
c ~ INFORMATION SCIENCES
AN ~ N A L I O V ~ ^ L

ELSEVIER Information Sciences 111 (1998) 65-81

Experimental study of Perceptron-type local
learning rule for Hopfield associative memory

Arun Jagota *, Jacek Mafidziuk 1
International Computer Science Institute, University of California, Berkeley, CA 94720, USA

Received 17 July 1997; received in revised form 23 October 1997; accepted 30 December 1997

Abstract

Kamp and Hasler proposed in 1990 a Perceptron-type learning rule for storing bina-
ry patterns in the Hopfield associative memory. They also proved its convergence. In
this paper this rule is evaluated experimentally. Its performance is compared with that
of the commonly-used Hebb rule. Both rules are tested on a variety of randomly gener-
ated collections of library patterns parametrized by the number of patterns M in a col-
lection, the density p of the pattems, and the measure of correlation B of the bits in a
pattern. The results are evaluated on two criteria: stability of the library patterns,
and error-correction ability during the recall phase. The Perceptron-type rule was found
to be perfect in ensuring stability of the stored library patterns under all evaluated con-
ditions. The Hebb rule on the other hand was found to degrade rapidly as M was in-
creased, or the density p was decreased, or the correlation B was increased. For not
too large M, the Perceptron-type rule was also found to work much better, under a va-
riety of conditions, than the Hebb rule in correcting errors in probe vectors. The con-
ditions, when the Perceptron-type rule worked better, included a range of pattern-
densities p, a range of correlations B, and several degrees of error e in a probe vector.
The uniformly random case (p = 0.5,B = 1) was the main exception when the Hebb rule
systematically equalled or outperformed the Perceptron-type rule in the error-correction
experiments. The experiments revealed interesting aspects of the evolution of the Per-

° Corresponding author. Address for correspondence: Department of Computer Science, 225
Applied Sciences Building, University of California, Santa Cruz, CA 95064, USA. E-mail:
jagota@cse.ucsc.edu

l Senior Fulbright Scholar visiting ICSI, Berkeley and EECS Dept. University of California,
Berkeley under grant no. 20985. Permanent affiliation: Institute of Mathematics, Warsaw
University of Technology, Plac Politechniki 1, 00-661 Warsaw, Poland. E-mail:
mandziuk@ alpha.im.pw.edu.pl

0020-0255/98/$19.00 © 1998 Elsevier Science Inc. All rights reserved.
PII: S 0 0 2 0 - 0 2 5 5 (9 8) 0 0 0 0 5 - X

66 A. Jagota, J. Mahdziuk / Information Sciences 111 (1998) 65-81

ceptron-type rule. Unlike the Hebb rule, the Perceptron-type rule evolved over multiple
epochs (multiple presentations of a library pattern). The error was found not to decrease
monotonically, though eventually it always became zero. When M was sufficiently large,
it was found that, for the uniformly random patterns, the Perceptron-type rule produced
a degenerate weight matrix, whose diagonal terms dominated (stability was achieved as
a byproduct). © 1998 Elsevier Science Inc. All rights reserved.

Keywords: Neural networks; Storage capacity; Error correction; Recurrent networks

1. Introduction

The binary Hopfield network is a well-known model for associative memo-
ries [1]. Since its introduction it has attracted a large amount of interest [2] and,
despite some of its drawbacks, the network remains an active topic of research.
One of the main drawbacks of the original model is its limited capacity under
the Hebb rule, which is poor on random patterns [1,3] and even poorer on cor-
related patterns [2]. Over the past decade, several attempts have been made to
improve its capacity [2,4]. One notable example is the pseudoinverse rule,
which works well for linearly independent patterns [2]. Unlike the Hebb rule
however, the pseudoinverse rule has no biological interpretation, is non-local,
and is computationally intensive.

In this paper we experimentally evaluate a simple, online, local Perceptron-
type learning rule for the binary Hopfield model. This rule was first presented
in [5], together with a proof of convergence. In [5], the authors emphasized the
similarities between this rule and the Hebb rule - in particular that if one refor-
mulates the associative memory problem as one involving Perceptron learning,
one is led to a rule that is essentially Hebbian. In this paper we emphasize the
differences. In particular, we view the Perceptron-type rule as a supervised ex-
tension of the unsupervised Hebbian rule that incorporates a Perceptron-type
term for correcting unstable bits. As an aside, it is interesting to note that there
does not appear to have been much work on using Perceptron learning for
feedback associative memories. The one work we are aware of in addition to
[5,4] is by Liu and Lu [6], who use Perceptron Learning to store memories in
a continuous-time feedback network with saturated-linear neurons [6].

The rule retains the simplicity, online nature, and locality (hence computa-
tional efficiency) of the Hebb rule. Extensive computer simulations reveal that
it performs better in most situations of interest. Unlike the Hebb rule, the Per-
ceptron-type rule works over multiple epochs and often reduces error non-
monotonically, over the epochs.

Our main results may be summarized as follows. In extensive computer sim-
ulations it was found that in all cases the Perceptron-type rule was able to store
(all bits of) all vectors stably. However, the simulations also revealed that, for

A. Jagota, J. Mahdziuk / Information Sciences 111 (1998) 65~81 67

uniformly random patterns, when the number of patterns approached nx/~, n
being the pattern dimension (also the number of neurons), the rule produced a
diagonally-dominant matrix for which all the 2 n possible vectors were stable.
Experiments were conducted to estimate the error-correction ability around
the stored library vectors 2 and thereby get a more realistic assessment of the
capacity.

The main experimental results are as follows. While the Perceptron-type rule
ensured stability of all the library vectors in all tested situations, the Hebb rule
degraded rapidly on this measure when the vectors were made sparse, or more
correlated in a certain way. When the number of library vectors was kept be-
tween 0.1n and 0.3n, the Perceptron-type rule significantly outperformed the
Hebb rule in correcting errors in probe vectors derived by flipping one (two)
bit(s) at random from the library vectors. In particular, the performance of
the Perceptron-type rule remained roughly constant over various degrees of
sparseness and correlation of the library vectors, whereas the performance of
the Hebb rule, like in the stability case, rapidly degraded when the sparseness
or the correlation was increased.

The Perceptron-type rule was found to work significantly better than the
Hebb rule even when the probe vectors had large amounts of error. For the
case M = 0.1n, situations when the probe vectors had 2.5-50% of the bits in
error were evaluated. In all cases when the patterns were sparse (p~< 0.3)
and/or correlated, the Perceptron-type rule significantly outperformed the
Hebb rule in correcting errors.

This paper is organized as follows. Section 2 reviews the Hopfield network,
then presents the Hebb rule, and finally the Perceptron-type rule. Section 3 pre-
sents the experimental studies: Section 3.1 presents the storage capacity results;
Section 3.2 the error-correction results. Section 4 discusses potential applica-
tions. Section 5 presents the conclusions.

2. Hopfield network, Hebb rule, and Perceptron-type rule

The Hopfield model is a recurrent neural network of n binary neurons. Each
neuron has an external state -1 (denoting not firing) or + 1 (denoting firing).
Pairs of neurons are interconnected together via a symmetric weight matrix
(i.e. wij = wji) with non-negative diagonal elements. The Hopfield network
computes as follows. All neurons are initially set to some state-vector in
{-1 , 1 }n. The network then updates its neuron's states based on some evolu-
tion equation. (The network is recurrent because every neuron's state can affect

2 The vectors that one attempts to store in an associative memory model. Also known as

fundamental memories, prototype vectors, memory patterns, etc.

68 A. Jagota, J. Mahdziuk / Information Sciences 111 (1998) 65-81

every other neuron's state.) In 1982 Hopfield exhibited a particular evolution
equation according to which if the network is operated, convergence is assured
to some steady state from an arbitrary initial state. The steady states could, fur-
thermore, be controlled by the choice of the weight matrix W. Hopfield then
suggested that this network may be used for storing memories, by appropriate
choice of the weight matrix. Given a set X1, . . . , X p of vectors of length n one
would attempt to construct a suitable weight matrix W such that the vectors
were recorded as steady states of the network. Hopfield proposed the Hebb
rule for this purpose. For more details, the reader is referred to [2].

Both the Hebb and the Perceptron-type rule are designed to store a set
X l , . . . ,X p of patterns, where X" E {-1, 1} n, # = 1, . . . ,p, in a Hopfield net-
work of n neurons. Both rules are online, i.e. the patterns are presented to them
one by one. Both rules attempt to store a presented pattern by adjusting the
weights of the network (the neuron thresholds remain 0). Both rules are local
in that changes to weight wij are based only on activities of neurons i and j.
Both rules assume that the initial weight matrix is W -- 0.

First consider the Hebb rule. To store the pattern-set X 1,.. ., X p each pat-
tern X * is presented exactly once and the weight matrix adjusted as follows:

Wiy(t + 1) := w,j(t) + ~/X/~Xy. (1)

Unfortunately, though its simplicity is attractive, the Hebb rule's storage ca-
pacity is poor [2]. The Perceptron-type rule is a good alternative to explore be-
cause it retains several of the attractive features of the Hebb rule - simplicity,
locality, online nature, biological relevance - while being expected to perform
better because it uses supervised learning to reduce errors. Whether the Per-
ceptron-type rule does in fact perform better or not is the empirical question
studied in this paper.

The Perceptron-type rule may be described as the following modification of
Eq. (1):

- r ?) x ; + (xy - rDx / .] , (2) wij(t + 1) := wji(t + 1) := wij(t) +-~

where Yo := sgn(WX~).
The Perceptron-type rule may be understood as follows. First imagine that

the weights of the network are not required to be symmetric. In this case, the
problem of storing the pattern-set x l , . . . , X p stably may be formulated as one
to find a weight matrix W satisfying

X ~ = sgn(WX ") for p = 1, . . . ,p.

Because W is not required to be symmetric, this may be reinterpreted as learn-
ing the auto-associative mapping in a Perceptron with n input neurons and n
output neurons. Presenting the patterns one by one and applying the online
Perceptron algorithm [2] yields the rule

wij(t -or- 1) := w,j(t) + rl(Xi ~ - Yi~)Xj ". (3)

A. Jagota, J. Mahdziuk / Information Sciences 111 (1998) 6541 69

The problem of course is that this does not ensure the symmetry of W since
changes to wij(t + 1) and wji(t + 1) may be unequal. One way to ensure symme-
try is to take the average 1/2(Awij(t + 1) + Awji(t + 1)) of both changes and
make this change to both weights. This yields Eq. (2). The fact that rule (2)
is convergent [5] is thus not entirely surprising, given its roots in the Perceptron
algorithm.

3. Experimental studies

To assess the performance of the Perceptron-type learning rule on associa-
tive memories we focus mainly on two questions in the following paper:
• What is the storage capacity of the Perceptron-type rule in relation to that of

the Hebb rule?
• What is the error-correction ability of the Perceptron-type rule in relation to

that of the Hebb rule?
These questions are addressed in Sections 3.1 and 3.2. First, the library pat-

terns used in the experiments are described.
In order to evaluate storage capacity and error-correction ability under a va-

riety of conditions, a single library pattern-set generator capable of generating
a variety of pseudorandom -1/1 patterns was designed, with the following pa-
rameters: N the dimension of the patterns, M the number of patterns, and B the
block size. The N bits of a pattern were divided into fixed blocks of size B each.
Bits 1-B belong to block one, B + 1-2B to block two, and so on. All bits in a
block were given the same value (all 1 for a 1-block, or all - 1 for a (- 1)-block).
p is the probability that an arbitrary block of an arbitrary generated pattern
was a 1-block.

The generator produces a pseudo-random (N,p, B) pattern as follows. Each
of the N/B blocks is independently generated as a 1-block with probability p or
as a (- 1)-block with probability 1 - p. Varying p controls the sparseness of the
patterns, and varying B the correlation (the uncorrelated case being B --- 1).

In all of the experiments reported in this paper, t /was set to 1 for both the
Hebb rule and for the Perceptron-type rule. In all experiments except the one in
Table 2, the pattern-dimension N was set equal to 200.

Table 1 reports the storage capacity results, on pattern-sets for various
(M, N,p, B) stored via the Hebb rule and via the Perceptron-type rule. Tables 3
and 4 report the error-correction results of the Hebb and the Perceptron-type
rule, on the same pattern-sets as those of Table 1.

3.1. The storage capacity results

A bit i of a library pattern X is called unstable i f) f / ~ sgn(~-'~j wijXj). A library
pattern is called unstable if even one of its bits is unstable. One may evaluate

70 A. Jagota, J. Mahdziuk / Information Sciences 111 (1998) 65~81

Table 1
Storage capacity results

M B p=0 .5 p=0 .3 p=0.1

#u #e #u #e #u #e

20 1 0.04 3.2 29.46 3.4 20.25 5.6
20 2 0.70 3.3 27.22 3.1 20.44 5.6
20 3 1.36 3.2 21.75 3.4 20.73 5.9
20 4 2.52 3.2 21.32 3.3 20.34 5.5
20 5 3.62 3.4 19.00 3.8 20.32 5.5

40 1 1.24 3.5 50.72 4.6 20.41 7.1
40 2 3.38 4.3 45.21 4.7 20.25 6.7
40 3 4.30 4.6 40.53 4.9 20.49 6.5
40 4 4.48 4.6 35.64 5.0 20.44 5.5
40 5 5.18 4.5 32.61 4.6 20.55 5.5

60 1 3.37 4.8 57.30 5.4 20.06 8.4
60 2 5.40 5.3 52.94 5.8 20.43 7.4
60 3 5.37 6.0 48.54 6.2 20.22 7.9
60 4 5.08 5.8 42.86 5.9 20.41 5.6
60 5 4.82 5.5 38.00 5.0 20.52 5.9

Columns labeled #u denote the average number of unstable bits in a pattern after the pattern-set is
stored via the Hebb rule. The quantity #u is averaged over all library patterns (M) and trials (10).
Column labeled #e denotes the number of epochs of the Perceptron-type rule to converge to zero
error (all library patterns stored stably). The number of epochs is also the number of presentations
of each pattern.

s torage rules for the Hopf ie ld ne twork based on the percentage o f the l ib ra ry
pa t t e rns tha t are m a d e uns table . Howeve r this does no t reveal whe ther these
uns tab le l ib ra ry pa t t e rns were " a l m o s t s t ab le" (i.e. only a very few o f their bits
were uns table) or whether they were very unstable . This d is t inc t ion is impor -
t an t in some appl ica t ions , for example image res to ra t ion , where one m a y be
will ing to to le ra te a few uns tab le bits (i.e., pixels tha t differ f rom the perfect im-
age). In this p a p e r we a d o p t e d the average n u m b e r o f uns tab le bits in a l ib ra ry

pa t t e rn as our measure o f s to rage capaci ty .
Co lumns labe led # u in Tab le 1 r epor t the n u m b e r o f bits o f a l ib ra ry pa t t e rn

uns tab le af ter s to rage o f the ent ire pa t t e rn -se t via the H e b b rule, ave raged over
all the pa t t e rns in the pa t te rn-se t (M), and over all t r ials (10). This result is no t
inc luded in Tab le 1 for the Pe rcep t ron - type rule because in all cases it was zero
(i.e. in all exper iments , all bi ts o f all pa t t e rns were s table af ter s torage).

3.1.1. Hebb rule results and analysis
The results o f Tab le 1 r epo r t ed under the co lumns labe led # u pe rmi t the

fo l lowing observa t ions . The first obvious one is tha t as M is increased with

A. Jagota, J. Mahdziuk I Information Sciences 111 (1998) 65~1 71

all other parameters kept fixed, the number of unstable bits in the library pat-
terns increases significantly. Next, for fixed M and N, the number of unstable
bits in the library patterns is very much higher in the sparse cases (p = 0.1,0.3)
than in the non-sparse case (p = 0.5). Thus the Hebb rule degrades on sparse
patterns. Finally, for fixed M, N, and p = 0.5 (i.e. the non-sparse case), the
number of unstable bits in the library patterns increases monotonically as
block size (hence correlation) is increased from 1 to 5. Thus, for p = 0.5, the
Hebb rule also degrades somewhat as block size is increased. (For p = 0.3, this
trend is reversed, however this event is not so significant because the number of
unstable bits is so high in all cases.)

In addition to the main effects discussed in the previous paragraph, the fol-
lowing secondary effects are also clearly seen in Table 1. In going from p = 0.3
to p = 0.1 the number of unstable bits in the library patterns in fact decreases
somewhat. Thus we see a non-monotone effect. In going from p = 0.5 to
p = 0.3, the Hebb rule degrades significantly. However in making the patterns
even more sparse, the performance in fact improves a little. Finally, as p is de-
creased, the number of unstable bits begins to become relatively invariant to
block size changes.

The primary and subtle effect on the performance of the Hebb rule as a func-
tion of sparseness (p) is easily explained as follows. When p = 0.1, there are
very few attractors, perhaps just two: (-1) N, the vector with all components
- 1 , and its complement vector 1N. Therefore, for every library pattern about
0. IN of its bits (the 1 bits) should be unstable. Table 1 reveals that this is in-
deed the case. Similar reasoning indicates that for p = 0.3 we would expect
about 0.3N bits of a library pattern to be unstable on average. For larger M
we see that this is indeed the case from Table 1. This reasoning does not extend
to p = 0.5 however. The reason is that as p is increased new attractors emerge.
Unless M is too large, these attractors are closer to the library patterns. For
example whenp = 0.5 and M < 0.13N, 1% or less of the bits in the library pat-
terns are unstable [2].

The effect that as sparseness is increased (p is decreased) the Hebb rule be-
comes relatively insensitive to block size changes admits the following partial
explanation. For fixed p and B define bi as the random variable whose value
is 1 if the ith block of a pseudorandom (p, B) N-bit pattern is a 1-block, and
0 otherwise. Define R = B x ~ ; b,- as the random variable for the number of
1-bits in such a pseudorandom pattern. The expectation of R is

B × ZE[bi] = B × pN/B = pN,
i

which is independent of B. Using independence of the bi, the variance of R is

B 2 × ~-'~Var(bi) = B 2 x p(1 - p) N / B = B x p(1 - p) N ,
i

72 A. Jagota, J. Mahdziuk / Information Sciences 111 (1998) 65-81

which does depend on B. Assume that N is much larger than B and l ip. There-
fore when p is very small, the expectation of R is a small fraction of N. The
variance of R, over the range of B ~ N , is also a small fraction of N. Finally,
when p is very small, (- 1)N and its complement are expected to be the only at-
tractors in the network after storage of the pattern set. Therefore, as noted ear-
lier, the 1-bits in a library pattern are exactly those that are unstable. In view of
all of this, it is reasonable to conclude that when p is very small, the actual
number of observed unstable bits in a library pattern varies little with B, pro-
vided B >>N, in the sense that the range of number of observed unstable bits is
narrow. When p = 0.5 on the other hand, the variance of R is more sensitive to
the value of B in the sense that the range of variances of R as a function of B is
much wider. Furthermore, there are probably many more attractors in these
cases, and the number of them and their nature is perhaps also quite sensitive
to the value of B.

To this point, we have focused on the case p = 0.5 and the sparse cases
p = 0.3, 0.1. Since the Hebb rule is symmetric and the Perceptron-type rule is
almost symmetric 3 we would expect the results to be very similar for the Hebb
rule and similar for the Perceptron-type rule in the complementary case, i.e.
when p = 0.7, 0.9. We do not report the results for these (very-dense) cases
here. Table 1 of the conference version of this paper contains them [7]. In that
paper, p actually denotes the probability of a - 1 value, despite the fact that it is
(erroneously) noted in that paper that p denotes the probability of a 1 value.

3.1.2. A closer look at the Perceptron-type rule
A closer examination of the learning process during the experiments re-

vealed three insights. The first insight was that for uniformly distributed ran-
dom patterns ((p , B) = (0.5,1)), as the ratio M / N was increased, the
symmetric matrix became diagonally-dominant. Approximately, when
M ~Nv/-ff, the diagonal weights dominated in the following way: for
i = 1, . . . ,N, ~ j Iwisl < w,. Obviously then all 2 N vectors were stable; the mem-
ory therefore became useless.

This diagonal-dominance effect for sufficiently large M admits the following
partial explanation. Whenever a pattern X is presented to the Perceptron-type
rule and component i is unstable, i.e. Y,- ~i, we have

wii(t + 1) = wii(t) + 1 -X,.Y~ = wii(t) + 2

in the case r /= 1. Thus during the storage phase, whenever bit i is unstable, the
weight wii increases by two. The other weights w~j for i ¢ j will on the other

3 Some asymmetry creeps into the rule because of the use of the signum function, which is
asymmetric since signum(0) equals 1. This asymmetry makes a difference when the first pattern is
present because at that time, the weight matrix W equals 0.

A. Jagota, J. Mahdziuk / Information Sciences 111 (1998) 6541 73

hand increase, decrease, or remain unchanged when component i or j or both
are unstable, depending on X~,Xj, Y~, Yj. Thus since diagonal weights monotoni-
cally increase when instabilities are detected while the off-diagonal weights may
increase or decrease it seems that eventually the diagonal weights dominate
over the off-diagonal ones to the extent that all bits become frozen to their in-
put values. When this happens the memory is useless - all 2 N patterns are
stable.

We see thus that storage capacity alone is an inadequate measure of perfor-
mance. By this measure alone the capacity of the Perceptron-type rule would be
M = 2 N. This measure does not reveal however that as M increases, the error-
correction ability reduces until it eventually becomes zero. A more realistic as-
sessment of capacity is based on evaluating the stability of the memories as well
as their attraction domains.

We also tried to ascertain whether and at what M this diagonal-dominance
occured in the sparse cases (p -- 0.1, 0.3) and in the very dense ones
(p = 0.7, 0.9). We chose N = 50 in all these cases, and conducted experiments
all the way up to M = 2000. The matrix did not become diagonally-dominant
in any of the experiments. Thus it seems that in the sparse and very dense cases
the matrix becomes diagonally-dominant (if at all) for much larger ratio M/N
than in the p = 0.5 case.

The second insight is that, by contrast with the Hebb rule, the learning pro-
cess of the Perceptron-type rule evolved over multiple epochs in somewhat in-
teresting ways. In particular, in some cases, the error did not reduce
monotonically over the epochs, though eventually it always went down to zero.
Such behavior is not entirely surprising given the roots of the Perceptron-type
rule in the Perceptron learning algorithm, where similar behavior is known to
occur frequently. Table 2 shows one typical evolution of the rule, on one pat-
tern-set.

The third insight is that generally more learning epochs are required for the
Perceptron-type rule for sparse pattems (p -- 0.1) than in other cases. The only
exception is the case of (60,200,., 4). For small B, probably the behaviour is
again caused by the existence of only the two attractors (- 1)N and its comple-
ment under the Hebb rule in these sparse cases. As a result, all patterns tend to
the same direction, towards the (- 1) s attractor, and probably much more "ef-
fort" is required to properly separate the patterns.

Table 2
Illustration of the non-monotonic evolution of the Perceptron-type rule via one experiment with the
parameter setting (M, N,p, B} = (80, 100, 0.5, 1)

1 2 3 4 5 6 7 8 9
3180 410 107 18 23 2 4 5 0

The upper row denotes the epoch number; the lower one the number of bits remaining unstable in
the M library patterns after the end of this epoch.

74 A. Jagota, J. Mahdziuk / Information Sciences 111 (1998) 65~81

3.2. The error-correction results

Exper iments were conducted to estimate, roughly, the error-correct ion abi-
lity a r o u n d the stored l ibrary vectors and thereby get a more realistic assess-
men t of the capacity. The same sets of pat terns as those used for the

stability results reported in the previous section were used.
Firs t we consider the case when the M probe vectors were derived by flipping

one r andomly chosen bit in each of the M l ibrary vectors. Tables 3 and 4 report

the per formance of the Perceptron- type and Hebb rules at the pat tern- and bit-

level respectively, in this case. The l ibrary pat terns and the probe pat terns in
bo th tables were identical. Performance of bo th rules was evaluated in terms

of the pat terns that were retrieved after one synchronous recall step star t ing
f rom the probe vectors.

The results are summarized as follows. First, in terms of bo th the n u m b e r of
er roneous pat terns recalled and the n u m b e r of er roneous bits in a recalled pat-

tern, the Perceptron- type rule significantly outper formed the Hebb rule for all

Table 3
Error-correction results

M B p=0.5 p=0.3 p=0.1

#H #P #H #P #H #P

20 1 0.05 0.08 1.00 0.13 1.00 0.12
20 2 0.29 0.04 0.98 0.06 1.00 0.06
20 3 0.36 0.04 0.97 0.05 1.00 0.04
20 4 0.47 0.02 0.96 0.05 1.00 0.05
20 5 0.58 0.02 0.91 0.01 0.99 0.02

40 1 0.71 0.30 1.00 0.25 1.00 0.23
40 2 0.83 0.25 0.99 0.14 1.00 0.07
40 3 0.80 0.17 0.99 0.08 1.00 0.04
40 4 0.72 0.11 0.99 0.07 0.99 0.04
40 5 0.66 0.09 0.97 0.06 0.99 0.02

60 1 0.96 0.31 1.00 0.34 1.00 0.28
60 2 0.94 0.21 0.99 0.15 1.00 0.11
60 3 0.87 0.11 1.00 0.13 1.00 0.07
60 4 0.76 0.07 0.99 0.06 0.99 0.04
60 5 0.47 0.07 0.99 0.04 0.99 0.04

Columns labeled #H (#P) denote results where the M library patterns were stored via the Hebb
(Perceptron-type) rule. In both cases, #H and #P, the reported numbers are the fraction of the M
probe patterns that, after one synchronous retrieval step, led to a pattern different from the original
library pattern from which the probe was derived. Each number is averaged over the number of
trials (10). The M probe patterns were generated byflipping one randomly chosen bit from each of
the library patterns.

A. Jagota, J. Mahdziuk / Information Sciences 111 (1998) 65~81 75

Table 4
Bit error-correction results for exactly the same experiments reported in Table 3: same sets of li-
brary patterns, probe patterns, and retrieval conditions (one synchronous step)

M B p=0.5 p=0.3 p=0.1

#H #P #H #P #H #P

20 1 0.05 0.11 29.33 0.14 20.25 0.13
20 2 0.71 0.09 27.34 0.13 20.44 0.12
20 3 1.47 0.13 22.61 0.15 20.73 0.13
20 4 2.68 0.12 21.50 0.22 20.34 0.20
20 5 3.92 0.12 18.75 0.05 20.32 0.10

40 1 1.36 0.17 50.54 0.29 20.41 0.27
40 2 3.47 0.26 45.08 0.30 20.25 0.17
40 3 4.34 0.27 40.38 0.27 20.49 0.15
40 4 4.43 0.23 35.42 0.31 20.44 0.20
40 5 5.12 0.23 32.32 0.32 20.55 0.13

60 1 3.64 0.39 57.22 0.41 20.06 0.33
60 2 5.55 0.46 52.79 0.33 20.43 0.24
60 3 5.47 0.36 48.35 0.41 20.22 0.23
60 4 5.17 0.30 42.75 0.24 20.41 0.16
60 5 4.80 0.37 37.82 0.21 20.52 0.21

The numbers reported in columns #H and #P are the numbers of bits that differ between the re-
trieved pattern and the target library pattern, averaged over the number of patterns (M) and the
number of trials (10), for the Hebb and Perceptron-type, rules, respectively.

tried settings of the parameters (M, N, p, B) except one: (20,200, 0.5, 1). On this

last setting, the Hebb rule performed slightly better. The performance differ-
ence between the two rules is striking in the sparse cases (p -- 0.1,0.3). The Per-
ceptron- type rule performed consistently well over all tried p-values

(0.5,0.3,0.1), all tried B-values (1,2,3,4,5), and all tried M-values (20,40,60).
By contrast , the Hebb rule 's per formance degraded dramatical ly in going from

the p = 0.5 case to the p = 0.3, 0.1 cases and in the p = 0.5, 0.3 cases as M was
increased.

It is wor th no t ing that the Hebb rule results for the 1-bit-distort ion case are
only slightly worse (in rare cases even better) than those of the stability case
(compare Table 4 with Table 1). Tha t is, the n u m b e r of uns table bits in the re-
trieved pa t te rn is only slightly more on average when the probe pa t te rn has one

bit of error in it than when it has zero bits of error in it. We may take this as a
pre l iminary indica t ion that the Hebb rule is stable in this sense (slight increase

in errors in probe do no t degrade performance drastically).
In the p = 0.3,0.1 cases this effect is easy to explain. In these cases, the av-

erage n u m b e r of uns table bits in a l ibrary pat tern is so large that whether one
uses a l ibrary pat tern as a probe or a one-bi t dis tor t ion of it as a probe matters

76 A. Jagota, J. Mahdziuk / Information Sciences 111 (1998) 65-81

little. Indeed it is possible that in both cases the network retrieves an attractor
after just one synchronous step and, furthermore, the same one in both cases.
This is especially likely in the p = 0.1 case where we have noted in previous sec-
tions that the network is likely to have formed just one attractor 4 after storage
of the M patterns. Therefore all probes would naturally go to this attractor.

The p - - 0 . 5 case, though still not surprising, is more difficult to explain.
First, the number of unstable bits in both situations (probes being the library
patterns or the 1-bit-distorted patterns) is relatively low. Second, the network
probably forms a large number of attractors, as argued in a previous section. It
may still be the case that for an unstable library pattern, the network usually
retrieves the same attractor after one synchronous step whether one starts from
this library pattern, or from a 1-bit distortion of it. This reasoning is however
at best speculative.

Another noteworthy observation is that, as a function of p, the trend of the
performance of the Hebb rule on the 1-bit-distorted probes is very similar to
that of the library probes case. The rule performs best on the p - - 0 . 5 case,
worst in the p = 0.3 case, and slightly better than the p = 0.3 case on the
p = 0.1 case. This effect is not surprising, and its explanation is essentially
the same as we gave in the library probes case (second and third paragraphs
of Section 3.1.1).

A final noteworthy observation is that for fixed M, N and p, the performance
of the Perceptron-type rule at the pattern-level improves significantly with in-
crease in B (see Table 3). It is especially interesting that the same does not hap-
pen at the bit-level (see Table 4).

This indicates obviously that when B is large, for some 1-bit-distorted
probes the distortion increases after one synchronous step and for others it de-
creases. This is not entirely unreasonable, because when library patterns are
highly correlated, the recall behavior from 1-bit-distorted probes can possibly
be sensitive to the bit that is distorted, and the library pattern that it is distorted
from.

We also conducted experiments with probe patterns derived from library
patterns with two randomly-selected bits flipped. The performance of the Hebb
rule and the Perceptron-type rule on these probe patterns is qualitatively sim-
ilar to the results of the previous section, both at the pattern-level and at the
bit-level. In absolute terms, the Hebb rule performs nearly as well as in the
1-bit-distortion case. The performance of the Perceptron-type rule degrades
by a factor of 1.5 to 2 over its performance on 1-bit-distorted probes. The re-
suits are not reported in detail here.

To this point in this section, we have focused on the case p = 0.5 and the
sparse cases p = 0.3, 0.1. As argued in Section 3.1, we would expect the results

4 Actually two - the second one being its complement.

A. Jagota, ~ Mahdziuk / Information Sciences 111 (1998) 65-81 77

for the very-dense cases p -- 0.7, 0.9 to be similar, 5 by symmetry, to the cases
p - - 0 . 3 , 0 . 1 , respectively. We do not report the results here, but this indeed
turns out to be the case. Tables 2 and 3 of the conference version of this paper
[7] present those results.

3.2.1. Multiple-bit distorted probes
Finally, we conducted experiments in which the probe patterns had d bits of

error in them, with d ranging from 5 to N / 2 . The same library patterns as in
previous sections were stored. The probe patterns were derived from these li-
brary patterns by flipping d bits chosen at random.

Both rules were evaluated at two extremes of correlation of the library pat-
terns: B = 1, the uncorrelated case and B = 5, a highly correlated one. A range
of densities, p = 0.1,0.3, 0.5, were evaluated in these two cases. Finally, the dis-
tortion parameter d was varied from 5 to 100. In all experiments, the number of
patterns M was fixed to 20 and the pattern-dimension N to 200.

To evaluate the results of this subsection, the following measure is useful.
Define bit-level correction efficiency as the percentage of the d distorted bits that
were corrected, on average, in the retrieved pattern.

The experimental results are presented in Table 5. The main observations
are as follows. In the (p, B) = (0.5, 1) case, the Perceptron-type rule performed
much poorer than the Hebb rule at both the pattern- and the bit-levels, when d
ranged from 5 to 30. In all of the remaining (p, B) cases, the Perceptron-type
rule performed much better than the Hebb rule at both the pattern- and bit-lev-
els, when d ranged f rom 5 to 30. In virtually all these cases, the bit-level correc-
tion efficiency of the Perceptron-type rule was more than 87%.

In addition to the main observations, the following finer ones are also note-
worthy.
• The performance of the Perceptron-type rule at both the pattern- and the

bit-levels is relatively insensitive to the pattern density p, so long as p < 0.5.
• The pattern-level performance superiority of the Perceptron-type rule over

the Hebb rule is highest when the library patterns were both sparse and cor-
related.

• The bit-level performance superiority of the Perceptron-type rule over the
Hebb rule is highest when the library patterns were sparse. In particular,
it is relatively insensitive to the correlation amount.

• It is interesting, though not surprising, that both the Hebb and the Percept-
ron-type rule were able to perform significant bit-level correction even on
very noisy probes (see the d = 50, 100 rows).

5 They would be identical for the Hebb rule except that the samples would be different in actual
experiments. The Perceptron-type rule has a slight asymmetry so they would not be identical even
in principle.

78 A. Jagota, J. Mahdziuk I Information Sciences 111 (1998) 65~1

o

0

o

n~

o

,o

e~

~n

Ii

0 .~,

8

r~

¢'q t"q ~'q ~"q t"q ¢'q t ~ t"q ¢'q t'~'l ¢'q ¢",1 ¢"1 t " l ~ , ~

d d d g d d d £ N £ ~ d - ~ ~ II

A. Jagota, J. Mahdziuk / Information Sciences 111 (1998) 65~81 79

Interestingly, for the Hebb rule with p = 0.5, though the number of bit errors
remaining in the retrieved pattern increased slowly as d increased, the correc-
tion efficiency in fact improved. For example, when d = 5 the correction effi-
ciency was less than 20% while when d = 50 it was more than 80%.

Finally, we present two observations on how the results scale with d. These
observations draw upon the results presented not only in Table 5 but also the
ones for d = 1 presented in Table 4 pertaining to M = 20 and B = 1, 5.

In the density p = 0.1 case, with storage under the Hebb rule, the number of
bits remaining unstable in the retrieved pattern remains unchanged across all
values of d, and across both correlation factors B. This phenomenon is also
seen, to a slightly lesser degree, in the p = 0.3 case.

By contrast, in all (p, B) cases, including those covered in the above para-
graph, with storage under the Perceptron-type rule, the number of bits remain-
ing unstable in the retrieved pattern increases roughly linearly with the
distortion level d.

4. Potential applications

An associative memory model may be broadly evaluated on two criteria:
stabil i ty - the fraction of library patterns that are stored stably; and r e c a l l -

the fraction of library patterns that are recalled perfectly from their distorted
versions as probes (as a function of the number d of distorted bits in the
probes).

Though it is very desirable to construct associative memories that meet both
criteria very well, it is impossible to construct Hopfield associative memories
that have perfect stability and good recall when the number of patterns is great-
er than 0.15n.

Here we take the somewhat unconventional view that many applications can
tolerate poorer performance in one of the criteria, provided the other is suffi-
ciently well met.

The first situation we consider is one in which we relax the second criterion
to one involving approx imate recall. For instance we could replace the recall
criterion by the following one: bit-level eorrection - the average number of
bit errors in the probes that are corrected (as a function of the original number
d of distorted bits in the probes).

An example of an application in which perfect recall may be sacrificed for
sufficiently good bit-level error correction is image restoration. If an associative
memory model is attractive for other reasons, then one may often tolerate im-
perfect recall on this application so long as the image is sufficiently well re-
stored.

The second situation is one in which we eliminate the second criterion (recall
criterion) entirely. Consider the problem of detect ing spelling errors in a

80 A. Jagota, J. Mahdziuk / Information Sciences 111 (1998) 65-81

document, given a dictionary of valid words stored in the network. The words
in the document are input sequentially to the network. In this application re-
call, i.e. error-correction, is not an issue. What is an issue is that the first crite-
rion be met perfectly, i.e. all the words be stored stably. In other words, the
network should not detect a correct word as an error. From this point of view,
the Perceptron-type rule is clearly attractive since it ensures that all library pat-
terns are stored stably.

Of course, it may be that if the number of dictionary words is very large, the
Perceptron-type rule may also store many spurious memories. In this case,
many misspelt words might go undetected as errors. To what extent this hap-
pens is an empirically testable question. Here we briefly argue that this is less of
a problem than our experiments in this paper may indicate.

First, one may adopt a sparse encoding of dictionary words as binary vec-
tors to alleviate this problem. One such successful encoding is in [8] where each
character was encoded in 62 bits (26 for lower-case, 26 for upper-case, 10 for
the 10 digits). This encoding is less efficient than the standard ASCII one. How-
ever this is not a major problem. For example, to store an arbitrary collection
of ten letter-words stably in a network one would employ 620 neurons, a ma-
nagable number, via this encoding. Second, dictionary words are highly corre-
lated. Our experiments in this paper suggest that the combination of sparseness
and correlatedness of the library patterns is expected to make the Perceptron-
type rule work well.

The Hebb rule on the other hand does not appear to be suited to this prob-
lem at all, because its stability degrades rather quickly as the number of library
patterns is increased, especially when the patterns are sparse or correlated.

5. Conclusions

This paper has conducted an extensive experimental study of a Perceptron-
type learning rule for the Hopfield associative memory, and compared its per-
formance with that of the Hebb rule. The rules were evaluated and compared
on a wide range of conditions on the library patterns: the number of patterns
M, the pattern-density p, and the amount of correlation B. Performance was
evaluated on the criteria of stability of the library patterns, and error-correc-
tion performance on noisy probe patterns, measured at both the pattern-
and bit-levels. The Perceptron-type rule was found to be 100% correct on the
library pattern stability criterion alone. By contrast, the performance of the
Hebb rule on this criterion was found to degrade rapidly as M was increased.
When between 0.1N and 0.3N patterns were stored, the Perceptron-type rule
significantly outperformed the Hebb rule on the error-correction criteria in
all cases except when the 0.1N patterns were generated uniformly at random
(p = 0.5, B = 1). The error-correction performance of the Perceptron-type rule

A. Jagota, J. Mahdziuk / Information Sciences 111 (1998) 6541 81

remained roughly constant over various degrees o f sparseness and correlat ion
o f the l ibrary vectors, while that o f the Hebb rule degraded drastically as the
sparseness or the correlat ion or bo th were increased.

The sample size o f 10 is a bit small. To examine the impact o f this, we re-
peated several o f the experiments. In the cases where the Hebb rule performed
poorly, we found the variance (of the number o f unstable bits o f the library
patterns for example) to be negligible in compar ison to the mean value o f
the same quanti ty. In situations where the Hebb rule performed reasonably
well, for example in row 1 o f Table 1 and the first column containing # u
(p = 0.5 case), we found that the variance was not negligible in compar ison
to the mean value o f this column. However this variance was negligible in com-
parison with means o f other columns, for example the ones in which the pat-
terns were more sparse (p = 0.3, 0.1). Thus the means seemed to capture
reasonably well the trends across the data sets (varying density
p = 0.5, 0.3, 0.1, varying block-size B = 1,2, 3, 4, 5, varying number o f library
patterns M = 20, 40, 60).

One reason for our choice o f this sample size is the large number o f exper-
iments that were performed. The perceptron- type rule used up a fair bit o f time
during training, since the l ibrary patterns were needed to be presented to it
multiple times.

The most impor tan t question that remains open in our studies is to theoret-
ically analyze the error-correct ion performance o f the Perceptron-type rule.
One may at tempt to obtain results on this rule o f the kind known for the Hebb
rule [3].

References

[1] J.J. Hopfield, Neural networks and physical systems with emergent collective computational
abilities, Proceedings of the National Academy of Sciences of the USA 79 (1982).

[2] J. Hertz, A. Krogh, R.G. Palmer, Introduction to the Theory of Neural Computation,
Addison-Wesley, Reading, MA, 1991.

[3] R.J. McEliece, E.C. Posner, E.R. Rodemich, S.S. Venkatesh, The capacity of the Hopfield
associative memory, IEEE Transactions on Information Theory 33 (1987) 461-482.

[4] J. Mafidziuk, Improving performance of the bipolar Hopfield network by supervised learning,
in: Proceedings of the World Congress on Neural Networks, San Diego, CA, September 1996,
pp. 267-270.

[5] Y. Kamp, M. Hasler, Recursive Neural Networks for Associative Memory, Wiley, New York,
1990.

[6] D. Liu, Z. Lu, Associative memory design via perceptron learning, in: Proceedings of the
IEEE International Conference on Neural Networks, Houston, 1996, pp. 1172-1177.

[7] J. Mafidziuk, A. Jagota, Experimental study of Perceptron-type online local learning rule for
Hopfield associative memory, in: Proceedings of Second International Conference on
Computational Intelligence and Neuroscience, Research Triangle Park, NC, March 1997.

[8] A. Jagota, Contextual word recognition with a Hopfield-style net, Neural, Parallel, and
Scientific Computations 2 (2) (1994) 245-271.

