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Abstract 

Kamp and Hasler proposed in 1990 a Perceptron-type learning rule for storing bina- 
ry patterns in the Hopfield associative memory. They also proved its convergence. In 
this paper this rule is evaluated experimentally. Its performance is compared with that 
of the commonly-used Hebb rule. Both rules are tested on a variety of randomly gener- 
ated collections of library patterns parametrized by the number of patterns M in a col- 
lection, the density p of the pattems, and the measure of correlation B of the bits in a 
pattern. The results are evaluated on two criteria: stability of the library patterns, 
and error-correction ability during the recall phase. The Perceptron-type rule was found 
to be perfect in ensuring stability of the stored library patterns under all evaluated con- 
ditions. The Hebb rule on the other hand was found to degrade rapidly as M was in- 
creased, or the density p was decreased, or the correlation B was increased. For not 
too large M, the Perceptron-type rule was also found to work much better, under a va- 
riety of conditions, than the Hebb rule in correcting errors in probe vectors. The con- 
ditions, when the Perceptron-type rule worked better, included a range of pattern- 
densities p, a range of correlations B, and several degrees of error e in a probe vector. 
The uniformly random case (p = 0.5,B = 1) was the main exception when the Hebb rule 
systematically equalled or outperformed the Perceptron-type rule in the error-correction 
experiments. The experiments revealed interesting aspects of the evolution of the Per- 
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ceptron-type rule. Unlike the Hebb rule, the Perceptron-type rule evolved over multiple 
epochs (multiple presentations of a library pattern). The error was found not to decrease 
monotonically, though eventually it always became zero. When M was sufficiently large, 
it was found that, for the uniformly random patterns, the Perceptron-type rule produced 
a degenerate weight matrix, whose diagonal terms dominated (stability was achieved as 
a byproduct). © 1998 Elsevier Science Inc. All rights reserved. 

Keywords: Neural networks; Storage capacity; Error correction; Recurrent networks 

1. Introduction 

The binary Hopfield network is a well-known model for associative memo- 
ries [1]. Since its introduction it has attracted a large amount  of  interest [2] and, 
despite some of  its drawbacks, the network remains an active topic of  research. 
One of  the main drawbacks of  the original model is its limited capacity under 
the Hebb rule, which is poor  on random patterns [1,3] and even poorer on cor- 
related patterns [2]. Over the past decade, several attempts have been made to 
improve its capacity [2,4]. One notable example is the pseudoinverse rule, 
which works well for linearly independent patterns [2]. Unlike the Hebb rule 
however, the pseudoinverse rule has no biological interpretation, is non-local, 
and is computationally intensive. 

In this paper we experimentally evaluate a simple, online, local Perceptron- 
type learning rule for the binary Hopfield model. This rule was first presented 
in [5], together with a proof  of  convergence. In [5], the authors emphasized the 
similarities between this rule and the Hebb rule - in particular that if one refor- 
mulates the associative memory problem as one involving Perceptron learning, 
one is led to a rule that is essentially Hebbian. In this paper we emphasize the 
differences.  In particular, we view the Perceptron-type rule as a supervised ex- 
tension of  the unsupervised Hebbian rule that incorporates a Perceptron-type 
term for correcting unstable bits. As an aside, it is interesting to note that there 
does not appear to have been much work on using Perceptron learning for 
feedback associative memories. The one work we are aware of  in addition to 
[5,4] is by Liu and Lu [6], who use Perceptron Learning to store memories in 
a continuous-time feedback network with saturated-linear neurons [6]. 

The rule retains the simplicity, online nature, and locality (hence computa- 
tional efficiency) of  the Hebb rule. Extensive computer simulations reveal that 
it performs better in most situations of  interest. Unlike the Hebb rule, the Per- 
ceptron-type rule works over multiple epochs and often reduces error non- 
monotonically, over the epochs. 

Our main results may be summarized as follows. In extensive computer sim- 
ulations it was found that in all cases the Perceptron-type rule was able to store 
(all bits of) all vectors stably. However, the simulations also revealed that, for 
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uniformly random patterns, when the number of patterns approached nx/~, n 
being the pattern dimension (also the number of neurons), the rule produced a 
diagonally-dominant matrix for which all the 2 n possible vectors were stable. 
Experiments were conducted to estimate the error-correction ability around 
the stored library vectors 2 and thereby get a more realistic assessment of the 
capacity. 

The main experimental results are as follows. While the Perceptron-type rule 
ensured stability of all the library vectors in all tested situations, the Hebb rule 
degraded rapidly on this measure when the vectors were made sparse, or more 
correlated in a certain way. When the number of library vectors was kept be- 
tween 0.1n and 0.3n, the Perceptron-type rule significantly outperformed the 
Hebb rule in correcting errors in probe vectors derived by flipping one (two) 
bit(s) at random from the library vectors. In particular, the performance of 
the Perceptron-type rule remained roughly constant over various degrees of 
sparseness and correlation of the library vectors, whereas the performance of 
the Hebb rule, like in the stability case, rapidly degraded when the sparseness 
or the correlation was increased. 

The Perceptron-type rule was found to work significantly better than the 
Hebb rule even when the probe vectors had large amounts of error. For the 
case M = 0.1n, situations when the probe vectors had 2.5-50% of the bits in 
error were evaluated. In all cases when the patterns were sparse (p~< 0.3) 
and/or correlated, the Perceptron-type rule significantly outperformed the 
Hebb rule in correcting errors. 

This paper is organized as follows. Section 2 reviews the Hopfield network, 
then presents the Hebb rule, and finally the Perceptron-type rule. Section 3 pre- 
sents the experimental studies: Section 3.1 presents the storage capacity results; 
Section 3.2 the error-correction results. Section 4 discusses potential applica- 
tions. Section 5 presents the conclusions. 

2. Hopfield network, Hebb rule, and Perceptron-type rule 

The Hopfield model is a recurrent neural network of n binary neurons. Each 
neuron has an external state -1  (denoting not firing) or + 1 (denoting firing). 
Pairs of neurons are interconnected together via a symmetric weight matrix 
(i.e. wij  = wji)  with non-negative diagonal elements. The Hopfield network 
computes as follows. All neurons are initially set to some state-vector in 
{-1 ,  1 }n. The network then updates its neuron's states based on some evolu- 
tion equation. (The network is recurrent because every neuron's state can affect 

2 The vectors that one attempts to store in an associative memory model. Also known as 

fundamental  memories, prototype vectors, memory patterns, etc. 
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every other neuron's state.) In 1982 Hopfield exhibited a particular evolution 
equation according to which if the network is operated, convergence is assured 
to some steady state from an arbitrary initial state. The steady states could, fur- 
thermore, be controlled by the choice of the weight matrix W. Hopfield then 
suggested that this network may be used for storing memories, by appropriate 
choice of the weight matrix. Given a set X1, . . . ,  X p of vectors of  length n one 
would attempt to construct a suitable weight matrix W such that the vectors 
were recorded as steady states of the network. Hopfield proposed the Hebb 
rule for this purpose. For more details, the reader is referred to [2]. 

Both the Hebb and the Perceptron-type rule are designed to store a set 
X l , . . .  ,X p of patterns, where X" E {-1,  1} n, # = 1, . . .  ,p, in a Hopfield net- 
work of n neurons. Both rules are online, i.e. the patterns are presented to them 
one by one. Both rules attempt to store a presented pattern by adjusting the 
weights of the network (the neuron thresholds remain 0). Both rules are local 
in that changes to weight wij are based only on activities of neurons i and j.  
Both rules assume that the initial weight matrix is W -- 0. 

First consider the Hebb rule. To store the pattern-set X 1,.. ., X p each pat- 
tern X * is presented exactly once and the weight matrix adjusted as follows: 

Wiy(t + 1) := w,j(t) + ~/X/~Xy. (1) 

Unfortunately, though its simplicity is attractive, the Hebb rule's storage ca- 
pacity is poor [2]. The Perceptron-type rule is a good alternative to explore be- 
cause it retains several of the attractive features of the Hebb rule - simplicity, 
locality, online nature, biological relevance - while being expected to perform 
better because it uses supervised learning to reduce errors. Whether the Per- 
ceptron-type rule does in fact perform better or not is the empirical question 
studied in this paper. 

The Perceptron-type rule may be described as the following modification of 
Eq. (1): 

- r ? ) x ;  + (xy  - rDx / . ] ,  (2) wij(t + 1) :=  wji(t + 1) := wij(t) +-~ 

where Yo := sgn(WX~). 
The Perceptron-type rule may be understood as follows. First imagine that 

the weights of the network are not required to be symmetric. In this case, the 
problem of storing the pattern-set x l , . . . ,  X p stably may be formulated as one 
to find a weight matrix W satisfying 

X ~ = sgn(WX ") for p = 1, . . .  ,p. 

Because W is not required to be symmetric, this may be reinterpreted as learn- 
ing the auto-associative mapping in a Perceptron with n input neurons and n 
output neurons. Presenting the patterns one by one and applying the online 
Perceptron algorithm [2] yields the rule 

wij(t -or- 1) := w,j(t) + rl(Xi ~ - Yi~)Xj ". (3) 
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The problem of course is that this does not ensure the symmetry of W since 
changes to wij(t + 1) and wji(t + 1) may be unequal. One way to ensure symme- 
try is to take the average 1/2(Awij(t + 1) + Awji(t + 1)) of both changes and 
make this change to both weights. This yields Eq. (2). The fact that rule (2) 
is convergent [5] is thus not entirely surprising, given its roots in the Perceptron 
algorithm. 

3. Experimental studies 

To assess the performance of the Perceptron-type learning rule on associa- 
tive memories we focus mainly on two questions in the following paper: 
• What is the storage capacity of the Perceptron-type rule in relation to that of 

the Hebb rule? 
• What is the error-correction ability of the Perceptron-type rule in relation to 

that of the Hebb rule? 
These questions are addressed in Sections 3.1 and 3.2. First, the library pat- 

terns used in the experiments are described. 
In order to evaluate storage capacity and error-correction ability under a va- 

riety of conditions, a single library pattern-set generator capable of generating 
a variety of pseudorandom -1/1 patterns was designed, with the following pa- 
rameters: N the dimension of the patterns, M the number of patterns, and B the 
block size. The N bits of a pattern were divided into fixed blocks of size B each. 
Bits 1-B belong to block one, B + 1-2B to block two, and so on. All bits in a 
block were given the same value (all 1 for a 1-block, or all - 1 for a ( -  1 )-block). 
p is the probability that an arbitrary block of an arbitrary generated pattern 
was a 1-block. 

The generator produces a pseudo-random (N,p, B) pattern as follows. Each 
of the N/B blocks is independently generated as a 1-block with probability p or 
as a ( -  1 )-block with probability 1 - p. Varying p controls the sparseness of the 
patterns, and varying B the correlation (the uncorrelated case being B --- 1). 

In all of the experiments reported in this paper, t /was set to 1 for both the 
Hebb rule and for the Perceptron-type rule. In all experiments except the one in 
Table 2, the pattern-dimension N was set equal to 200. 

Table 1 reports the storage capacity results, on pattern-sets for various 
(M, N,p, B) stored via the Hebb rule and via the Perceptron-type rule. Tables 3 
and 4 report the error-correction results of the Hebb and the Perceptron-type 
rule, on the same pattern-sets as those of Table 1. 

3.1. The storage capacity results 

A bit i of a library pattern X is called unstable i f ) f / ~  sgn(~-'~j wijXj). A library 
pattern is called unstable if even one of its bits is unstable. One may evaluate 
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Table 1 
Storage capacity results 

M B p=0 .5  p=0 .3  p=0.1  

#u #e #u #e #u #e 

20 1 0.04 3.2 29.46 3.4 20.25 5.6 
20 2 0.70 3.3 27.22 3.1 20.44 5.6 
20 3 1.36 3.2 21.75 3.4 20.73 5.9 
20 4 2.52 3.2 21.32 3.3 20.34 5.5 
20 5 3.62 3.4 19.00 3.8 20.32 5.5 

40 1 1.24 3.5 50.72 4.6 20.41 7.1 
40 2 3.38 4.3 45.21 4.7 20.25 6.7 
40 3 4.30 4.6 40.53 4.9 20.49 6.5 
40 4 4.48 4.6 35.64 5.0 20.44 5.5 
40 5 5.18 4.5 32.61 4.6 20.55 5.5 

60 1 3.37 4.8 57.30 5.4 20.06 8.4 
60 2 5.40 5.3 52.94 5.8 20.43 7.4 
60 3 5.37 6.0 48.54 6.2 20.22 7.9 
60 4 5.08 5.8 42.86 5.9 20.41 5.6 
60 5 4.82 5.5 38.00 5.0 20.52 5.9 

Columns labeled #u denote the average number of unstable bits in a pattern after the pattern-set is 
stored via the Hebb rule. The quantity #u is averaged over all library patterns (M) and trials (10). 
Column labeled #e denotes the number of epochs of the Perceptron-type rule to converge to zero 
error (all library patterns stored stably). The number of epochs is also the number of presentations 
of each pattern. 

s torage  rules for  the Hopf ie ld  ne twork  based  on the percentage  o f  the l ib ra ry  
pa t t e rns  tha t  are  m a d e  uns table .  Howeve r  this does  no t  reveal  whe ther  these 
uns tab le  l ib ra ry  pa t t e rns  were " a l m o s t  s t ab le"  (i.e. only  a very few o f  their  bits  
were uns table)  or  whether  they  were very unstable .  This  d is t inc t ion  is impor -  
t an t  in some appl ica t ions ,  for  example  image  res to ra t ion ,  where  one m a y  be 
will ing to  to le ra te  a few uns tab le  bits  (i.e., pixels tha t  differ f rom the perfect  im- 
age). In  this p a p e r  we a d o p t e d  the average  n u m b e r  o f  uns tab le  bits  in a l ib ra ry  

pa t t e rn  as our  measure  o f  s to rage  capaci ty .  
Co lumns  labe led  # u  in Tab le  1 r epor t  the n u m b e r  o f  bits  o f  a l ib ra ry  pa t t e rn  

uns tab le  af ter  s to rage  o f  the ent ire  pa t t e rn -se t  via  the H e b b  rule, ave raged  over  
all the  pa t t e rns  in the  pa t te rn-se t  (M), and  over  all t r ials  (10). This  result  is no t  
inc luded in Tab le  1 for  the  Pe rcep t ron - type  rule because  in all cases it was zero 
(i.e. in all exper iments ,  all  bi ts  o f  all pa t t e rns  were s table af ter  s torage).  

3.1.1. Hebb rule results and analysis 
The  results  o f  Tab le  1 r epo r t ed  under  the co lumns  labe led  # u  pe rmi t  the 

fo l lowing observa t ions .  The  first obvious  one is tha t  as M is increased with 
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all other parameters kept fixed, the number of unstable bits in the library pat- 
terns increases significantly. Next, for fixed M and N, the number of  unstable 
bits in the library patterns is very much higher in the sparse cases (p = 0.1,0.3) 
than in the non-sparse case (p = 0.5). Thus the Hebb rule degrades on sparse 
patterns. Finally, for fixed M, N, and p = 0.5 (i.e. the non-sparse case), the 
number of  unstable bits in the library patterns increases monotonically as 
block size (hence correlation) is increased from 1 to 5. Thus, for p = 0.5, the 
Hebb rule also degrades somewhat as block size is increased. (For p = 0.3, this 
trend is reversed, however this event is not so significant because the number of  
unstable bits is so high in all cases.) 

In addition to the main effects discussed in the previous paragraph, the fol- 
lowing secondary effects are also clearly seen in Table 1. In going from p = 0.3 
to p = 0.1 the number of unstable bits in the library patterns in fact decreases 
somewhat. Thus we see a non-monotone effect. In going from p = 0.5 to 
p = 0.3, the Hebb rule degrades significantly. However in making the patterns 
even more sparse, the performance in fact improves a little. Finally, as p is de- 
creased, the number of unstable bits begins to become relatively invariant to 
block size changes. 

The primary and subtle effect on the performance of the Hebb rule as a func- 
tion of  sparseness (p) is easily explained as follows. When p = 0.1, there are 
very few attractors, perhaps just two: ( -1 )  N, the vector with all components 
- 1 ,  and its complement vector 1N. Therefore, for every library pattern about 
0. IN of  its bits (the 1 bits) should be unstable. Table 1 reveals that this is in- 
deed the case. Similar reasoning indicates that for p = 0.3 we would expect 
about 0.3N bits of a library pattern to be unstable on average. For  larger M 
we see that this is indeed the case from Table 1. This reasoning does not extend 
to p = 0.5 however. The reason is that as p is increased new attractors emerge. 
Unless M is too large, these attractors are closer to the library patterns. For  
example whenp  = 0.5 and M < 0.13N, 1% or less of the bits in the library pat- 
terns are unstable [2]. 

The effect that as sparseness is increased (p is decreased) the Hebb rule be- 
comes relatively insensitive to block size changes admits the following partial 
explanation. For  fixed p and B define bi as the random variable whose value 
is 1 if the ith block of  a pseudorandom (p, B) N-bit pattern is a 1-block, and 
0 otherwise. Define R = B x ~ ;  b,- as the random variable for the number of 
1-bits in such a pseudorandom pattern. The expectation of  R is 

B × ZE[bi]  = B × pN/B  = pN, 
i 

which is independent of  B. Using independence of  the bi, the variance of  R is 

B 2 × ~-'~Var(bi) = B 2 x p(1 - p ) N / B  = B x p(1 - p ) N ,  
i 
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which does depend on B. Assume that N is much larger than B and l ip.  There- 
fore when p is very small, the expectation of  R is a small fraction of N. The 
variance of  R, over the range of  B ~ N ,  is also a small fraction of  N. Finally, 
when p is very small, ( -  1)N and its complement are expected to be the only at- 
tractors in the network after storage of  the pattern set. Therefore, as noted ear- 
lier, the 1-bits in a library pattern are exactly those that are unstable. In view of  
all of  this, it is reasonable to conclude that when p is very small, the actual 
number of  observed unstable bits in a library pattern varies little with B, pro- 
vided B >>N, in the sense that the range of  number of  observed unstable bits is 
narrow. When p = 0.5 on the other hand, the variance of  R is more sensitive to 
the value of  B in the sense that the range of  variances of  R as a function of  B is 
much wider. Furthermore,  there are probably many more attractors in these 
cases, and the number of  them and their nature is perhaps also quite sensitive 
to the value of  B. 

To this point, we have focused on the case p = 0.5 and the sparse cases 
p = 0.3, 0.1. Since the Hebb rule is symmetric and the Perceptron-type rule is 
almost symmetric 3 we would expect the results to be very similar for the Hebb 
rule and similar for the Perceptron-type rule in the complementary case, i.e. 
when p = 0.7, 0.9. We do not report the results for these (very-dense) cases 
here. Table 1 of  the conference version of this paper contains them [7]. In that 
paper, p actually denotes the probability of  a - 1 value, despite the fact that it is 
(erroneously) noted in that paper that p denotes the probability of  a 1 value. 

3.1.2. A closer look at the Perceptron-type rule 
A closer examination of  the learning process during the experiments re- 

vealed three insights. The first insight was that for uniformly distributed ran- 
dom patterns ( ( p , B ) =  (0.5,1)), as the ratio M / N  was increased, the 
symmetric matrix became diagonally-dominant. Approximately, when 
M ~Nv/-ff,  the diagonal weights dominated in the following way: for 
i = 1, . . .  ,N, ~ j  Iwisl < w,. Obviously then all 2 N vectors were stable; the mem- 
ory therefore became useless. 

This diagonal-dominance effect for sufficiently large M admits the following 
partial explanation. Whenever a pattern X is presented to the Perceptron-type 
rule and component i is unstable, i.e. Y,- ~i, we have 

wii(t + 1) = wii(t) + 1 -X,.Y~ = wii(t) + 2 

in the case r /=  1. Thus during the storage phase, whenever bit i is unstable, the 
weight wii increases by two. The other weights w~j for i ¢ j will on the other 

3 Some asymmetry creeps into the rule because of the use of the signum function, which is 
asymmetric since signum(0) equals 1. This asymmetry makes a difference when the first pattern is 
present because at that time, the weight matrix W equals 0. 
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hand increase, decrease, or remain unchanged when component i or j or both 
are unstable, depending on X~,Xj, Y~, Yj. Thus since diagonal weights monotoni- 
cally increase when instabilities are detected while the off-diagonal weights may 
increase or decrease it seems that eventually the diagonal weights dominate 
over the off-diagonal ones to the extent that all bits become frozen to their in- 
put values. When this happens the memory is useless - all 2 N patterns are 
stable. 

We see thus that storage capacity alone is an inadequate measure of  perfor- 
mance. By this measure alone the capacity of  the Perceptron-type rule would be 
M = 2 N. This measure does not reveal however that as M increases, the error- 
correction ability reduces until it eventually becomes zero. A more realistic as- 
sessment of  capacity is based on evaluating the stability of the memories as well 
as their attraction domains. 

We also tried to ascertain whether and at what M this diagonal-dominance 
occured in the sparse cases (p -- 0.1, 0.3) and in the very dense ones 
(p = 0.7, 0.9). We chose N = 50 in all these cases, and conducted experiments 
all the way up to M = 2000. The matrix did not become diagonally-dominant 
in any of  the experiments. Thus it seems that in the sparse and very dense cases 
the matrix becomes diagonally-dominant (if at all) for much larger ratio M/N 
than in the p = 0.5 case. 

The second insight is that, by contrast with the Hebb rule, the learning pro- 
cess of  the Perceptron-type rule evolved over multiple epochs in somewhat in- 
teresting ways. In particular, in some cases, the error did not reduce 
monotonically over the epochs, though eventually it always went down to zero. 
Such behavior is not entirely surprising given the roots of  the Perceptron-type 
rule in the Perceptron learning algorithm, where similar behavior is known to 
occur frequently. Table 2 shows one typical evolution of  the rule, on one pat- 
tern-set. 

The third insight is that generally more learning epochs are required for the 
Perceptron-type rule for sparse pattems (p -- 0.1) than in other cases. The only 
exception is the case of (60,200,., 4). For  small B, probably the behaviour is 
again caused by the existence of  only the two attractors ( -  1)N and its comple- 
ment under the Hebb rule in these sparse cases. As a result, all patterns tend to 
the same direction, towards the ( - 1 ) s  attractor, and probably much more "ef- 
fort"  is required to properly separate the patterns. 

Table 2 
Illustration of the non-monotonic evolution of the Perceptron-type rule via one experiment with the 
parameter setting (M, N,p, B} = (80, 100, 0.5, 1) 

1 2 3 4 5 6 7 8 9 
3180 410 107 18 23 2 4 5 0 

The upper row denotes the epoch number; the lower one the number of bits remaining unstable in 
the M library patterns after the end of this epoch. 
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3.2. The  error-correction results 

Exper iments  were conducted  to estimate, roughly,  the error-correct ion abi- 
lity a r o u n d  the stored l ibrary vectors and  thereby get a more  realistic assess- 
men t  of  the capacity. The same sets of pat terns  as those used for the 

stability results reported in the previous section were used. 
Firs t  we consider  the case when the M probe  vectors were derived by flipping 

one r andomly  chosen bit in each of  the M l ibrary vectors. Tables 3 and  4 report  

the per formance  of  the Perceptron- type and  Hebb  rules at the pat tern-  and  bit- 

level respectively, in this case. The l ibrary pat terns  and  the probe  pat terns  in 
bo th  tables were identical.  Performance  of bo th  rules was evaluated in terms 

of  the pat terns  that  were retrieved after one synchronous  recall step star t ing 
f rom the probe  vectors. 

The results are summarized  as follows. First,  in terms of  bo th  the n u m b e r  of  
er roneous  pat terns  recalled and  the n u m b e r  of  er roneous  bits in a recalled pat- 

tern, the Perceptron- type rule significantly outper formed the Hebb  rule for all 

Table 3 
Error-correction results 

M B p=0.5  p=0.3  p=0.1 

#H #P #H #P #H #P 

20 1 0.05 0.08 1.00 0.13 1.00 0.12 
20 2 0.29 0.04 0.98 0.06 1.00 0.06 
20 3 0.36 0.04 0.97 0.05 1.00 0.04 
20 4 0.47 0.02 0.96 0.05 1.00 0.05 
20 5 0.58 0.02 0.91 0.01 0.99 0.02 

40 1 0.71 0.30 1.00 0.25 1.00 0.23 
40 2 0.83 0.25 0.99 0.14 1.00 0.07 
40 3 0.80 0.17 0.99 0.08 1.00 0.04 
40 4 0.72 0.11 0.99 0.07 0.99 0.04 
40 5 0.66 0.09 0.97 0.06 0.99 0.02 

60 1 0.96 0.31 1.00 0.34 1.00 0.28 
60 2 0.94 0.21 0.99 0.15 1.00 0.11 
60 3 0.87 0.11 1.00 0.13 1.00 0.07 
60 4 0.76 0.07 0.99 0.06 0.99 0.04 
60 5 0.47 0.07 0.99 0.04 0.99 0.04 

Columns labeled #H (#P) denote results where the M library patterns were stored via the Hebb 
(Perceptron-type) rule. In both cases, #H and #P, the reported numbers are the fraction of the M 
probe patterns that, after one synchronous retrieval step, led to a pattern different from the original 
library pattern from which the probe was derived. Each number is averaged over the number of 
trials (10). The M probe patterns were generated byflipping one randomly chosen bit from each of 
the library patterns. 



A. Jagota, J. Mahdziuk / Information Sciences 111 (1998) 65~81 75 

Table 4 
Bit error-correction results for exactly the same experiments reported in Table 3: same sets of li- 
brary patterns, probe patterns, and retrieval conditions (one synchronous step) 

M B p=0.5  p=0.3 p=0.1 

#H #P #H #P #H #P 

20 1 0.05 0.11 29.33 0.14 20.25 0.13 
20 2 0.71 0.09 27.34 0.13 20.44 0.12 
20 3 1.47 0.13 22.61 0.15 20.73 0.13 
20 4 2.68 0.12 21.50 0.22 20.34 0.20 
20 5 3.92 0.12 18.75 0.05 20.32 0.10 

40 1 1.36 0.17 50.54 0.29 20.41 0.27 
40 2 3.47 0.26 45.08 0.30 20.25 0.17 
40 3 4.34 0.27 40.38 0.27 20.49 0.15 
40 4 4.43 0.23 35.42 0.31 20.44 0.20 
40 5 5.12 0.23 32.32 0.32 20.55 0.13 

60 1 3.64 0.39 57.22 0.41 20.06 0.33 
60 2 5.55 0.46 52.79 0.33 20.43 0.24 
60 3 5.47 0.36 48.35 0.41 20.22 0.23 
60 4 5.17 0.30 42.75 0.24 20.41 0.16 
60 5 4.80 0.37 37.82 0.21 20.52 0.21 

The numbers reported in columns #H and #P are the numbers of bits that differ between the re- 
trieved pattern and the target library pattern, averaged over the number of patterns (M) and the 
number of trials (10), for the Hebb and Perceptron-type, rules, respectively. 

tried settings of the parameters  (M, N, p, B) except one: (20,200, 0.5, 1). On  this 

last setting, the Hebb  rule performed slightly better. The performance differ- 
ence between the two rules is striking in the sparse cases (p -- 0.1,0.3). The Per- 
ceptron- type rule performed consistently well over all tried p-values 

(0.5,0.3,0.1), all tried B-values (1,2,3,4,5), and  all tried M-values (20,40,60). 
By contrast ,  the Hebb  rule 's per formance  degraded dramatical ly  in going from 

the p = 0.5 case to the p = 0.3, 0.1 cases and  in the p = 0.5, 0.3 cases as M was 
increased. 

It  is wor th  no t ing  that  the Hebb  rule results for the 1-bit-distort ion case are 
only slightly worse (in rare cases even better) than  those of  the stability case 
(compare Table  4 with Table  1). Tha t  is, the n u m b e r  of uns table  bits in the re- 
trieved pa t te rn  is only slightly more  on  average when the probe  pa t te rn  has one 

bit  of  error  in it than  when it has zero bits of  error in it. We may take this as a 
pre l iminary  indica t ion  that  the Hebb  rule is stable in this sense (slight increase 

in errors in probe  do no t  degrade performance  drastically). 
In  the p = 0.3,0.1 cases this effect is easy to explain. In  these cases, the av- 

erage n u m b e r  of  uns table  bits in a l ibrary pat tern  is so large that  whether one 
uses a l ibrary pat tern  as a probe or a one-bi t  dis tor t ion of it as a probe  matters  
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little. Indeed it is possible that in both cases the network retrieves an attractor 
after just one synchronous step and, furthermore, the same one in both cases. 
This is especially likely in the p = 0.1 case where we have noted in previous sec- 
tions that the network is likely to have formed just one attractor 4 after storage 
of  the M patterns. Therefore all probes would naturally go to this attractor. 

The p - - 0 . 5  case, though still not surprising, is more difficult to explain. 
First, the number of  unstable bits in both situations (probes being the library 
patterns or the 1-bit-distorted patterns) is relatively low. Second, the network 
probably forms a large number of  attractors, as argued in a previous section. It 
may still be the case that for an unstable library pattern, the network usually 
retrieves the same attractor after one synchronous step whether one starts from 
this library pattern, or from a 1-bit distortion of it. This reasoning is however 
at best speculative. 

Another noteworthy observation is that, as a function of  p, the trend of  the 
performance of  the Hebb rule on the 1-bit-distorted probes is very similar to 
that of  the library probes case. The rule performs best on the p - - 0 . 5  case, 
worst in the p = 0.3 case, and slightly better than the p = 0.3 case on the 
p = 0.1 case. This effect is not surprising, and its explanation is essentially 
the same as we gave in the library probes case (second and third paragraphs 
of  Section 3.1.1). 

A final noteworthy observation is that for fixed M, N and p, the performance 
of  the Perceptron-type rule at the pattern-level improves significantly with in- 
crease in B (see Table 3). It is especially interesting that the same does not hap- 
pen at the bit-level (see Table 4). 

This indicates obviously that when B is large, for some 1-bit-distorted 
probes the distortion increases after one synchronous step and for others it de- 
creases. This is not entirely unreasonable, because when library patterns are 
highly correlated, the recall behavior from 1-bit-distorted probes can possibly 
be sensitive to the bit that is distorted, and the library pattern that it is distorted 
from. 

We also conducted experiments with probe patterns derived from library 
patterns with two randomly-selected bits flipped. The performance of  the Hebb 
rule and the Perceptron-type rule on these probe patterns is qualitatively sim- 
ilar to the results of  the previous section, both at the pattern-level and at the 
bit-level. In absolute terms, the Hebb rule performs nearly as well as in the 
1-bit-distortion case. The performance of  the Perceptron-type rule degrades 
by a factor of  1.5 to 2 over its performance on 1-bit-distorted probes. The re- 
suits are not reported in detail here. 

To this point in this section, we have focused on the case p = 0.5 and the 
sparse cases p = 0.3, 0.1. As argued in Section 3.1, we would expect the results 

4 Actually two - the second one being its complement. 
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for the very-dense cases p -- 0.7, 0.9 to be similar, 5 by symmetry, to the cases 
p - - 0 . 3 , 0 . 1 ,  respectively. We do not report the results here, but this indeed 
turns out to be the case. Tables 2 and 3 of  the conference version of this paper 
[7] present those results. 

3.2.1. Multiple-bit  distorted probes 
Finally, we conducted experiments in which the probe patterns had d bits of  

error in them, with d ranging from 5 to N / 2 .  The same library patterns as in 
previous sections were stored. The probe patterns were derived from these li- 
brary patterns by flipping d bits chosen at random. 

Both rules were evaluated at two extremes of correlation of the library pat- 
terns: B = 1, the uncorrelated case and B = 5, a highly correlated one. A range 
of  densities, p = 0.1,0.3, 0.5, were evaluated in these two cases. Finally, the dis- 
tortion parameter  d was varied from 5 to 100. In all experiments, the number  of  
patterns M was fixed to 20 and the pattern-dimension N to 200. 

To evaluate the results of  this subsection, the following measure is useful. 
Define bit-level correction efficiency as the percentage of the d distorted bits that 
were corrected, on average, in the retrieved pattern. 

The experimental results are presented in Table 5. The main observations 
are as follows. In the (p, B) = (0.5, 1) case, the Perceptron-type rule performed 
much poorer  than the Hebb rule at both the pattern- and the bit-levels, when d 
ranged from 5 to 30. In all of  the remaining (p, B) cases, the Perceptron-type 
rule performed much better than the Hebb rule at both the pattern- and bit-lev- 
els, when d ranged f rom 5 to 30. In virtually all these cases, the bit-level correc- 
tion efficiency of the Perceptron-type rule was more than 87%. 

In addition to the main observations, the following finer ones are also note- 
worthy. 
• The performance of the Perceptron-type rule at both the pattern- and the 

bit-levels is relatively insensitive to the pattern density p, so long as p < 0.5. 
• The pattern-level performance superiority of  the Perceptron-type rule over 

the Hebb rule is highest when the library patterns were both sparse and cor- 
related. 

• The bit-level performance superiority of  the Perceptron-type rule over the 
Hebb rule is highest when the library patterns were sparse. In particular, 
it is relatively insensitive to the correlation amount.  

• It  is interesting, though not surprising, that both the Hebb and the Percept- 
ron-type rule were able to perform significant bit-level correction even on 
very noisy probes (see the d = 50, 100 rows). 

5 They would be identical for the Hebb rule except that the samples would be different in actual 
experiments. The Perceptron-type rule has a slight asymmetry so they would not be identical even 
in principle. 
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Interestingly, for the Hebb rule with p = 0.5, though the number of  bit errors 
remaining in the retrieved pattern increased slowly as d increased, the correc- 
tion efficiency in fact improved. For  example, when d = 5 the correction effi- 
ciency was less than 20% while when d = 50 it was more than 80%. 

Finally, we present two observations on how the results scale with d. These 
observations draw upon the results presented not only in Table 5 but also the 
ones for d = 1 presented in Table 4 pertaining to M = 20 and B = 1, 5. 

In the density p = 0.1 case, with storage under the Hebb rule, the number of 
bits remaining unstable in the retrieved pattern remains unchanged across all 
values of  d, and across both correlation factors B. This phenomenon is also 
seen, to a slightly lesser degree, in the p = 0.3 case. 

By contrast, in all (p, B) cases, including those covered in the above para- 
graph, with storage under the Perceptron-type rule, the number of  bits remain- 
ing unstable in the retrieved pattern increases roughly linearly with the 
distortion level d. 

4. Potential applications 

An associative memory model may be broadly evaluated on two criteria: 
stabil i ty  - the fraction of  library patterns that are stored stably; and r e c a l l -  

the fraction of library patterns that are recalled perfectly from their distorted 
versions as probes (as a function of  the number d of  distorted bits in the 
probes). 

Though it is very desirable to construct associative memories that meet both 
criteria very well, it is impossible to construct Hopfield associative memories 
that have perfect stability and good recall when the number of patterns is great- 
er than 0.15n. 

Here we take the somewhat unconventional view that many applications can 
tolerate poorer performance in one of the criteria, provided the other is suffi- 
ciently well met. 

The first situation we consider is one in which we relax the second criterion 
to one involving approx imate  recall. For instance we could replace the recall 
criterion by the following one: bit-level eorrection - the average number of 
bit errors in the probes that are corrected (as a function of the original number 
d of  distorted bits in the probes). 

An example of  an application in which perfect recall may be sacrificed for 
sufficiently good bit-level error correction is image restoration. If an associative 
memory model is attractive for other reasons, then one may often tolerate im- 
perfect recall on this application so long as the image is sufficiently well re- 
stored. 

The second situation is one in which we eliminate the second criterion (recall 
criterion) entirely. Consider the problem of  detect ing spelling errors in a 
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document, given a dictionary of  valid words stored in the network. The words 
in the document are input sequentially to the network. In this application re- 
call, i.e. error-correction,  is not an issue. What is an issue is that the first crite- 
rion be met perfectly, i.e. all the words be stored stably. In other words, the 
network should not detect a correct word as an error. From this point of view, 
the Perceptron-type rule is clearly attractive since it ensures that all library pat- 
terns are stored stably. 

Of course, it may be that if the number of  dictionary words is very large, the 
Perceptron-type rule may also store many spurious memories. In this case, 
many misspelt words might go undetected as errors. To what extent this hap- 
pens is an empirically testable question. Here we briefly argue that this is less of 
a problem than our experiments in this paper may indicate. 

First, one may adopt a sparse encoding of  dictionary words as binary vec- 
tors to alleviate this problem. One such successful encoding is in [8] where each 
character was encoded in 62 bits (26 for lower-case, 26 for upper-case, 10 for 
the 10 digits). This encoding is less efficient than the standard ASCII one. How- 
ever this is not a major problem. For  example, to store an arbitrary collection 
of ten letter-words stably in a network one would employ 620 neurons, a ma- 
nagable number, via this encoding. Second, dictionary words are highly corre- 
lated. Our experiments in this paper suggest that the combination of  sparseness 
and correlatedness of  the library patterns is expected to make the Perceptron- 
type rule work well. 

The Hebb rule on the other hand does not appear to be suited to this prob- 
lem at all, because its stability degrades rather quickly as the number of  library 
patterns is increased, especially when the patterns are sparse or correlated. 

5. Conclusions 

This paper has conducted an extensive experimental study of  a Perceptron- 
type learning rule for the Hopfield associative memory, and compared its per- 
formance with that of  the Hebb rule. The rules were evaluated and compared 
on a wide range of  conditions on the library patterns: the number of  patterns 
M, the pattern-density p, and the amount  of  correlation B. Performance was 
evaluated on the criteria of  stability of  the library patterns, and error-correc- 
tion performance on noisy probe patterns, measured at both the pattern- 
and bit-levels. The Perceptron-type rule was found to be 100% correct on the 
library pattern stability criterion alone. By contrast, the performance of  the 
Hebb rule on this criterion was found to degrade rapidly as M was increased. 
When between 0.1N and 0.3N patterns were stored, the Perceptron-type rule 
significantly outperformed the Hebb rule on the error-correction criteria in 
all cases except when the 0.1N patterns were generated uniformly at random 
(p = 0.5, B = 1). The error-correction performance of  the Perceptron-type rule 
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remained roughly  constant  over various degrees o f  sparseness and correlat ion 
o f  the l ibrary vectors, while that  o f  the Hebb  rule degraded drastically as the 
sparseness or  the correlat ion or  bo th  were increased. 

The sample size o f  10 is a bit small. To  examine the impact  o f  this, we re- 
peated several o f  the experiments. In the cases where the Hebb  rule performed 
poorly,  we found  the variance (of  the number  o f  unstable bits o f  the library 
patterns for example) to be negligible in compar ison  to the mean  value o f  
the same quanti ty.  In situations where the Hebb  rule performed reasonably 
well, for  example in row 1 o f  Table 1 and the first column containing # u  
(p = 0.5 case), we found  that  the variance was not  negligible in compar ison  
to the mean  value o f  this column. However  this variance was negligible in com- 
parison with means  o f  other  columns,  for  example the ones in which the pat- 
terns were more  sparse (p = 0.3, 0.1). Thus  the means seemed to capture 
reasonably well the trends across the data  sets (varying density 
p = 0.5, 0.3, 0.1, varying block-size B = 1,2, 3, 4, 5, varying number  o f  library 
patterns M = 20, 40, 60). 

One reason for  our  choice o f  this sample size is the large number  o f  exper- 
iments that  were performed.  The perceptron- type rule used up a fair bit o f  time 
during training, since the l ibrary patterns were needed to be presented to it 
multiple times. 

The most  impor tan t  question that  remains open in our  studies is to theoret-  
ically analyze the error-correct ion performance  o f  the Perceptron-type rule. 
One may  at tempt  to obtain results on  this rule o f  the kind known for the Hebb  
rule [3]. 
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