurons. The number of input values equal to 1.0
determined the length of this suit on the hand, so networks
using this representation of a deal had a chance to find
shortnesses (which are very important in bridge), especially
voids (no cards in a suit) and singletons (one card in a suit).

E. The trump suit and the opening lead

When talking about deal representation in the input layer,
despite card locations there are two more issues, which need to
be addressed. The first one is the way of pointing the network
which is a trump suit in experiments where the training and
testing sets consist not only of deals with one specific trump
suit (see section VI-B for details). For the 52, 104, and (52x4)
representations, a trump suit was pointed out by increasing
the absolute value of input neurons assigned to cards of the
trump suit and decreasing for cards of all other suits (usually
input values for other suits were divided by 2). This method
could not be applied to the (26x4) representation, because the
suit was represented here by value presented to one of two
input neurons representing the card. Therefore in this case
one additional neuron was added to the input layer and the
value presented to it indicated the trump suit. Not surprisingly,
the networks had problems with perceiving this additional
information (only one out of 105 input neurons in total was
used to represent this information), and results obtained by the
networks trained on deals with various trump suits were worse
than the ones obtained by analogous network trained only on
deals with one, arbitrarily chosen trump suit. This is why the
majority of results for suit contracts presented in the paper
are restricted to one arbitrarily chosen suit (spades). Hence

no distinction between the trump suit and the remaining suits
in the input layer is necessary1.

The other important issue is a way of representing the hand
making the opening lead. In some deals the number of tricks
varies when a hand making the opening lead is changed,
even if the positions of all cards are fixed (see section VI-
D for details). In the (26x4) representation, 4 additional input
neurons were used. Each of them was assigned to one hand
and had a non-zero value if that hand was to make the opening
lead. In the remaining representations (52, 104, and (52x4))
there was no need for additional input neurons. In these cases
the problem was solved by fixing positions of input neurons
representing a hand making the opening lead, i.e. each deal
was presented in the training set twice (e.g. once with the
opening lead from the North hand and once from the South).
In the latter case the deal was “rotated” to assure, that always
the same input neurons were assigned to a hand that made the
opening lead.

F. Comparison of Representations

TABLE I
COMPARISON OF THE BEST RESULTS OBTAINED WITH VARIOUS

APPROACHES TO CODING A DEAL FOR spades CONTRACTS WITH THE

OPENING LEAD FROM THE WEST HAND.

The Network Results
(26x4)-(13x4)-(7x4)-13-1 97.67 | 84.24 | 36.82

52-25-1 98.77 | 88.00 | 40.13

104-30-4-1 98.61 | 87.17 | 39.21

(52x4)-13x4-13-1 99.80 | 95.54 | 50.91

The best results obtained by the four types of networks for
spades contracts are presented in Table I. This comparison
emphasizes superiority of the (52x4) representation. The re-
sult, 99.80 | 95.54 | 50.91, means that the network answered
perfectly in over 50% of deals and was wrong by more than
one trick only in 4.46% of deals and by more than two tricks
in 0.2% of deals. The worst results were obtained by the
network using the (26x4) representation. The efficiency of the
two remaining ways of coding a deal was comparable to each
other.

V. ARTIFICIAL NEURAL NETWORKS

Due to their ability to generalize knowledge acquired from
the training data, artificial neural networks are potentially very
well suited to the task considered. It is worth emphasizing
that in the majority of experiments described in the paper,
the training data contained only sample deals - represented
according to one of the four schemes discussed in the previous
section. Only in experiments in which human estimators of
hands’ strength were used (presented in section VIII), addi-
tional inputs representing human knowledge of the game were
used. Nevertheless, in either case the networks were not aware

1The above restriction is applied without loss of generality of results, since
it is always possible to exchange positions between the actual trump suit cards
and spades suit cards in the input representation.
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of the bridge rules and were trained on raw data in example-
based manner.

Another important feature of artificial neural networks,
when considered as estimation tools to be used during the
bidding phase of the game of bridge, is their speed. Calculating
the expected number of tricks to be taken using a trained
network is extremely fast, and can be efficiently carried out for
many potential variants of a deal, which need to be considered
due to partly hidden information.

In all experiments training and testing was performed with
the JNNS’s [65] assistance2.

In most cases logistic (unipolar sigmoid) activation function
was used in all neurons. Only when negative values were
presented in the input layer, the hyperbolic tangent (bipolar
sigmoid) activation was applied.

All networks were trained using the Rprop (Resilient
Backpropagation) algorithm [66], with the following choice
of method’s parameters: initial and maximum values of an
update-value factor were equal to 0.1 and 50.0 respectively,
and weight decay parameter was equal to 1E − 4.

A. The Input Layer

The size of the input layer was determined by the chosen
way of coding a deal as discussed in the previous section.

B. Hidden Layers

Avoiding presentation of the human knowledge of the game
of bridge in any form was one of the underlying assumptions
in all experiments (except for the ones with using human
estimators of hands’ strength, described in section VIII). This
premise was also applied to networks’ architectures, especially
the topology of connections between hidden neurons.

The networks used in this research can be divided into two
groups. The first group (with 52 or 104 ways of coding a
deal) contains fully connected networks, without any dedicated
groups of hidden neurons. The second group contains networks
with (26x4) or (52x4) representations, where subnetworks
responsible for individual hands can be pointed out (see
Fig. 1(a) and Fig. 1(d)). Such structure does not violate
the above assumption, since it does not provide any human
knowledge of the game, but only defines a deal, i.e. the
assignment of cards to hands.

It should be emphasized that there was no direct input
information about suits. It means that all basic information,
obvious for human bridge players, had to be autonomously
discovered during the training process. This included: the
existence of 4 suits, the power of a trump suit, the influence
of a rank of a card (the Ace is the highest and the two is the
lowest), the cooperation of players in one pair, etc.

C. The Output Layer

Two ways of transforming the networks’ outputs into the
number of tricks were applied. In the first case one output
neuron was used and in order to get the result, decision

2The Java Neural Network Simulator (JNNS), is a freely available successor
to the Stuttgart Neural Network Simulator (SNNS).

boundaries were defined (within the range [0.1, 0.9]) denoting
particular numbers of tricks. For all presented results, these
decision boundaries were defined a priori and target ranges for
all possible numbers of tricks (from 0 to 13) were of pairwise
equal length.

A simple experiment with changing decision boundaries
was also performed. The idea was to check whether making
ranges in the output proportional to the number of deals with
specific number of expected tricks instead of using pairwise
equal ranges, would improve results. The network 52−25−1
using such special output ranges achieved slightly worse result
than the same network with pairwise equal output ranges (see
rows 3 and 4 of Table II).

The other way of transforming the networks’ outputs into
the number of tricks relied on using 14 output neurons. Each
of the output neurons represented one target number of tricks.
In the training phase exactly one out of 14 output values was
set to a non-zero value (usually 1.0). In the testing phase,
the output neuron with the highest value defined the final
prediction (classification).

Although the latter approach seems to be more suitable, in
most of the experiments the networks using 14 output neurons
achieved worse results than corresponding networks having
only 1 output neuron (see Table II).

TABLE II
COMPARISON OF AN INFLUENCE OF THE NUMBER OF OUTPUT NEURONS

ON RESULTS FOR spades CONTRACTS WITH OPENING LEAD FROM THE

WEST HAND.

The Network Number of
Outputs Results

(26x4)-(13x4)-(13x4)-26-13-1 1 96.93 | 80.98 | 33.99

(26x4)-(13x4)-(13x4)-26-14 14 97.35 | 83.06 | 36.02

52-25-1 1 98.77 | 88.00 | 40.13

52-25-1 (proportional) 1 98.66 | 87.41 | 39.98

52-25-14 14 98.05 | 85.69 | 38.66

104-30-4-1 1 98.61 | 87.17 | 39.21

104-30-14 14 97.18 | 82.58 | 35.87

(52x4)-(26x4)-26-13-1 1 99.80 | 95.54 | 50.91

(52x4)-(26x4)-26-14 14 99.02 | 89.78 | 42.05

D. Networks’ Sizes and the Learning Speed

Table III contains comparison of the numbers of neurons
and connections in tested architectures. It is interesting to com-
pare the results of networks using the same deal representation
but differing by the number of hidden layers, hidden neurons,
and connections.

Two networks using the (26x4) representation differ sig-
nificantly by the number of connections. The bigger network
((26x4) − (13x4) − (13x4) − 26 − 13 − 1) obtained worse
results than the smaller one ((26x4)−(13x4)−(7x4)−13−1).
The reason was overfitting to the training data. In both cases
the same training and testing sets were used. For the smaller
network, results achieved for both sets were comparable. For
the bigger one, results achieved for the training set (not
presented) were significantly better than the ones for the
testing set.
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No overfitting was observed for the remaining networks
presented in Table III. Results achieved by networks: 52 −
25− 1, 52− 26− 13− 6− 1 and (52x4)− (13x4)− 13− 1,
(52x4) − (13x4) − 26 − 13 − 1 are very close to each other
in the respective pairs.

Advantage of the (52x4) representation is indisputable.
Even a rather small network (52x4) − (8x4) − 8 − 1 with
less than 2, 000 connections achieved much better result than
any other network with another input coding.

It is interesting to compare the number of iterations required
by different types of network architectures in the training
phase. The networks using the (26x4) representation required
over 100, 000 epochs, the ones using the 52 or 104 represen-
tations only about 1, 000 epochs, and the networks using the
(52x4) coding between ten and twenty thousand epochs.

TABLE III
COMPARISON OF AN INFLUENCE OF THE NUMBER OF HIDDEN NEURONS

AND CONNECTIONS FOR spades CONTRACTS WITH THE OPENING LEAD

FROM THE WEST HAND.

The Network Number of
Neurons

Number of
Connections Results

(26x4)-(13x4)-(7x4)- 198 845 97.67 | 84.24 | 36.82
-13-1

(26x4)-(13x4)-(13x4)- 248 2483 96.93 | 80.98 | 33.99
-26-13-1

52-25-1 78 1325 98.77 | 88.00 | 40.13

52-26-13-6-1 98 1774 98.76 | 87.96 | 40.20

104-30-4-1 139 3244 98.61 | 87.17 | 39.21

(52x4)-(8x4)-8-1 249 1928 99.67 | 94.03 | 47.74

(52x4)-(13x4)-13-1 274 3393 99.78 | 95.00 | 50.03

(52x4)-(26x4)-26-13-1 352 8463 99.80 | 95.54 | 50.91

VI. DEALS SELECTION AND RESULTS

Training and testing data was taken from the GIB Library,
which contains deals with pre-calculated numbers of tricks
to be taken by one pair of players for each combination
of a trump suit and a hand that makes the opening lead
(see section II-C for details). The availability of as many
as over 700, 000 pre-computed deals allowed making various
experiments in order to compare the four proposed input repre-
sentations and draw several interesting conclusions concerning
notrump and suit DDBP contracts.

A. Notrump Contracts

Notrump contracts seem to be potentially simpler than
suit ones, because there is no possibility to ruff a card of
a high rank with a trump card. It simplifies the rules, but does
not mean simplification of the strategy. In notrump contracts
there is no guarantee that a card will take a trick, even Aces are
useless in tricks of other suits. The success of a contract often
lies in the hand making the opening lead. Hence even knowing
the location of all cards may sometimes be not sufficient to
indicate cards that will take tricks. This is probably the reason
of worse results achieved for notrump than for suit contracts
(see Table V).

B. Suit Contracts

In the second group of experiments, all four suit contracts
were used. It means that a deal was included 4 times in the
training or testing set, once for each possible trump suit.

Rules of the game for suit contracts are more complicated
than for notrump contracts. Also the play in suit contracts
seems to be more subtle and difficult. However, neural net-
works were able to achieve visibly better results when there
was a trump suit.

TABLE IV
COMPARISON OF RESULTS OBTAINED BY THE 52− 25− 1 NETWORK FOR

Notrump AND SUIT CONTRACTS (INPUT VALUES IN PARENTHESES)

Description Results
notrump (N: 1.0, S: 0.8, W: -1.0, E: -0.8) 95.81 | 79.95 | 34.02

notrump (N: 1.0, S: 0.8, W: -1.0, E: -1.0) 95.97 | 80.46 | 34.35

notrump (NS: 1.0, WE: -1.0) 96.07 | 80.88 | 34.66

suit contracts (NS: 0.5, WE: -0.5) 98.68 | 87.88 | 40.11
tested on notrump contracts 91.64 | 69.21 | 26.06

notrump and suit contracts (NS: 0.5, WE: -0.5) 97.72 | 84.90 | 37.56
tested on suit contracts only 98.57 | 87.24 | 39.43

tested on notrump contracts only 94.30 | 75.50 | 30.09

♠ contracts (NS: 1.0, WE: -1.0) 98.77 | 88.00 | 40.13
tested on ♥ contracts 59.18 | 39.09 | 14.12
tested on ♦ contracts 58.89 | 38.67 | 13.51
tested on ♣ contracts 58.86 | 38.90 | 13.77

♥ contracts (NS: 1.0, WE: -1.0) 98.65 | 87.81 | 40.18

♦ contracts (NS: 1.0, WE: -1.0) 98.66 | 87.68 | 39.96

♣ contracts (NS: 1.0, WE: -1.0) 98.73 | 87.90 | 40.02

Table IV presents results obtained by the 52 − 25 − 1
networks. Results achieved for suit contracts are substantially
better than the ones for notrump contracts. Results of the
network trained using both notrump and suit contracts (6th
row) are comparable to results of specialized networks (rows
1− 4), and the overall result is close to the average of results
for notrump and suit contracts.

It is surprising that results achieved by the network trained
using all suit contracts (4th row) were comparable to results
of all 4 networks trained exclusively using one suit (rows 9
and 13− 15). On the other hand, these networks which were
trained based on individual suits were useless for other suit
contracts (rows 10− 12).

C. Spades Contracts

Results presented in Table IV confirm the intuition that
there is no significant difference among trump suits. For the
sake of brevity of the presentation in the remainder of the
paper spades will be used to present results for (single) suit
contracts. In the case when all four suits are considered the
respective description and results will be labelled all suits.

D. Influence of a Hand Making the Opening Lead

For spades contracts, in 7% of considered deals, the number
of tricks to be taken by the NS pair depends on which hand
makes the opening lead, i.e. the number of tricks after the
opening lead from the West side differs from the respective
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number after the opening lead from the East side. Enlarging
both training and testing sets by duplicating all deals and
exchanging hands in pairs (N ↔ S, W ↔ E) improved
results by about 2.5 percentage points (see the last column
of Table V).

E. Comparison of Results

Table V contains results obtained by various networks for
notrump and spades contracts (in the latter case both with
and without changing a hand making the opening lead). All
tested networks, regardless of the size and the used way
of input coding, achieved significantly better results for suit
contracts.

Almost all presented networks were able to take advantage
of additional information from changing a hand making the
opening lead and improved their results. The only exception
was the 52− 25− 1 network, which achieved the best result
when input values representing players in a pair where equal
to each other (see Table IV). Since in the 52 representation,
a value presented to an input neuron indicated a hand, each
card in a deck was represented by only one real value.
Differentiating players in a pair (e.g. by applying the following
input values: 1.0 for N , 0.8 for S, −1.0 for W , and −0.8
for E) misled the network, since it suggested that cards of
one player in a pair were more important. The network using
the 104 representation, which was invented as a response to
this problem, was able to assimilate additional knowledge and
improve the results.

In all categories of experiments, the advantage of the (52x4)
representation is unquestionable. However, two details arising
from Table V should be explained. Comparison of results of
two networks using the (52x4) representation for notrump
contracts shows that the smaller of them achieved better
results. It can be easily explained by verifying results on
training sets - 98.02 | 86.10 | 39.18 for the smaller network
((52x4)− (13x4)− 13− 1) and 98.95 | 89.30 | 42.35 for the
bigger one ((52x4)−(26x4)−26−13−1), which indicate that
the smaller network was able to perform better generalization,
and the bigger one too deeply adapted to the training data (in
both cases the same training set containing 100, 000 deals was
used).

The same problem of too high adaptation of the (52x4) −
(26x4) − 26 − 13 − 1 network to the training set explains a
relatively small advantage over the smaller network for spades
contracts without changing a hand making the opening lead.
Also in this case, results of the bigger network on the training
set were significantly better (99.95 | 97.61 | 56.19) than those
of the smaller network (99.84 | 95.91 | 51.68). In experiments
with changing a hand making the opening lead, the size of the
training set was doubled by duplicating all deals and rotating
hands (see section IV-E), what prevented overfitting.

F. Reliability of Results

In order to verify the reliability of results, 4 networks, each
with one hidden layer composed of 25 neurons, differing only
by initial, randomly chosen weights, were trained based on
the same set of deals. The experiment was aimed at checking

the number of training deals for which all 4 networks would
learn the same number of tricks to be taken by NS.

For notrump contracts all 4 networks estimated the same
number of tricks in 61.23% of deals. In 37.93% of them the
estimated numbers of tricks differed by 1 trick, in 0.81% by
2 tricks, and in 0.03% by 3 tricks. The same experiment for
suit contracts output the following results: for 63.40% of deals
all networks were unanimous, for 36.56% there was 1 trick
difference, and for 0.04% - 2 tricks.

Recall that in all experiments the value of a single output
neuron was restricted to the interval [0.1, 0.9]. The final
number of tricks was calculated by dividing the output interval
into 14 subintervals of pairwise equal lengths (≈ 0.06).
Considering that is was further checked that in 98.13% of
testing deals for notrump contracts, and in 99.53% for suit
contracts, real output values of all 4 trained networks differed
by no more than 0.06.

The above experiments confirmed that attained results are
repeatable and independent of initial choice of weights. Conse-
quently, some effort was dedicated to defining decision bound-
aries in a more flexible way, e.g. by enlarging the subintervals
defining the middle values of the number of tricks (5, 6, 7, 8
and 9) at the cost of shortening the remaining subintervals.
Also some concepts involving partly overlapping intervals
were verified, but at a general level no further improvement
was achieved.

G. Results by the Target Number of Tricks

TABLE VI
RESULTS FOR SUBSETS OF A TESTING SET ACHIEVED BY A NETWORK

52− 25− 1 TRAINED ON spades CONTRACTS

Target Number
of Tricks

Number
of Deals Results

0 1, 138 93.32 | 66.61 | 12.30

1 2, 725 97.39 | 81.21 | 34.53

2 5, 156 98.10 | 86.66 | 40.73

3 8, 043 98.93 | 88.96 | 41.41

4 10, 447 98.94 | 89.04 | 40.36

5 12, 201 98.85 | 88.67 | 40.80

6 12, 927 99.03 | 88.75 | 41.32

7 12, 709 99.10 | 88.99 | 40.50

8 11, 467 99.28 | 89.29 | 40.46

9 9, 618 99.14 | 89.19 | 42.14

10 6, 866 98.89 | 88.45 | 40.58

11 4, 225 97.94 | 85.87 | 42.32

12 1, 935 97.57 | 81.71 | 31.94

13 543 94.66 | 73.85 | 9.39

Total 100, 000 98.77 | 88.00 | 40.13

Results of the 52 − 25 − 1 network trained on spades
contracts were investigated in more detail in order to test
whether the efficacy of the system varies for different numbers
of target tricks. The testing set containing 100, 000 deals was
divided into 14 subsets, according to the target number of
tricks, which were then tested separately.

The results are presented in Table VI. Only the figures for
0, 1, 12, and 13 tricks are significantly worse than the result
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TABLE V
COMPARISON OF RESULTS OBTAINED FOR Notrump CONTRACTS AND FOR SUIT CONTRACTS WITH AND WITHOUT CHANGING A HAND MAKING THE

OPENING LEAD

The Network Results for Notrump Contracts Results for Spades Contracts Results for Spades Contracts with Changing
a Hand Making the Opening Lead

(26x4)-(13x4)-(7x4)-13-1 93.87 | 75.70 | 31.04 97.67 | 84.24 | 36.82 98.76 | 88.00 | 39.90

52-25-1 96.07 | 80.88 | 34.66 98.77 | 88.00 | 40.13 98.49 | 87.15 | 39.29

104-30-4-1 95.64 | 79.63 | 33.74 98.61 | 87.17 | 39.21 99.09 | 89.79 | 41.92

(52x4)-(13x4)-13-1 97.34 | 84.31 | 37.80 99.78 | 95.00 | 50.03 99.79 | 95.49 | 50.62

(52x4)-(26x4)-26-13-1 96.89 | 83.64 | 37.31 99.80 | 95.54 | 50.91 99.88 | 96.48 | 53.11

attained for the whole test set (the last row of the Table). The
reason for this phenomenon is probably twofold: the relatively
small numbers of examples and “specificity” of the deals in
these categories - they all represent either grand slam or slam
deals.

Results for the remaining subsets are on pairwise similar
levels, in spite of considerable differences in the number of
deals belonging to particular subsets (the second column of
the Table).

VII. ANALYSIS OF TRAINED NETWORKS

Besides analysis of numerical results, the main focus of
the paper was exploration of how the bridge knowledge
possessed during training is represented in connection weights
of the trained networks. Three figures (Fig. 2, Fig. 3, and
Fig. 4) present visual representations of connection weights in
the 52 − 25 − 1 network trained respectively for notrump,
all suits, and spades contracts. All of these figures represent
weights of connections in the following way: as black (for neg-
ative values) or white (for positive values) circles with radius
depending on weight’s value - the bigger the absolute value,
the bigger the radius. In each figure, the left column represents
weights of connections from hidden neurons (numbered to the
left of the column) to the output neuron. The right, big area
of circles represents weights of connections from all 52 input
neurons (assigned to cards from a deck, as depicted below
the area) to 25 hidden neurons (numbered in the left column).
For example in Fig. 3 the connection weight from the 15th
input neuron (representing 3♥ to the 22nd hidden neuron is
positive and greater or equal 1.5 (the largest possible empty
circle), whereas the connection weight from the 22nd hidden
neuron to the output one has a small negative value, close to
zero (represented by a small black circle in the “additional”
leftmost column).

A. Patterns Found in Hidden Layers for Notrump Contracts

Fig. 2 visualizes weights of connections of the 52− 25− 1
network trained for notrump contracts. Three other networks
of the same size, trained using the same training set, differed
only by initial random values of connection weights, were also
investigated. All types of patterns described in this section
were found in all 4 networks of this group.

The first observation from the figure is the existence of
hidden neurons with rather “random” values of input connec-
tions and very small absolute values of output connections,

e.g. neurons number 6, 10 or 24. These neurons seem to be
useless. The number of such “useless” hidden neurons depends
on the total number of hidden neurons. There were no such
neurons in the 52 − 8 − 1 networks and more than 10 in the
52− 52− 1 ones.

The second pattern that can be found in the figure, is the
concentration of relevant connections (with biggest absolute
values of weights) for honors (i.e. Aces, Kings, Queens,
Jacks, and Tens). Additionally, for each investigated net-
work, it was possible to point out exactly 4 connections
with absolute values much greater than the others. All these
favored connections had input neurons assigned to Aces. In
the network presented in Fig. 2, these connections were the
following: for A♠ to hidden neuron number 9 (with value
24.19), for A♥ to neuron number 3 (−26.89), for A♦ to
neuron number 11 (26.71), and for A♣ to neuron number
4 (26.69). For comparison, the biggest absolute value of the
remaining connections was equal to 6.47.

The third found pattern also emphasizes the importance of
honors in the game of bridge. For each suit one hidden neuron
specialized in honors of that suit can be selected: the hidden
neuron no. 16 for ♠, 12 for ♥, 22 for ♦, and 17 for ♣. All
these 4 neurons have the same type of weight pattern in the
input connections: only connections from neurons representing
honors of the respective suit have significant values. All the
other weights are much smaller. It is very interesting that for
these neurons not Aces, but Queens and Kings are the most
important. Even Jacks are more important (for these neurons)
than Aces. For human bridge players it is obvious that the
presence of all figures makes the suit much more powerful
and simplifies taking tricks (especially in notrump contracts
where there is no possibility to ruff) without a need of a
finesse (i.e. playing on the assumption which of the opponents
possesses the missing figure).

Another pattern reveals when input connections to hidden
neurons with numbers: 2, 8, 18, and 19 in Fig. 2 are compared.
As in the previous patterns, each of these neurons specializes
in one suit, respectively ♥, ♦, ♠, and ♣. This specialization
is based on favoring all cards of the suit and Aces from
other suits - these cards have values of connection weights
of the same sign, and connections from all the other cards
have the opposite sign. Moreover, the importance of cards
in the relevant suit is graded according to the rank of the
card: the Ace has the biggest absolute value of connection, the
King relatively smaller, etc. It is interesting that for these four
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Fig. 2. Visualization of connection weights of the 52− 25− 1 network trained on notrump contracts. Each circle represents the weight of one connection.
If the circle is placed in the leftmost column, it represents the weight of connection from a hidden to an output neuron, otherwise - from an input to a hidden
neuron. The radius of the circle represents the absolute value of the connection weight. Black circles denote negative and white positive weights.

hidden neurons the importance of Aces of other suits is smaller
than the importance of the two of the specific suit (however
still noticeable) since value of connection weight from the
input neuron representing the Ace has the same sign as values
of weights of all connections from cards of the specific suit.

B. Patterns Found in Hidden Layers for All Suits Contracts

Fig. 3 presents weights of connections in the 52 − 25 − 1
network trained on suit contracts. Recall that in the all suits
case and the 52 representation the trump suit was indicated by
multiplication of input values representing cards of the trump
suit by 2 and each deal was repeated in the training (testing)
set 4 times, once for each trump suit. Considering such
representation, it is not surprising that the relative importance
of the lowest cards in a deal is visibly bigger compared to
notrump contracts (Fig. 2).

Similar conclusions, as in the notrump case, can be drawn
with respect to the existence of “useless neurons” (e.g. hidden
neurons number 7, 9 or 22 have very strange values of weights
of input connections and weights of their output connections
are close to 0) and the presence of hidden neurons specialized
in honors of single suits. Honors of ♠ are definitely the most
important for the hidden neuron number 18, honors of ♥ for
the 12th hidden neuron, ♦ - the 15th neuron, and ♣ - for
the hidden neuron number 16. Specialization of these neurons
is very clear - absolute values of weights of connections of
all other cards are significantly smaller. Additionally, these

neurons favor one specific suit - weights of all cards from
other suits have the opposite sign.

The relevance of the three highest cards of one suit is more
visible for suit contracts. For spades only one hidden neuron
(number 5) interested in the Queen, King and Ace can be
pointed out, but for other suits there are more such neurons -
the ones with numbers 3, 10 and 14 for ♥, 2 and 20 for ♦,
and 19 and 24 for ♣.

C. Patterns Found in Hidden Layers for Spades Contracts

The next figure (Fig. 4) shows weights of connections
of a network of the same architecture (52 − 25 − 1), but
trained on spades contracts. Again, a few examples of such
networks differing only by initial random weights were trained
using the same training set. All patterns described here were
observed in each of them. Recall that for spades contracts no
information about the trump suit was presented to the network.
Each input neuron represented one fixed card. The input value
equal to 1.0 denoted NS pair and a value of −1.0 WE pair.
Hence, individual hands within each pair were not directly and
precisely specified.

The importance of spades (i.e. the trump suit) is visible
in Fig. 4 at first glance. Connections from input neurons
representing cards of spades have significantly bigger absolute
values. Especially the lowest cards of spades have noticeably
more importance compared to the lowest cards in other suits.
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Fig. 3. Visualization of connection weights of the 52− 25− 1 network trained on all suits contracts. See description of Fig. 2.

Fig. 4. Visualization of connection weights of the 52− 25− 1 network trained on spades contracts. See description of Fig. 2.
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An interest in honors is also more obvious for spades than
for any other suit.

Similarly to notrump and all suits contracts, also for
spades contracts there exist hidden neurons specializing in
honors of one suit: these are the neurons number 23, 15, 17
and 3 for ♠,♥,♦ and ♣, respectively.

In comparison with previous cases, for spades contracts
there are more hidden neurons interested in Aces and, what is
new, this interest is much more focused (other cards from the
same suit, especially the King and the Queen are much less
important). It is interesting, that this pattern can be observed
for all suits other than the trump suit (e.g. hidden neurons
number 16 and 25 for ♥; 2, 4 and 24 for ♦; and 1, 10 and 24
for ♣). Weights of connections from input neurons “dedicated”
to spades follow human intuition - growing importance of
cards from the lowest to the highest one can be easily noticed
(e.g. hidden neurons number 4, 10 or 24). An interesting
observation is that these neurons consider also Aces from suits
other than the trump one as being important.

D. Similarities and Differences between Networks Trained for
Notrump, Spades, and All Suits Contracts

Concluding similarities and differences found in patterns
of connection weights in networks trained on notrump,
all suits, and spades contracts, the following observations
can be stated:
• Favoring Aces. Aces are definitely the most important

cards for neural networks in all three cases.
• Specialization in single suits. Such specialization is vis-

ible in all cases, but only for notrump contracts there
existed hidden neurons grading cards in a suit from two
to the Ace.

• Specialization in honors of single suits. This pattern was
visible in all cases, but it differed between notrump and
suit contracts. For notrump contracts the most important
were Jacks, Queens, and Kings, for spades contracts
networks fixed their attention on Kings and Aces.

• Importance of lower cards. For notrump contracts net-
works focused on honors, lower cards were noticed
only by hidden neurons specialized in single suits. The
networks trained on all suits contracts paid much more
attention to cards of lower rank, and the networks trained
only on spades contracts showed the intuitive solution:
all trumps, even the lowest ones, were relevant, and lower
cards of other suits were not important.

• Differences between suits. In two cases, for notrump
and all suits contracts, there was no visible difference
between connection weights of individual suits. Only for
spades contracts, one suit (naturally spades - the trump
suit) had much more importance than any other suit.

Table VII presents values of connection weights of the
networks without hidden units (52 − 1) trained respectively
on notrump, all suits and spades contracts. These values
confirm conclusions drawn from visualization of connection
weights: there is no significant difference between suits for
notrump and all suits contracts, and cards from the trump
suit are definitely the most important for spades contracts.

Another interesting conclusion, which is obvious for human
bridge players, is that for spades contracts three the most
important cards are: A♠, K♠ and Q♠. A♥, A♦ and A♣ are
less important than Q♠ (the Queen of trumps) and K♥,K♦
and K♣ have smaller absolute values of output connections
than 8♠.

E. Patterns Found in Hidden Layers of Networks Using Other
Deal Representations

For two other representations of a deal using fixed assign-
ment of cards from the deck to the input neurons (104 and
52x4), similar patterns were observed.

Fig. 5 presents graphical representation of connection
weights from input neurons to neurons from the first hidden
layer of the (52x4) − (26x4) − 26 − 13 − 1 network. The
first two layers were not fully connected, but restricted to one
hand.

For each group of connections (one group per hand, as
presented in the figure) similar patterns were found. These
patterns are analogous to the ones observed in the weights of
the 52−25−1 network. There are hidden neurons specialized
in single suits which grade the rank of cards from two to the
Ace. Also hidden neurons fixing their attention on honors of
particular suits can be easily pointed out.

VIII. HUMAN METHODS OF HAND’S STRENGTH
ESTIMATION

All results presented in previous sections were achieved by
artificial neural networks trained only on examples, without
presenting human knowledge about the game of bridge in any
form. These experiments constitute the first group of tests.

In this section results of training with additional human
knowledge are presented and discussed. The human knowledge
is represented by various numerical estimators of hand’s
strength used by experienced human bridge players in order to
declare the optimal possible contract. These experiments are
divided into two groups referred to as the second and the third
group of tests, resp. In the second group, inputs from human
hand’s strength estimators were added to previously used deal
representation. In the third group of tests, for comparison
purposes, only human estimators were used during training,
without accompanying presentation of a deal.

Human estimators of hand’s strength can be divided into
two categories: point count methods and distributional points
methods.

A. Point Count Methods

Human point count methods are based on calculating the
strength of a hand as a sum of single cards’ strengths [8],
[67]. In these methods, the value of each card depends only
on card’s rank. The most widely used points counting system
is called Work Point Count (WPC), which scores 4 points for
an Ace, 3 points for a King, 2 points for a Queen, and 1
point for a Jack. Table VIII presents other popular human
point count methods which were used in the experiments.
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TABLE VII
VALUES OF CONNECTIONS OF THREE 52− 1 NEURAL NETWORKS TRAINED RESPECTIVELY ON notrump, all suits AND spades CONTRACTS. VALUES

WERE LINEARLY SCALED INTO THE INTERVAL (0, 4).

Card’s
Value

Notrump Contracts All Suits Contracts Spades Contracts
♠ ♥ ♦ ♣ ♠ ♥ ♦ ♣ ♠ ♥ ♦ ♣

2 0.342 0.327 0.329 0.342 1.660 1.670 1.668 1.667 1.371 0.008 0.010 0.004
3 0.340 0.334 0.328 0.353 1.664 1.667 1.663 1.660 1.370 0.004 -0.006 0.000
4 0.347 0.314 0.351 0.345 1.669 1.655 1.669 1.685 1.380 -0.002 0.007 0.015
5 0.341 0.332 0.341 0.344 1.660 1.673 1.676 1.663 1.372 -0.003 0.012 -0.006
6 0.356 0.349 0.339 0.329 1.684 1.685 1.680 1.688 1.405 0.006 0.001 0.026
7 0.380 0.331 0.354 0.356 1.680 1.684 1.687 1.697 1.413 0.007 0.011 0.007
8 0.358 0.361 0.375 0.400 1.709 1.719 1.718 1.723 1.468 0.024 0.023 0.019
9 0.496 0.469 0.461 0.473 1.782 1.791 1.780 1.783 1.591 0.062 0.060 0.058

10 0.660 0.663 0.671 0.684 1.921 1.916 1.918 1.938 1.810 0.145 0.148 0.179
J 1.047 1.032 1.056 1.030 2.174 2.167 2.177 2.172 2.167 0.331 0.359 0.363
Q 1.676 1.688 1.675 1.656 2.569 2.569 2.572 2.565 2.666 0.715 0.708 0.711
K 2.643 2.643 2.677 2.655 3.207 3.210 3.220 3.216 3.314 1.399 1.403 1.416
A 3.975 3.971 3.966 3.989 3.982 3.984 3.973 3.995 3.998 2.319 2.300 2.326

Fig. 5. Visualization of connection weights between input neurons and the first hidden layer ones in the (52x4)− (26x4)− 26− 13− 1 network trained
on spades contracts with changing a hand making the opening lead. Each of the four subfigures presents connections from 52 input neurons representing
one hand to the respective 26 hidden neurons. The radius of a circle represents an absolute value of the weight. Black circles denote negative and white ones
positive weights.

B. Distributional Points Methods

The other category of human hand’s strength estimators
contains the so-called distributional points [8], [67]. These

methods score patterns which can be found in a set of cards
assigned to one hand. The most important patterns are: suits’
lengths and existence of groups of honors in one suit. Even
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TABLE VIII
HUMAN POINT COUNT METHODS

Method A K Q J 10
Work Point Count 4 3 2 1 0

Bamberger Point Count 7 5 3 1 0

Collet Point Count 4 3 2 0.5 0.5

Four aces points 3 2 1 0.5 0

Polish points 7 4 3 0 0

Reith Point Count 6 4 3 2 1

Robertson Point Count 7 5 3 2 1

Vernes Point Count 4 3.1 1.9 0.9 0

AKQ points 4 3 2 0 0

novice bridge players know, that a void (lack of cards in a
suit) or a singleton (single card in a suit) are very valuable in
suit contracts (certainly it does not regard the trump suit), so
almost all distributional points methods award such shortness.

Another very important pattern which is appreciated is a
group of honors in one suit located in the cards of both players
in a pair. Having a group of top honors in a suit allows to
predict more precisely the number of tricks available in this
suit.

TABLE IX
HUMAN DISTRIBUTIONAL POINTS METHODS

Method Short Description
Honor Trick Potential number of tricks to be taken by honors

in one suit (e.g. 2 points for AK, 1.5 for AQ,
1.0 for KQ, etc.)

Playing Trick Similar to the Honor Trick, with additional
bonuses for short and long suits (+1.0 for 5
cards in the suit with honors, +2.0 for 6 cards,
+3.0 for 7 or more cards), for figures in the
trump suit (+1.0 for A, K, or QJ , +0.5 for
Q or J10), and for a long trump suit (+0.5
for 4 cards in the trump suit, +1.0 for 5 cards,
and +2.0 for 6 or more cards).

Losing Trick Count Potential number of tricks to loose in one suit
(e.g 1 point for Ax, 2 points for Qx, 3 points
for J10x).

Asset System the WPC’s enhancement with bonuses for short
(+2 for a void, +1 for a singleton) and long
(+1 for 5 or more cards) suits.

Stayman Point Count the WPC method with rewarding short suits and
lowering the status of single honors in suits.

Rule of three and four the WPC method with additional +1 point for
5th, 6th, etc. card in the trump suit and for 4th,
5th, etc. card in any other suit.

Moins-value Modification of the WPC: −1.0 for no Aces,
−0.5 for no Tens, −1.0 when there are too
few cards in a suit to make honor(s) potential
trick(s), and −0.5 when there are less than 3
honors in a suit or there is only one out of the
three top honors: AKQ.

Plus-value Modification of the WPC: +0.25 for each Ace,
+0.5 for a Ten with a honor or nine, and +0.5
when there are 3 honors or at least two of the
three following top honors: AKQ in a suit.

Human distributional points methods used in our experi-
ments are listed in Table IX. Most of them join WPC scoring
with some rewarding for short and long suits.

Zar Points [68] is another method of estimating hand’s

strength, which combines elements of point count methods
with ideas of distributional points. In this method, each hand
is scored by adding the following figures:
• points for honors: 6 points for each Ace, 4 points for a

King, 2 points for a Queen, and 1 point for a Jack,
• the difference between the lengths of the longest and the

shortest suits,
• the sum of the lengths of the two longest suits.

C. Representation of Human Estimators

Values of human estimators of hand’s strength were coded
as real numbers from the range [0.1, 0.9]. For each estimator,
the minimum and maximum possible values were determined,
and evaluator’s value was linearly mapped to the destination
range. Usually 4 input neurons were assigned to each estima-
tor, one per hand. In some experiments two additional input
neurons were assigned to sums of estimator’s values for pairs
of players (NS and WE).

In the case of 52 and 104 codings, input neurons repre-
senting human estimators were connected to the first hidden
layer exactly in the same way as all other input neurons. In the
(52x4) representation, there existed a special group of neurons
in the first hidden layer, devoted to processing this additional
input information. For example, in the (52x4+84)− (13x4+
21)− 26− 1 network there were 21 neurons that belonged to
such group. These neurons received values exclusively from
input neurons assigned to human estimators (in this particular
case there were 84 such neurons). In the second hidden layer
all information was combined.

D. Comparison of Results

Table X contains results achieved by neural networks in all
three aforementioned types of experiments.

The main conclusion that can be drawn from this table, is
the difference between notrump and suit contracts. Whenever
full deals were presented in the input layer (regardless of
the way of coding), the networks achieved significantly better
results for spades contracts than for notrump ones.

Further comparison of results obtained for notrump and
spades contracts reveals an important difference between hu-
man methods of hands’ strength estimation. Results obtained
by the networks taking as input data only values of estimators
(36−25−1 with 9 point count methods and 32−25−1 with
8 distributional points methods) are comparable for notrump
contracts, but for spades contracts the advantage of using
distributional points methods over point count methods is
unquestionable.

It is also interesting to compare results achieved by networks
using the 52 representation with additional information coming
from human estimators. The network using a deal representa-
tion and point count methods ((52 + 36)− 25− 1) improved
the results for spades contracts only slightly (compared to the
result of the 52− 25− 1 network). When distributional points
methods were used ((52+32)−25−1), the improvement was
significant.

For spades contracts, the best results were achieved by the
(52x4) − (26x4) − 26 − 13 − 1 architecture. This network
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TABLE X
COMPARISON OF RESULTS OBTAINED BY NETWORKS WITH AND WITHOUT USING EXPLICIT HUMAN KNOWLEDGE. THE FIRST FIVE ROWS DENOTE

RESULTS OF TRAINING WITHOUT HUMAN KNOWLEDGE DISCUSSED IN SECTION VI INITIALLY PRESENTED IN TABLE V. ROWS 6− 10, 12, 14 AND 18

PRESENT THE EFFECTS OF TRAINING BASED EXCLUSIVELY ON HUMAN ESTIMATORS (WITHOUT EXAMPLE DEALS). THE REMAINING ROWS REFER TO

TRAINING RELYING ON “COMBINED” INFORMATION, I.E. THE RAW EXAMPLE DEALS TOGETHER WITH HUMAN HAND’S STRENGTH ESTIMATORS.

The Network Inputs
Results for
Notrump
Contracts

Results for Spades Contracts
with Changing a Hand

Making the Opening Lead

(26x4)-(13x4)-(7x4)-13-1 Deals in (26x4) representation 93.87 | 75.70 | 31.04 98.76 | 88.00 | 39.90

52-25-1 Deals in 52 representation 96.07 | 80.88 | 34.66 98.49 | 87.15 | 39.29

104-30-4-1 Deals in 104 representation 95.64 | 79.63 | 33.74 99.09 | 89.79 | 41.92

(52x4)-(13x4)-13-1 Deals in (52x4) representation 97.34 | 84.31 | 37.80 99.79 | 95.49 | 50.62

(52x4)-(26x4)-26-13-1 Deals in (52x4) representation 96.89 | 83.64 | 37.31 99.88 | 96.48 | 53.11

1-1 Sum of WPC values for the NS pair of players 93.73 | 76.41 | 31.37 76.22 | 49.55 | 16.93

4-1 WPC values for each hand 93.73 | 76.34 | 31.31 76.14 | 49.57 | 16.79

20-1 WPC values for hands (4 inputs) and suit lengths (16 inputs) 93.73 | 76.34 | 31.32 96.98 | 82.43 | 35.36

20-10-5-1 WPC values for hands (4 inputs) and suit lengths (16 inputs) 94.24 | 77.78 | 32.78 98.67 | 87.98 | 40.62

36-25-1 9 human point count methods, 4 inputs per method (see
Table VIII)

94.87 | 78.30 | 32.39 76.84 | 49.65 | 16.76

(52+36)-25-1 Deals in 52 representation and 9 point count human methods 96.33 | 81.39 | 35.01 98.78 | 88.20 | 40.53

32-25-1 8 human distributional points methods, 4 inputs per method (see
Table IX)

94.94 | 77.71 | 32.50 98.53 | 87.64 | 39.93

(52+32)-25-1 Deals in 52 representation and 8 distributional points human
methods

96.86 | 83.02 | 36.67 99.67 | 94.18 | 48.40

68-25-1 9 point count methods and 8 distributional points methods (4
inputs for each method)

96.03 | 81.34 | 35.41 98.99 | 90.06 | 42.67

(104+68)-50-10-1 Deals in 104 representation, 9 point count human methods, and
8 distributional points human methods (4 inputs per method)

95.68 | 80.08 | 34.00 99.46 | 92.40 | 45.54

(52+102)-77-38-19-1 Deals in 52 representation, 9 point count human methods, and
8 distributional points human methods (6 inputs per method -
4 for hands and 2 for pairs of players)

96.06 | 81.21 | 35.15 99.50 | 92.67 | 45.80

(52x4+84)-(13x4+21)-26-1 Deals in (52x4) representation, 9 point count human methods,
8 distributional points human methods (4 inputs per method),
and lengths of all suits from all hands (16 inputs)

97.37 | 84.99 | 38.78 99.84 | 96.12 | 52.47

4-1 Zar Points values for each hand 91.98 | 71.77 | 28.21 77.45 | 49.98 | 16.76

(52+4)-25-1 Deals in 52 representation and Zar Points values for each hand 96.47 | 81.61 | 35.43 99.45 | 91.90 | 44.69

defeated all networks using additional input from human
estimators (including the (52x4 + 84)− (13x4 + 21)− 26− 1
one which used the same, superior representation of deals).
For notrump contracts, the results attained by this network
were not superior, due to overfitting. Two other architectures
achieved better results: (52x4)− (13x4)−13−1 and (52x4+
84)− (13x4 + 21)− 26− 1.

The results achieved by the 20−10−5−1 network are worth
noticing. This architecture uses very simple input data: WPC
values for hands and the lengths of suits on each hand (20 input
values in total). Only networks using the 52x4 representation
were able to achieve visibly better results without providing
additional input data from human estimators.

Also results obtained by the 68 − 25 − 1 network (which
uses human estimators only) are interesting. This network
was outperformed only by (52x4) architectures, among those
trained solely on example deals.

Based on the results presented in this section it can be
concluded that human estimators (especially the distributional
ones) are strong and reliable indicators of hand’s strength. The
results suggest that these estimators provide “the essence of the
game” and can be regarded as efficient, compact representation
of the problem (deal to be assessed) for neural network
training. On the other hand, in case of spades contracts, the

so-far superior architecture ((52x4)− (26x4)− 26− 13− 1)
remained the leading one, which in turn implies that this
architecture is capable to extract relevant knowledge straight
from the raw data, with no need to use additional estimators
in the input layer.

IX. ASSESSMENT OF RESULTS

Due to relatively low interest in the game of bridge within
AI community (compared e.g. to chess, checkers, Othello or
go) the objective assessment of results is not straightforward.
In the following subsections three points of reference are
proposed: comparison with the literature (section IX-A), com-
parison with the use of selected human estimators discussed
in section VIII, but applied directly to the DDBP deals, not
as the input for neural networks (section IX-B) and finally
comparison with results accomplished by professional human
bridge players (section IX-C).

A. Comparison with Literature

As it was mentioned in the Introduction section the DDBP
can be solved exactly with the use of sophisticated AI meth-
ods [14], [1], [24], [61] including fast search algorithms and
hash tables. These attempts are mentioned in section III-C.
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Another approach was proposed by Ginsberg who combined
the efficient DDBP solver with partition search mechanism and
roll-out simulations as a part of his famous GIB program [45],
[11].

None of the above papers, however, was connected with
Computational Intelligence methods and specifically neural
networks. Up to our knowledge the only attempt to solve the
DDBP with the use of neural nets was reported in [2], [3].
These papers are discussed in section III-D. Unfortunately no
numerical evidence about the efficiency of proposed approach
(neither in the case of using the raw input data nor in the
case of using additional “pre-computed feature points”) is
provided in the cited papers. Only high level conclusions
about inefficiency of raw deal representation are given. Our
results contradict the above statement and suggest that with
appropriate input representation neural networks are capable
to extract relevant, domain-specific knowledge straight from
the raw data without the need for initial pre-processing of the
training/testing deals.

All the above cited papers address the classical version of
the DDBP with all four hands uncovered. In practice, from the
point of view of bridge rules, it is very interesting to consider
the case in which the hands of the opponents are hidden.
Such a situation is more realistic, since during the bidding
phase an experienced player can learn about the strengths and
weaknesses of his partner’s hand quite precisely (under the
assumption that the players have a great deal of experience in
playing together). Thus the assumption that partner’s cards are
known to the player is to some extent justified. Certainly some
information concerning cards distribution on the opponents
hands can also be inferred from the bidding phase, but the
hands of the opponents should be treated, in principle, as
hidden.

In the reminder of the paper in order to distinguish between
these two versions of the DDBP they will be referred to as
DDBP-4 (or simply DDBP) in case of fully uncovered version
of the problem and DDBP-2 in case of the opponents’ hands
being hidden. The latter variant is implemented in the paper
by the 52−25−1 architecture with the following hand coding:
1.0 for NS and −1.0 for WE, as discussed in section VI-E
(cf. the results of 52− 25− 1 architecture in Table V).

Since no reference to the DDBP-2 have been found in the
literature, in order to asses the networks’ results, a specially
designed experiment with human professional bridge players
has been performed (see section IX-C).

B. Comparison with Raw Human Estimators

As discussed in section VIII professional bridge players use
several numerical estimators in order to assess their hand’s
strength and consequently bid the optimal contract. These
estimators depend mainly on the points gathered on both hands
in each pair as well as the distribution (length) of the suits
on each hand. One of the conclusions drawn is section VIII-
D refers to the ability of neural networks to evaluate the
possible contract based exclusively of numerical information
represented by the human estimators, i.e. without having
access to particular deal distribution. This suggest that the

estimators are highly reliable, and also the neural nets are very
efficient in utilizing this aggregated information. However, the
best neural architectures, when applied to sample deals can
still improve the results by a few percent. In other words, there
is more in neural networks than a simple statistical estimation
of the points and cards distribution.

In order to further verify the above hypothesis a simple
statistical evaluation of the human estimators is proposed
in this section. Instead of presenting the values of human
estimators as inputs to neural architectures it is proposed to
use them straight in the same way as human players do. Three
basic estimators, namely the WPC system, the Asset system
and the Stayman system are taken into account. In each case
the test covers the same 100, 000 deals, which were used in
evaluation of the neural networks.

In case of the WPC estimator the results are equal to 86.44 |
62.07 | 22.76 and 74.64 | 48.25 | 16.41, resp. for notrump
and spades contracts. Application of the Asset estimator leads
respectively to 79.99 | 55.14 | 19.68 and 72.32 | 48.42 | 16.93.
Finally, the use of the more elaborate Stayman system yields
the following results: 89.10 | 67.63 | 26.02 and 74.11 | 50.96 |
18.32.

The above figures confirm that straight application of human
estimators is much less effective than estimations delivered by
neural networks appropriately trained on sufficient number of
deals.

The final assessment of the quality of neural solutions of
the DDBP was made based on a comparative experiment
organized among highly qualified human bridge players. The
results are presented in the next section.

C. Comparison with Human Bridge Players

The third and the most reliable comparison was performed
with the help of human bridge players. A group of 24
professional players, the members of The Polish Bridge Union
took part in the experiment through the Internet. Depending
on time availability each of them solved between 27 and
864 instances of the problem grouped into 27 deal chunks3.
The players, based on their professional accomplishments (the
bridge titles and the ranks of competitions they took part in
at the international and national level) were divided into two
groups. The first group was composed of 10 upper-classified
players (four Grand Masters, three International Masters and
three Masters, playing in the First or the Second Polish
Bridge League) including one player from the top-10 players
in Poland in the 2007 ranking. The remaining 14 players
(members of the lower-ranked bridge teams, each having a
professional bridge title) composed the second group. These
groups of players will be denoted by “Group-1” and “Group-
2”, resp.

The participants of the experiment were faced with both
types of deals, i.e. DDBP-4 and DDBP-2. In each 27-deal
chunk only deals of one type were served. For each deal the

3In fact there were more players involved in the experiment. After the
contest the results were restricted to the players having at least the lowest
possible professional bridge title and at the same time the ones that solved at
least one full chunk of deals.
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information about the type of contract (notrump or spades)
and the hand making the opening lead was provided. The
NS pair was ether the declaring pair or the defending one.
There was a 30 second slot allotted for each test problem.
This amount of time was chosen after some preliminary
experiments and seems to be sufficient for experienced players.
Before starting the experiment the players had a chance for
some training in order to get used to the environment and the
rules of the experiment.

Various statistics were collected from the experiment. The
overview of the main results is presented in Table XI. Gener-
ally speaking, human players were able to outperform neural
networks only in the case of DDBP-4 and notrump contracts,
where the score of the Group-1 players is respectful. In the
remaining three categories the respective networks (52x4 in
case of DDBP-4 and 52 in case of DDBP-2) are competitive to
humans, especially when the one-trick and two-trick margins
are considered.

Analysis of results leads to two specific observations: first of
all, humans are visibly better at solving the notrump contracts
than the suit ones. Second of all, the opposite conclusion is
valid in the case of neural networks.

The reason for human better performance in notrump con-
tracts than in the suit ones is twofold. Firstly, the tournament
statistics show that a distribution of contracts being played
is approximately equal to 60, 35 and 5%, respectively for
notrump, spades and hearts, and diamonds and clubs [69].
Hence, humans are more used to playing notrump contracts.
Secondly, notrump contracts are easier to be played than the
suit ones (roughly speaking playing the suit contract includes
all the techniques used for playing the notrump contract
and additionally several other maneuvers related to the use
of trump cards) [69].

The opposite effect observed in the case of neural networks
can be attributed to the fact that human way of solving
the DDBP is very different from that of neural networks.
Humans, when analyzing a deal, despite scoring the hands
and locating the honors also try to virtually simulate the play
phase. Neural networks are restricted to thorough analysis
of cards distribution, which includes location of honors and
lengths of suits, but does not include play phase simulations.
Due to a different specificity of notrump vs. suit contracts,
the point count methods and distributional estimators (when
used alone) are more effective in the case of suit contracts
than the notrump ones, which require some amount of roll-
out simulations [69]. In this sense, the suit contracts are
“better suited” for simulation-free estimations made by neural
networks than the notrump contracts.

X. SAMPLE DEALS

In this section six examples of deals from the testing set
were chosen in order to illustrate strong and weak points of
trained networks depending on deal codings used in experi-
ments. For each deal also the fraction of correct answers given
by top human players (Group-1) taking part in the experiment
is provided. Please note that since the order of deals in the
human contest was partly random, the numbers of answers

for each of the deals were not pairwise equal. The first four
deals (sections X-A - X-D) were chosen before the human
contest was organized and hence the criteria of choosing
them were mainly to illustrate the differences between neural
architectures. The last two examples (presented in section X-
E) were chosen so as to show the possible advantage of using
neural networks in this task. All human and networks answers
concern the DDBP-4 version of the problem.

A. 4♠ with 15 WPC

Correct number of tricks 10

Networks’ estimations
(52x4)− (13x4)− 13− 1 10

(52x4)− (26x4)− 26− 13− 1 10
104− 30− 4− 1 8

52− 25− 1 7
(104 + 68)− 50− 10− 1 10

(52x4 + 84)− (13x4 + 21)− 26− 1 10
Group-1 human players (% of correct answers) 40%

Fig. 6. The 1st sample deal. The estimations of a number of tricks to be
taken by the NS pair in spades contract with West opening lead.

The first sample deal, presented in Fig. 6, shows the
advantage of the (52x4) architecture over the networks using
the 52 or 104 codings. In this deal the NS pair is able to
take 10 tricks when playing spades contract. However, 52 and
104 networks estimated only 7 and 8 tricks, respectively. Both
tested networks using the (52x4) coding were perfectly right.
Adding human estimators to the network’s input (by using 9
point count and 8 distributional points methods), and enlarging
104 network’s size to (104 + 68) − 50 − 10 − 1, allowed to
estimate the correct number of tricks.

Analysis of this deal shows that NS pair has together
only 15 WPC. There is a void in clubs on South and two
singletons in hearts and diamonds on North. These short
suits extremely strengthen NS and enable them to hold 10
tricks.

Note that simple “human” WPC-based scoring system
would estimate only 5 tricks in this case. This may be one
of the reasons why this deal appeared to be quite demanding
for humans. The correct answer was given by 40% of the
players.
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TABLE XI
RESULTS OF HUMAN PLAYERS VS. SELECTED NEURAL ARCHITECTURES

Type of the
player

DDBP-4. Results for
Notrump Contracts

DDBP-4. Results for
Spades Contracts

DDBP-2. Results for
Notrump Contracts

DDBP-2. Results for
Spades Contracts

Group-1 94.74 | 88.30 | 73.68 88.34 | 81.63 | 53.06 93.17 | 79.18 | 43.32 93.68 | 81.20 | 38.63

Group-2 92.94 | 84.71 | 60.78 93.87 | 82.95 | 48.66 84.00 | 69.71 | 34.86 88.46 | 73.59 | 30.59

(52x4)-(26x4)-26-13-1 96.89 | 83.64 | 37.31 99.88 | 96.48 | 53.11

52-25-1 (NS = 1.0, WE = −1.0) 96.07 | 80.88 | 34.66 98.77 | 88.00 | 40.13

Correct number of tricks 3

Networks’ estimations
(52x4)− (13x4)− 13− 1 5

(52x4)− (26x4)− 26− 13− 1 3
104− 30− 4− 1 5

52− 25− 1 5
(104 + 68)− 50− 10− 1 5

(52x4 + 84)− (13x4 + 21)− 26− 1 4
Group-1 human players (% of correct answers) 80%

Fig. 7. The 2nd sample deal. The estimations of a number of tricks to be
taken by the NS pair in spades contract with North opening lead.

B. Only 3 Tricks in Defence Despite 25 WPC and two Single-
tons

In the second example, presented in Fig. 7, WE can hold
10 tricks in spades contract, so NS are able to hold 3 tricks
only. Most of the networks claimed 5 tricks being wrong by
2 tricks. The (52x4+84)− (13x4+21)− 26− 1 architecture
overestimated 1 trick, and only the (52x4) − (26x4) − 26 −
13− 1 one answered properly.

The power of NS pair (25 WPC including the King of
trumps and two singletons) promises more than 3 tricks. Closer
analysis shows some weaknesses. K♠ is not able to take a
trick because it is placed on the N hand and will be beaten
by A♠ placed on the E hand. Also Q♦ cannot take a trick
because it is a singleton. Twenty points in hearts and clubs
can take only 3 tricks due to shortnesses on the opponents
hands.

Humans managed to do much better than in the previous
case. The correct answers were provided in 80% of the cases.

Opening lead
North South

Correct number of tricks 4 3

Networks’ estimations
(52x4)− (13x4)− 13− 1 3 4

(52x4)− (26x4)− 26− 13− 1 4 3
104− 30− 4− 1 4 4

52− 25− 1 4 4
(104 + 68)− 50− 10− 1 3 4

(52x4 + 84)− (13x4 + 21)− 26− 1 3 4

Group-1 human players (% of correct answers) 80% 50%

Fig. 8. The 3rd sample deal. The estimations of a number of tricks to be
taken by the NS pair in spades contract.

C. The Number of Tricks Depending on which Hand Makes
the Opening Lead

In the third example (presented in Fig. 8), the number of
tricks to be taken by the NS pair in the WE contract in
spades depends on which hand makes the opening lead. If it
is North, the NS pair is able to hold 4 tricks (1 in ♠, 2 in
♥, and 1 in ♦). When S makes defender’s lead, NS pair can
hold only 1 trick in ♥, so 3 in total.

The (52x4)− (26x4)− 26− 13− 1 was the only network
which correctly estimated the number of tricks in both cases.
The remaining architectures were mistaken in at least one of
the cases. The case with the opening lead from S was generally
more diffcult.

The results among human players follow similar pattern. In
the variant with opening lead from N the 80% of the players
were correct, but in the case of the rotated opening lead (from
the S side), the correct answer was given by only half of them.
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Correct number of tricks 0

Networks’ estimations
(52x4)− (13x4)− 13− 1 4

(52x4)− (26x4)− 26− 13− 1 3
104− 30− 4− 1 3

52− 25− 1 4
(104 + 68)− 50− 10− 1 3

(52x4 + 84)− (13x4 + 21)− 26− 1 4
Group-1 human players (% of correct answers) 80%

Fig. 9. The 4th sample deal. The estimations of a number of tricks to be
taken by the NS pair in spades contract with North opening lead.

D. Undefended Grand Slam

The next example (shown in Fig. 9) is one of the deals for
which all networks, regardless applied way of coding, made
significant error. Perfectly fitted WE hands are able to hold
all tricks (the grand slam) thanks to very favorable distribution
of spades on NS hands. The strength of the NS pair is
noticeable - 14 WPC, 7 trumps (including the Queen) and
a singleton in diamonds, but still not enough to hold any
trick in this deal.

Under these circumstances networks’ estimations seem to
be somehow “justified”, but certainly wrong.

In this example the number of correct answers given by hu-
mans highly “diverged” between DDBP-4 (80%) and DDBP-2
(0.0%). The partly hidden variant of the deal appeared to be
highly demanding. The closest answer was 3, which means
three tricks error! Surprisingly, the problem was relatively easy
in its fully uncovered version.

E. Advantage of networks’ estimations

The following two examples were chosen among those that
appeared to be relatively easy for neural networks (all tested
architectures predicted correct numbers of tricks), but at the
same time quite demanding for human players. In the first
example, presented in Fig. 10 it is quite easy to point out 8
tricks for NS pair (3 in ♠, 3 in ♥ and 2 in ♣), and “8 tricks”
was the most frequent answer given by humans. The correct
number of tricks is 9. Since the WPC estimation also suggests
8 tricks (the NS pair plays on 25 points) it is quite interesting
that the networks were able to “find” this “missing” trick (in
♦).

The other example of networks’ “supremacy” over humans
is presented in Fig. 11, where the correct answer is 4 (1 trick

in ♥, 2 in ♦ and 1 in ♣), but humans were largely inclined
to estimate 5 tricks (additional one in ♣), possibly due to 16
WPC points on the NS hand.

Correct number of tricks 9

Networks’ estimations
(52x4)− (13x4)− 13− 1 9

(52x4)− (26x4)− 26− 13− 1 9
104− 30− 4− 1 9

52− 25− 1 9
(104 + 68)− 50− 10− 1 9

(52x4 + 84)− (13x4 + 21)− 26− 1 9
Group-1 human players (% of correct answers) 20%

Fig. 10. The 5th sample deal. The estimations of a number of tricks to be
taken by the NS pair in spades contract with South opening lead.

Based on the above analysis of example deals it can be con-
cluded that even though the results accomplished by selected
neural networks are comparable with those of humans (in case
of spades contracts) there clearly exist deals in which human
players are surpassed by neural networks and vice versa. It
should be interesting to explore this issue in more detail.

XI. CONCLUSIONS

Results presented in the paper allow to make some ob-
servations concerning the abilities of neural networks of au-
tonomous discovering of the properties of the game of bridge
and the influence of input representation on the efficacy of this
process. Moreover, several observations related to the internal
representation of the knowledge acquired during the learning
process in the networks’ connections can be formulated.

Generally speaking, artificial neural networks turned out to
be very effective in estimating the number of tricks to be taken
by one pair of players in the Double Dummy Bridge Problem.

The quality of attained results strongly depends on the way
of coding a deal in the input layer. The best tested architectures
were capable of discovering knowledge concerning the game
based exclusively on sample training deals. The process of
training was so effective that adding explicit human bridge
knowledge (in the form of well-known human estimators of
hands’ strength) did not cause further improvement (such an
improvement was, however, observed for less sophisticated
neural architectures).

In several cases it is quite difficult, even for experienced
human bridge players, to answer the question about the
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Correct number of tricks 4

Networks’ estimations
(52x4)− (13x4)− 13− 1 4

(52x4)− (26x4)− 26− 13− 1 4
104− 30− 4− 1 4

52− 25− 1 4
(104 + 68)− 50− 10− 1 4

(52x4 + 84)− (13x4 + 21)− 26− 1 4
Group-1 human players (% of correct answers) 25%

Fig. 11. The 6th sample deal. The estimations of a number of tricks to be
taken by the NS pair in spades contract with West opening lead.

number of tricks to be taken by a playing pair, even with all
cards revealed. In some deals such an answer depends on the
location of the defender’s lead hand. Despite these difficulties,
the most efficient neural network ((52x4)−(26x4)−26−13−
1) trained exclusively on example deals, without any human
knowledge or awareness of nuances of the play (e.g. finesses),
and with no information about the rules of the game, achieved
respectful result: in suit contracts it was perfectly right in
53.11% of test deals and mistaken by more than one tricks in
only 3.52% out of 100, 000 test cases. The results for notrump
contracts were equal to 37.80% and 16.36%, respectively.

From the game of bridge’s perspective, the most interesting
observation is the difference between notrump and suit con-
tracts. The 1− 1 network (i.e. without hidden neurons) which
takes as an input only one value - a sum of points of one pair of
players, for notrump contracts achieved results comparable to
the bigger and more complicated architectures. Certainly, the
best networks obtained visibly better results, but the difference
was not as big as in the case of spades contracts.

For suit contracts, the simplest set of input values which
allowed to obtain results at decent level used the WPC scoring
and lengths of suits on hands. This observation is backed up
by results of networks using as inputs the human estimators
of hands’ strength only. An advantage of using the set of
input values based on distributional points methods (i.e. mainly
using information about lengths of suits on hands) for spades
contracts is undisputable.

The way of coding a deal clearly has an impact on the
quality of results. The three deal representations: ((26x4), 52,
and 104) achieved comparable results when trained solely on
example deals and after adding human estimators of hands’
strength to their input data the results improved. Hence, it may
be concluded that the networks using these representations

were not able to extract all corresponding knowledge from
examples. The last way of coding was superior in two aspects:
first, the networks using this representation achieved the best
results. Second, additional knowledge from human estimators
did not improve the results, which suggests that all relevant
information about the game was already detected by these
networks straight from example deals.

The final assessment of the efficacy of proposed neural
approach was made through a comparative experiment orga-
nized among professional bridge players. The top-ten of them
were holding international titles (four Grand Masters, three
International Masters and three Masters) and were playing
in either the First or the Second Polish Bridge League. This
selective group of players visibly outperformed neural network
approach in case of notrump contracts, but accomplished
comparable (or even slightly worse) result in the case of suit
contracts. What is more important, the results degraded in the
case of DDBP-2 (a version of DDBP in which only two hands
- our and our partner’s are revealed, whereas the opponent’s
hands are hidden). On the contrary to humans no degradation
of neural networks’ efficiency was observed in this partly
hidden variant (actually a slight improvement in 52− 25− 1
network’s results was noted).

Except for detailed analysis of neural networks applicability
to solving the DDBP, the main contribution of this paper is
in-depth analysis of connection weights of trained networks
which revealed the existence of weight patterns “responsible”
for particular aspects of the overall solution of the problem.
These patterns can be easily recognized and explained by
experienced human bridge players. In other words it turned out
that the representation of problem specific knowledge gained
through the learning process, although redundant, is highly
specialized and several aspects indispensable for high playing
competency in the game of bridge can be explicitly pointed
out in the network’s weight space.

Analysis of connection weights of trained networks revealed
patterns which can be explained using human knowledge
of the game. The most common patterns (found practically
in all networks “large enough”) are: preference for honors
with special attention put to Aces, favoring trump suit cards,
and gradual importance of cards from two to the Ace in
each suit. Specialization of particular neurons in the above
features is very clear. Weight patterns are repeatable for the
whole ensemble of randomly initialized networks. All of
the above relationships are crucial and well-known even for
novice human players. All of them, on the other hand, were
discovered by the networks themselves in the blind example-
based training regime, without explicitly adding any domain
knowledge.

In future work we plan to continue analysis of internal
representation of bridge-specific knowledge in the neural
architectures in order to provide the guidelines about when
neural network-based estimator of a bridge contract can be
practically applied with high level of confidence.

Another interesting direction for future research is extraction
of rules from the trained networks. Since neural networks
appeared to be efficient in solving the DDBP and several
human-type patterns were found in the networks’ weights, it
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will be interesting to formally define and numerically quantify
the bridge-specific features underlying their high performance.
These extracted numerical features may be compared with hu-
man hand scoring systems and potentially lead to development
of some new ideas in human bridge playing and be helpful for
novice and semi-professional players in improving their bridge
skills.

Furthermore, we would like to extend the proposed ap-
proach to another classification problem having multidimen-
sional, binary data representation.
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[6] K. Mossakowski and J. Mańdziuk, “Neural networks and the estimation
of hands strength in contract bridge,” in Artificial Intelligence and Soft
Computing ICAISC 2006, ser. Lecture Notes in Artificial Intelligence,
L. Rutkowski et al., Eds., vol. 4029. Springer, 2006, pp. 1189–1198.
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[62] M. Köhle and F. Schönbauer, “Erfahrung mit einem Neuralen Netz, das
Bridge spielen lernt,” in Proceedings of the 5th Austrian Meeting on
Artificial Intelligence, J. Retti and K. Leidlmair, Eds. Berlin: Springer-
Verlag, 1989, pp. 224–229.

[63] H. Yo, Z. Xianjun, Y. Yizheng, and L. Zhongrong, “Knowledge acquisi-
tion and reasoning based on neural networks – the research of a bridge
bidding system,” in Proceedings of the INNC-90, Paris, 1990, pp. 416–
423.

[64] M. Sarkar, B. Yegnanarayana, and D. Khemani, “Application of neural
network in contract bridge bidding,” in Proc. of National Conf. on Neural
Networks and Fuzzy Systems, Anna University, Madras, 1995, pp. 144–
151.

[65] Java neural network simulator. [Online]. Available: http://www-
ra.informatik.uni-tuebingen.de/software/JavaNNS/welcome e.html

[66] M. Riedmiller and H. Braun, “Rprop- a fast adaptive learning algorithm,”
1992. [Online]. Available: citeseer.ist.psu.edu/riedmiller92rprop.html

[67] B. Seifert, Ed., Encyclopedia of Bridge. Warsaw: Polish Scientific
Publishers PWN, 1996, (in Polish).

[68] Z. Petkov. [Online]. Available: http://www.zarpoints.com
[69] P. Dybicz, International Bridge Master and trainer, Private communica-

tion, 2008.


