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Abstract

This goal of the paper is introduction and experimental evaluation of neuro-genetic

system for short-term stock index prediction. The system works according to the

following scheme: first, a pool of input variables are defined through technical data

analysis. Then GA is applied to find an optimal set of input variables for a one day

prediction. Due to the high volatility of mutual relations between input variables,

a particular set of inputs found by the GA is valid only for a short period of time

and a new set of inputs is calculated every 5 trading days. The data is gathered

from the German Stock Exchange (being the target market) and two other markets

(Tokyo Stock Exchange and New York Stock Exchange) together with EUR/USD and

USD/JPY exchange rates.

The method of selecting input variables works efficiently. Variables which are no

longer useful are exchanged with the new ones. On the other hand some, particu-

larly useful, variables are consequently utilized by the GA in subsequent independent

prediction periods. The proposed system works well in cases of both upward or down-

ward trends. The effectiveness of the system is compared with the results of four other

models of stock market trading.
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1 Introduction

Trade decisions on a stock market are made on the basis of predicting the trend and

are driven by many direct and indirect factors. Effective decisions depend on accurate

prediction.

Many techniques applied to the task of stock market prediction are presented in the

literature. First of all, different models of a stock market are constructed. For example, the

fundamental analysis is used to define models which calculate the future price according

to current indicators [14]. The estimation of the current value of the company is used to

predict future changes of the price. Data mining methods are applied to the problem of

identification of rules existing on a stock market. These rules are also used to predict the

future price [33, 46].

A different goal is stated for models which reflect the functioning of stock markets [58].

Building the stock market model helps finding the mechanisms and instruments for pre-

diction [26]. Mathematical models are also used to construct optimal portfolios [2, 56, 71].

One of the oldest and the most popular is Black and Sholes Model [45, 51, 65], initially

proposed in [5]. A more complicated model of a stock market, which reflects various types

of investors’ behavior is presented in [47].

Computational Intelligence (CI) methods are widely used for stock market predic-

tion. In case of neural networks in the majority of published papers either feed-forward

or recurrent neural models are applied. In case of feed-forward architectures, both sig-

moidal [11, 24, 31, 32, 74] and radial basis [8, 27, 39, 49, 73] neurons can be used. In

order to discover and take advantage of changing relations between stock market indicators

various recurrent networks are considered, as well, e.g. [38, 49, 63, 68]. Another popular

direction is the use of support vector machines [8, 9, 23, 25], introduced by Vapnik [69, 70].

Application of neural networks usually requires appropriate data preparation before

the learning process can commence. Data preprocessing methods consider dividing data

into specific subsets according to either direction of a trend [11] or based on statistical

properties of the data [16, 40]. The methods of classification and segmentation can also be

used directly to predict future values [1]. Also transformations of input records aiming at

data decorrelation are applied. The most popular methods include PCA [9] and ICA [9,

10, 12].

As an alternative to CI methods, statistical models can be used. Usually either the

Markov models [3, 4, 36, 65, 68] or more sophisticated, based on analysis of variance,

ARIMA and GARCH models [35, 54] are considered. The question concerning the superi-

ority of CI methods over statistical models (or vice versa) is still open although according

to some papers (e.g. [41]) the efficacy of ARIMA or GARCH is not satisfactory compared

to neural networks or SVMs. Please refer to [27, 68] for experimental comparison and
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discussion.

Most of the neural methods described above require specific set up of steering pa-

rameters and suitable selection of the input data. Both these issues can be effectively

approached with the help of genetic algorithms (GAs). For example, in [67] the authors

propose a system for stock market prediction relying on neural networks and fundamental

analysis, where the selection of variables is performed by the GA.

Alternatively, the topology of the network or its internal parameters can be determined

by the GA [21, 29, 37, 44].

GAs are also applied to the task of generation of optimal prediction rules/models [17,

33, 34, 46] or transformation of the knowledge hidden inside neural network’s weights to

a self-explanatory set of rules [18].

Despite remarkable effort devoted to stock market prediction, the problem remains

difficult and in general case unsolved. The main reason for this difficulty are complex and

varying in time dependencies between factors affecting the price [59, 67]. According to

some theories, changes on stock markets are chaotic [54]. The Efficient Market Hypothesis

(EMH) says that all available information (or only past prices in the weak variant of the

hypothesis) is already reflected in the current price. Therefore it is not possible to predict

future values. Several researches deny this hypothesis. In [66] the authors formulated

the problem equivalent to the EMH. In short, if the hypothesis were true it would not

be possible to find any structure in the data allowing for efficient compression. In order

to deny the EMH such compression algorithm was proposed in the paper. Consequently,

since the compression is possible, the data must be somehow structured, ergo the task of

prediction is worth undertaking. The EMH was also questioned by applying statistical

tests to NYSE returns [50].

Another task, which might question the EMH is the issue of discovering correlations

between prices on different stock markets. The common statistical test for detecting

dependence in time series is Brock–Dechert–Scheinkman test (BDS) [6]. BDS was, for

example, used to discover the existence of non-linear correlations on Shanghai (SHSE)

and Shenzen (SZSE) stock markets [42]. In [55] the matrix of mutual correlations between

several stock markets - before and after the 1987 crash - was calculated and used to prove

the existence of correlations between European and US stock markets.

Analysts who are professionally involved in stock prediction use both fundamental and

technical analysis data. The former considers objective (fundamental) reasons for the

price changing including economical indicators or political situation on both country and

company level. The latter relies on specific transformations and visual interpretation of the

past market data, especially prices and volumes. In CI literature, both fundamental [14,

47, 60] and technical [13, 17, 60] analysis driven articles can be found.
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1.1 Research goals

This paper is a continuation and extension of our prior works [31, 32, 52, 53] bringing

several new results and deeper analysis. Preliminary results were obtained with one neural

network using a narrow range of variables. The outcomes were promising and deeper

analysis was conducted. Along with adding new variables, the architecture of the system

developed. In response to an increasing number of potential input variables and changing

in time dependencies between them, the genetic algorithm was implemented for selection

of the most efficient subset of inputs for neural network based predictors. The final form of

the proposed system includes several original ideas invented by the authors, which extend

the capabilities of the “canonical” neuro-genetic approach.

The following three hypotheses are formulated and experimentally verified in the stud-

ies presented in this paper. The first one claims that appropriately designed prediction

system composed of simple neural networks supported by a genetic algorithm is able

to deliver a reliable short-term prediction of an index value. The remaining two hy-

potheses verify human expert knowledge concerning the stock market investment: the

first one states that there exist correlations between stock markets; the second one as-

sumes that relations between factors influencing an index value (i.e. technical indicators,

max./min./opening/closing index values, averages, oscillators, etc.) change in time. In

other words, efficient prediction of an index value requires that the set of input values

used for prediction varies in time.

1.2 An overview of the proposed prediction system

The general idea of the prediction system proposed in this paper is to form a suitable com-

bination of the computational power of neural networks with flexibility and optimization

capabilities of genetic algorithms. The goal is to predict the closing value of German Stock

Exchange (GSE) index DAX for the next day. The approach relies solely on technical anal-

ysis data. Except for the target market, the data from two other international markets,

namely American New York Stock Exchange (NYSE) with DJIA index and Tokyo Stock

Exchange (TSE) with NIKKEI 225 (NIKKEI) index are also considered, together with

exchange rates of EUR/USD and USD/JPY.

Variations in time dependence between variables related to these three markets are

also taken into account. The most suitable set of input variables is chosen by the GA

and validated by a simplified neural network training and testing procedure. Due to high

volatility of mutual dependencies between input variables the set chosen by the GA is only

used for 5 trading days. After this period a new set of variables is chosen for the next 5

trading days, and so on.

The proposed solution combines the power of the GA in a wide and parallel search with
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the intrinsic ability of neural networks to discover relations within input data. The system

works without human intervention by choosing desired input variables autonomously from

a large number of possibilities. In independent prediction steps, the algorithm selects vari-

ables in a sensible way, generally consistent with human trading knowledge. The existence

of characteristic, repeatable patterns of variables within subsequent 5-day windows can be

observed (see Section 6.4 for a detailed discussion).

Whilst the GA was probing different sets of variables several interesting observations

were made. For example, the existence of chromosomes in a population, that coded neural

networks unable to learn was discovered. We refer to these chromosomes as dead. They

were present especially in early iterations of the GA. The algorithm tended to consequently

eliminate dead chromosomes (see Section 3.2 for details).

Our specification of GA allowed differentiation of the sizes of input variables sets. This

made the prediction system flexible to changing situations on the stock market. Results

obtained during a series of experiments are encouraging. The return of an investment

achieved by the proposed model of trading visibly exceeds the buy and hold strategy

(a simple trading strategy consisting in buying stocks on the first day of the assumed

trading period, and selling them all on the last day of the trading period, with no other

transactions in between). The model also outperformed two other simple investment

strategies implemented for comparison.

1.3 Relation to the literature

There are plenty of papers devoted to stock market prediction with the use of neural

networks, genetic algorithms, or a combination of both these paradigms. Some examples

of such papers are cited above in order to illustrate the variety of possible approaches.

However, to our knowledge, there are not many papers closely related to the goals under-

lying this work, i.e. the use of GA for input variable pre-selection based on the data from

(presumably) correlated sources (the three, geographically distinct stock markets in here),

to be subsequently used by a neural network based predictor. Actually, the only paper

that we were able to trace, in which a similar idea of applying the GA for input variables

pre-selection, is authored by Kwon, Choi and Moon [43], where the goal is to predict the

company’s stock price. However, unlike in our approach, the authors of [43] consider the

companies which are correlated with the target one, but belong to the same stock mar-

ket (the Korea Stock Exchange). From the initial pool of variables the GA discovers the

approximately optimal input set for the recurrent Elman neural network (RNN) [19]. A

selected set of variables is used for testing period of one year. Afterwards a new set of

variables is proposed. The authors show the advantage of the proposed system over RNN

that uses fixed set of variables concerning the target company only, and over the buy and

hold strategy.
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In our approach, on the other hand, the effectiveness of neuro-genetic system is further

augmented by considering technical data from other stock markets, as well as using narrow

5-day time window, which forces frequent exchange of selected variables.

The remainder of this paper can be described as follows. The next section contains

a description of the methods of data transformation used in the paper. Calculations of

statistical variables, oscillators, and applied pattern recognition methods are presented.

Analysis of dependencies between different variables is also provided. In Section 3 com-

ponents of the proposed system are described in detail. The main elements of the system

(neural networks and GA) and the extensions of standard GA implementation intended

for this research are described in detail. Section 4 provides definitions of five different ap-

proaches to trading on the stock market considered in the paper for comparison purposes.

The investment goal is defined as the value of return of invested amount of money. One of

the models is based on a proposed neuro-genetic prediction system. Another three models

rely on simple heuristics. The last approach, referred to as prophetic, assumes possessing

the knowledge of the future movement on the stock market. This system, by its definition,

achieves the highest possible return in the current situation on the market. As a summary

of research concerning the proposed hybrid prediction model, four different parameters’

settings are specified in Section 5. The superior one is chosen for the final experiment. In

Section 6 numerical results of performed experiments are provided and compared in terms

of obtained returns. Analysis of variables chosen by GA and used in subsequent prediction

periods is presented and discussed. The issues concerning stability and repeatability of

results are also considered in this section. The paper ends with conclusions and directions

for future research.

2 Data analysis

In this section a data preparation step is described. It starts with analysis of plain values

of an index, proceeds with defining averages and oscillators, and ends with application of

pattern extraction techniques. Since the goal is defined as a one-day prediction, fundamen-

tal analysis is not very helpful [57]. Instead, the main focus is on technical analysis and its

indicators. Another possibility would be the use of portfolio management methods, which

also proved to be efficient in short-term prediction [15, 33]. The source data consists of

the opening, highest, lowest and closing values of the index of the selected stock markets

in subsequent days. This data serves as the basis for further transformations, e.g. the

percentage change of opening value through the last 5, 10 and 20 days or the averages of

opening values through the last 5, 10 and 20 days.

The above variables are intuitively useful for prediction. They provide simple presen-

tation of past values in a compressed way. Especially moving averages allow the algorithm
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to omit sudden local changes when looking for prediction rules. The predefined periods

for averages and changes (5, 10, 20 days) were chosen based on preliminary simulations

and suggestions from the literature [64]. Generally speaking these periods need to be

adjusted to the assumed prediction horizon, which is equal to 1 day in this paper. The

same time periods are also used in more complex transformations, e.g. in definitions of

the oscillators.

Figure 1: Closing DAX value and its changes in the period 2004/04/07 to 2004/08/26.

A chart of index values with corresponding changes in the period April 7, 2004 –

August 26, 2004 is presented in Fig. 1. Sudden up and down changes can be observed.

On the other hand, general rises and falls of trend are also clearly visible.

On the above basis the oscillators, known in technical analysis, are calculated [57].

The following oscillators are chosen in our experiment: MACD; Williams; Two Averages;

Impet; RSI; ROC; SO and FSO. The above set of oscillators was constructed manually

among the most popular ones, frequently used in real stock trading. Except for raw

values, the buy/sell signals generated by the oscillators are also considered. For example,

the MACD and Williams oscillators are defined by equations (1) and (2), resp.

MACD = mov(C, 10)−mov(C, 20), MACDSIGNAL = mov(MACD, 5) (1)
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where C is the index closing value and mov(X,n) denotes the moving average of vari-

able X in the last n days. Signals are generated at the intersections of MACD and

MACDSIGNAL.

WILLIAMS(n) =
max(H,n)− C

max(H,n)−min(L, n)
(−100) (2)

where n is a period of time (set to 10 days in the paper), max(H,n),min(L, n) are the

highest and the lowest index value in this period, respectively. C is index closing value.

According to technical analysis the use of oscillators is, besides chart analysis, one of

the main methods of effective investing [61, 64]. Several examples from the literature con-

firm the efficacy of using the oscillators [22, 30, 72] on stock or currency exchange markets.

Therefore this data is a relevant part of the whole range of potential input variables. An-

other useful method of trend prediction is pattern analysis. Several characteristic patterns

can be observed in the index value chart. Their extraction is based on local minima and

maxima values. The algorithm of pattern extraction used in our experiment is described

later in this section. An alternative interesting implementation of an algorithm of pattern

extraction is presented in [13]. The most common patterns are: head and shoulders, tri-

angles, bottoms and apexes. Some of them forecast change of prediction, others confirm

the actual trend. This property defines two types of patterns according to either holding

or changing the trend. Selected patterns are presented in diagrams shown in Fig. 2.

In order to recognize such structures first of all local minima and maxima of index

values are calculated. A special parameter called “fill coefficient” controls the definition

of the localness which influences the number of extracted minima and maxima. Two

parameters (similarity and difference) define the meaning of closeness of values. Two

values will be treated as similar if the difference between them is smaller than the similarity

coefficient. Two values will be treated as not equal if the difference between them is greater

than the difference coefficient. Based on these conditions it is possible to compare different

tops and bottoms of an index chart. Extraction of the technical analysis patterns is based

on matching the schema of actual tops and bottoms with the built-in schema of predefined

patterns.

Figure 3 shows an example of pattern extraction of test samples (B - recognized min-

ima, S - recognized maxima). Double bottom and three apexes are found in the presented

range of data. Due to the ambiguity of the method two different patterns concern one set

of sample records, but both of them forecast the change of the trend. Each pattern found

is coded by the respective integer number and added to the training records. Aside from

the pattern itself, the type of it (holding or changing the trend) is also included in the

training data. Together with the day of the week of prediction and different variants of

specific oscillators there are 37 variables describing the index value and its derivatives on
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(a) triangle (b) double apex (c) head and shoulders

Figure 2: Examples of technical analysis patterns.

one stock market (per day) which are taken into account.

Figure 3: Pattern extraction from the test sample. B, S denote recognized minima and
maxima, resp.

2.1 Dependencies between variables

A situation on a particular stock market usually depends on other markets. It is a sort of

communicating vessels. Therefore the dependencies between variables from different stock

markets were measured. The Pearson correlation coefficient (eq. (3)) was used to measure

the linear correlation between variables:

lcPearson =

n−1∑
i=0

(xi − x̄)(yi − ȳ)√
n−1∑
i=0

(xi − x̄)2
n−1∑
i=0

(yi − ȳ)2

(3)

where n is the number of available records. The higher the value, the stronger the

relation between x and y.

Two charts (presented in Figs. 4 and 5) show relationships between the change of

closing value of the target stock market and other variables from the considered stock

markets. In Fig. 4 correlations of all variables of three stock markets (GSE (with DAX),

TSE (with NIKKEI) and NYSE (with DJIA)) are shown. Some characteristic patterns are
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visible in GSE and NYSE sets. The same patterns are also present in TSE data but with

much smaller magnitude. This confirms the existence of correlation between different stock

markets especially European and American ones. The importance of several variables is

noticeable. Variables most likely correlated with predicted changes of closing value are

oscillators and changes of closing values from other stock markets.

Figure 4: Correlation between variables of stock markets: value of change of DAX vs.
other variables.

Despite strong relations between variables, dependencies change in time. In Fig. 5 a

correlation between the closing DAX value and the MACD oscillator on the target stock

market is presented. On x-axis a sequence of a 5-day time-windows is placed. The period

of 470 days sub-divided into 94 pieces is considered. For every piece the correlation is

calculated. The correlation can be either positive or negative, either strong or weak. It is

difficult to find appropriate prediction rules that would be valid through the whole range

of data. Variability of dependencies must be taken into account. The method of variables

selection must be sensitive to market’s volatility in the above described sense.

Except for the linear correlations between variables from different stock markets the

underlying structure of the time series composed of the predicted variable’s values is

also examined. The BDS test rejects the hypothesis that examined sample is a series

of independent and identically distributed random variables (see Table 1 for details).

Test sample consisted of 2420 values of percentage one-day changes of stock market’s

closing index values. The rejection of null hypothesis indicates the existence of non-linear

correlations in the data.
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Figure 5: Correlations between input factors: value of change of DAX vs. MACD on GSE.

3 Components of the prediction system

A large number of variables were available after the data preparation step described in

Section 2. A method of selecting an approximately optimal, in the current situation, set of

variables and a neural network-based predictor which uses them as the input are described

in subsections below. The final selection of the input variables is performed by the GA.

Each chromosome codes a set of input variables to be used by a neural network. A fitness

function is reverse-proportional to the magnitude of an error made by a trained network

on a sample test set. After the GA finishes its work the best fitted chromosome provides

a suitable set of variables to be used in the final training. These variables are considered

to be an optimal selection for the current 5-day window.

3.1 Neural networks

Neural networks form the basis of the proposed prediction system. Feed-forward networks

with one hidden layer are chosen based on preliminary experiments. The size of the hidden

layer equals the floor function of the half of the size of an input layer (e.g. in case of 9

input neurons, the hidden layer is composed of 4 units). One neuron is used in the output

layer. Therefore the architecture of each network used in the system during the GA phase

or for the final prediction is defined completely by the number of input variables. The

11



ϵ Dimension (m) Statistic P-value

0.008 2 9.4726 < 2.2e-16

0.008 3 15.9697 < 2.2e-16

0.016 2 10.2794 < 2.2e-16

0.016 3 16.7567 < 2.2e-16

0.024 2 10.2981 < 2.2e-16

0.024 3 15.9623 < 2.2e-16

0.033 2 9.7885 < 2.2e-16

0.033 3 14.5233 < 2.2e-16

Table 1: Results of BDS test for 2420 samples representing the percentage one-day changes
of closing DAX index values. The results were calculated with the help of the “R” statis-
tical package [62].

weights of such a network are randomly initialized.

The method of back propagation with momentum is used for training, which is per-

formed for a pre-defined number of epochs (see Section 5 for the choice of the training

parameters). Changes of network’s weights are defined by the following equation:

∆wk = µk(−
∂Qk

∂wk
) + α∆wk−1 (4)

where Q is a mean square error of network’s output, µk - a learning coefficient, w - a

vector of weights, k - an iteration number. The first part of the right hand side of equation

(4) is a standard back propagation method of changing weights in the learning process.

The second part - momentum, lets the learning to consider also the previous direction

of a change, despite the actual gradient. Both components require suitable choice of

coefficients. In each training epoch the value of the learning coefficient µk may change

within a predefined range, which is one of the system’s parameters (listed in Section 5).

The training procedure was stopped (in iteration t) based on the fulfillment of one of

the following conditions:

t = tmax (5)

or

MSEt > MSE1 (6)

or

∀k=0,1,2 1− SumMSEt−k−1

SumMSEt−k
≥ 0.1, (7)

where

SumMSEn =

i=9∑
i=0

MSEn−i (8)
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denoted the sum of the MSE errors from the last 10 iterations. Condition (6) was true

when a NN defined by the chromosome was unable to learn (the chromosome was dead).

The third condition was used to detect three consecutive increases of the sums of the MSE

errors over 10 last epochs. The number of epochs was equal to 10 was used in order to

smooth individual MSE changes in single epochs. Parameter tmax was equal to 200 or

2000 depending on the stage of the algorithm (see Section 5 for details).

3.2 Genetic algorithm

The neural network training process is efficient if the size of the network is relatively small.

This goal is typically achieved by adaptation of network’s topology [20, 21, 28, 48].

Another possibility of optimization is efficient selection of input variables. In order to

select small, but relevant number of variables for a neural network the GA is applied. Due

to a large number of available input variables and changing dependencies between them,

a selection of a suitable subset of inputs is the main idea of the proposed system. The

quality of prediction strictly depends on the effectiveness of the GA. The chromosome

is defined as the list of variables used by a neural network for training and prediction.

Therefore each chromosome defines a specific network’s architecture, as described in the

previous subsection. For example if a chromosome codes the following set of variables:

closing value of DAX, average change in 20 days, MACD oscillator value, percentage

change in 20 days, then the network defined by this chromosome has 4 input neurons, 2

neurons in a hidden layer and 1 output neuron. For each input neuron the value of the

respective variable is provided. The fitness function is reverse-proportional to the error of a

network after training. The smaller the error on validation samples, the higher the fitness

of a chromosome. For each chromosome several neural networks with different initial

weights, but the same architecture are considered. The fitness function can be calculated

with respect to either the minimum or the average error of all networks assigned to the

chromosome. If the average error is used the algorithm is less sensitive to accidental

increase or decrease of the learning process effectiveness caused by the initial weights

choice.

Sometimes during training, for the specific set of input variables, the network is unable

to achieve acceptable level of an error. This usually happens in the initial population of

chromosomes, but sometimes also in further generations, when some of the variables are

not suitable for learning. Chromosomes which code such useless sets are called dead. The

remaining chromosomes are called alive.

There are two main operators in the GA. A crossover is responsible for creating new

chromosomes using information coded by both parents. Mutation brings random changes

in chromosomes, which expand their capabilities of searching for the result in the whole

solution space.
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Two crossover methods are implemented in the proposed system. The first one is

classical crossover with one cutting point. The cutting point can by selected randomly or

chosen according to the best fitness of the resultant child chromosome (see Fig. 6). The

alternative crossover method, a combined crossover [7], depends on the common part of

two parent chromosomes and random selection of the rest of variables. The scheme of the

combined crossover is presented in Fig. 7. This kind of crossover promotes variables that

are repeated in the population.

Figure 6: The scheme of the classical crossover operation with one cutting point.

Figure 7: The scheme of the combined crossover operation with a random selection of
variables. V1, V2, V3, V4 are randomly selected from the remaining pool of variables (i.e.
except for X and Y ) with additional condition that they are pairwise different within each
of the chromosomes, i.e. V1 ̸= V2, V2 ̸= V3 and V3 ̸= V1.

In any case, two offspring are created as a result. Selection of chromosomes for crossover

is performed by the rank method. A parent is exchanged with assigned child only if the

latter one is better fitted. Using the above described crossover does not alter population

14



size. Sizes of individual chromosomes generally change towards the preferred/winning

ones.

During mutation variables coded by the chromosome are exchanged with variables

chosen randomly from the remaining subset of all available ones. A single mutation can

affect only one randomly selected variable.

Both crossover and mutation operators have the assigned probability of occurrence.

For crossover it equals 1 because the decision of replacing parents with children is done

later based on values of their fitness. Probability of mutation depends on the type of

chromosome. Probability for dead chromosomes is greater than for alive ones. This

setting forces the undesirable chromosomes to be changed. Changes in alive chromosomes

are rare - just enough to keep the diversity of the population. The exact values of these

parameters are discussed in Section 5.

Selection of new variables in crossover and mutation is performed from the current

pool of available variables, which is a subset of all possible variables. More precisely,

since the set of all possible variables is too large to form an initial pool for the GA (there

are 370 variables, concerning the current and past days, from the three stock markets

under consideration), before the GA starts, the initial pool is selected either by using

the autocorrelation method (considering the rank of correlation with the closing value of

DAX) or manually.

The main drawback of selection based on the autocorrelation is that in order to be

effective it must consider a long-range of historical data. Hence the method is not sensitive

to short-term, local correlations, which are crucial for effective market modeling. There-

fore, in the final experiments described in this paper, the manual method of selecting the

initial pool of variables was used.

Manual selection takes into consideration all variables from the target stock market

(70 variables), last day changes of closing values of the two other stock markets and the

two exchange rates. All together, a set of 74 variables is chosen and available for the use

of the GA.

The first step of the GA is creation of the initial population. Variables coded by

chromosomes are randomly selected from the initial pool. Diversity of the population

is assured by creating chromosomes of different sizes (numbers of coded variables). All

chromosomes’ sizes from a predefined range are represented in the initial population.

In each iteration of the GA new chromosomes are created as a result of crossover and

mutation. Gradually the average error of prediction made by neural networks coded by

the chromosomes decreases.

After every iteration the best chromosome is appointed. A chromosome can be con-

sidered the best one only if all neural networks used in the fitness evaluation are able to

learn (is alive for every network). The number of such networks is one of the system’s
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parameters (see Section 5 for details). Finally, in the last iteration of the GA the network

with the lowest error for the best chromosome is saved and subsequently used in the final

test.

3.3 Modifications of the genetic algorithm

Except for “standard GA implementation” described in the previous section several ex-

tensions are proposed and examined. Most of them affect a direction of exploration of the

solution space. They also control sizes of the chromosomes in the population.

The freedom of choosing variables for each chromosome is restricted by forcing the

presence of the last change of the closing index value on target stock market. This forced

variable is not affected by mutation and is present in each chromosome. This “unorthodox”

setup of the GA was strongly supported by the intuitive assumption that the most relevant

variable (i.e. the one having the highest correlation with the predicted variable) is the

target variable obtained in the previous time step. This commonsense idea was positively

verified in preliminary experiments, which besides confirmation of this fact also indicated

that imposing similar restriction on other variables may lead to deterioration of results.

Choosing a new variable during mutation or crossover takes place according to specific

probability. The selection probability depends on the history of variable’s occurrence

in the population. There are three types of variables: best chromosome, often selected,

common. Variables which were present in any of the former best chromosomes have the

type best chromosome variable. Variables which appear in the population more frequently

than the average appearance are called often selected variables. The rest of variables are

common ones. For each type of variables there is a different probability of selection during

mutation or crossover. The probability for best chromosome variables is higher than for

often selected ones. The lowest probability of selection is for common variables. As the

GA starts, probabilities for all variables are pairwise equal. After some predefined number

of iterations probabilities are redefined to 1, 0.75, 0.5 for best chromosome, often selected

and common variables, resp. and assigned to variables in respective categories (types).

Type assignment to each variable is redone at the beginning of every iteration.

Different selection probabilities of variables are applied to enhance variables treated by

the GA as more important. Preliminary experiments showed that this mechanism visibly

accelerates the convergence of the GA, not having a negative influence on diversity of the

population.

When the average error of the whole population approaches the minimum error by

less than 3%, the probability of mutation increases in order to enhance diversity of the

population.

For the sake of increasing the GA’s ability to explore a wider range of solution space

the optional split of the population is implemented. If the split option is selected, in some
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predefined number of initial iterations crossover is performed within two separated halves

of a population. Additionally, during this initial period of evolution the probability of

mutation is relatively high. Under the above conditions the population rapidly changes

in two separated instances for a predefined period of time. Afterwards the probability of

mutation decreases assuring higher stability of the population. Results of experimental

verification of this method of population split are presented in Section 6.

Sizes of chromosomes may change during the crossover when parents are exchanged

with children, since a parent is exchanged with that child which inherits the size from the

other parent (see Figs. 6, 7). Thus the mechanism of controlling sizes was implemented.

If the average size of chromosomes becomes close to the current maximum or minimum

size in the population, the mutation of chromosomes’ sizes is applied with probability

psize (defined below). If the average size of chromosomes is close to the maximum, the

mutation adds a randomly selected variable to the chromosome. Otherwise a randomly

chosen variable is removed from the chromosome. In both cases, the goal is to support

the current trend of size changes. The probability of the size mutation psize is defined by

eq. (9):

psize = pbase
Maxfitness − chromosomefitness

Maxfitness −Minfitness
(9)

with predefined base probability pbase, where Maxfitness and Minfitness denote re-

spectively the maximum and minimum chromosome’s fitness within the population. Also

in this case the probability of selecting variables to be added or removed is considered

according to their type (best chromosome, often selected, common).

A specific extra improvement procedure based on the brute forcemethod is applied after

the last iteration of the GA. In a single iteration of this additional procedure the local

optimality of the winning (best fitted) chromosome is experimentally verified by checking

all possible replacements of one of its variables with anyone else from the remaining pool

of variables. Each new chromosome created this way differs from the original (best)

chromosome by only one variable. The chromosome with the best fitness value among

these newly created chromosomes is compared with the hitherto best chromosome. The

one of them which is better fitted is considered to be the best chromosome. The number of

iterations of this extra improvement can be set a priori or can, for example, be proportional

to the length of the best chromosome. In all experiments reported in this paper the number

of these additional iterations was set to one.

3.4 Stopping conditions

The basic stopping condition for the GA and neural network learning is the number

of iterations. For neural networks there is also the stopping condition dependant on
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validation samples. If, during training, the error on validation samples rises, the process

is interrupted.

There are two additional stopping conditions for the GA. The first one controls the

diversity of the population according to the average fitness. If the majority of chromosomes

is close to the average fitness the algorithm stops. The second stopping condition applies

if the number of iterations without finding the new best chromosome exceeds a predefined

value.

A general overview of the entire system is presented in Fig. 8.A more detailed descrip-

tion of the method’s implementation, in the form of a pseudocode is placed in Appendix

1.

Figure 8: A general overview of the system.

In the next two sections the efficiency of proposed prediction system is validated.

First of all some comparative models are defined. A simplified investment game on a

stock market is proposed as a verification of their effectiveness.
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4 Comparative models

In order to examine the effectiveness and usefulness of proposed system of prediction four

other models of stock market’s game were implemented for comparison.

All models are based on generating buy/sell signals to make the maximum future return

of transactions on index value. There are two general assumptions: 1) it is assumed that

there is no handling charge; 2) the index has the price equal to its current value. In the

initial state there is a fixed budget for transactions. At the end of the day the signal for

the next day is generated. Transaction is generated with the next day’s opening value.

If the signal is buy as many indices as possible with the current budget are bought. The

remaining money (the amount smaller than the cost of one index) stays in the budget. If

the sell signal is generated by the system all possessed indices are sold. The total budget

is available for future transactions. The final result of the investment is the total budget

after selling all indices in the last day.

Definitions of determination of signals for all implemented models are placed below.

Model 1 - buy and hold strategy: the first day’s signal is buy, the last day’s one is sell,

and there are no other buy/sell signals generated (eq. (10)):

if(iteration = first) signal = buy

if(iteration = last) signal = sell

if(iteration <> first and iteration <> last) signal = wait

(10)

As a result the return is proportional to the change of an index value in a given time

period.

Model 2 - signals are generated assuming that the direction of a change of an index value

in the following day will be the same as the last day’s change direction (eq. (11)):

if(last change is positive) signal = buy

if(last change is negative) signal = sell

if(last change is zero) signal = wait

(11)

Model 3 - signals are calculated using the next day’s prediction of proposed neuro-genetic

system (eq. (12)):

if(predicted change is positive) signal = buy

if(predicted change is negative) signal = sell

if(predicted change is zero) signal = wait

(12)

Model 4 - signals are calculated using a popular MACD oscillator (see Section 2). Signals

are generated at the crossing of lines of the oscillator (eq. (13)):
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if(MACDt ≥ MACDt
SIGNAL) and (MACDt−1 < MACDt−1

SIGNAL) signal = buy

if(MACDt ≤ MACDt
SIGNAL) and (MACDt−1 > MACDt−1

SIGNAL) signal = sell

otherwise signal = wait

(13)

where MACD and MACDSIGNAL are described by eq. (1), t and t − 1 denote time

steps.

Model 5 - signals are generated using the actual knowledge of the next day’s value.

This model yields the highest theoretically possible result under defined conditions of

investment:

if(actual future change is positive) signal = buy

if(actual future change is negative) signal = sell

if(actual future change is zero) signal = wait

(14)

In summary, Model 3 is based on a prediction provided by our neuro-genetic system.

Other models are implemented for comparison purposes. Models 1 and 2 are constructed

using simple heuristics with no particular prediction system. Model 4 is based on a well-

known MACD oscillator. Model 5 defines the theoretical upper limit of a return of an

investment that can be achieved. It takes advantage of the future next day’s index value

(yet unknown in real situation), assuming its availability beforehand.

5 Experiment scenario

A single experiment is divided into steps. Each step consists of neural network training on

290 samples and 5 validation records. The number of training samples is chosen to cover a

year of observations. On the other hand it is a reasonable number of samples for training

the average-size neural network used in the proposed system. The neural network selected

in the current step is tested on the subsequent 5 records not used in previous phases. In

the next step the process is repeated using samples shifted by 5 records. Large part of the

data is shared between steps since in subsequent ones the time-window is only shifted by

5 days forward (test samples from immediately previous step become validation ones and

validation samples become the last part of the training days). The scenario of selection of

learning, validation and testing records in subsequent steps is presented in Fig. 9. A 5-day

period of using the same set of input variables is chosen according to some intuition and

also due to technical reasons. After 5 trading days the GA can be easily run during the

weekend to provide a new input variables’ selection for the next week (5 trading days).

Four different experiments, each consisting of 20 steps were performed in order to

present usefulness of the above approach. In effect, in each experiment the consistent
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Figure 9: A schema of learning, validation and testing samples selection.

set of 100 (20 × 5) samples was considered as the test data (covering the period from

2004/04/07 to 2004/08/26 - cf. Fig. 1). In each step the following sequence of activities

was performed: A: creating initial pool of variables, B: finding the best chromosome by

the GA, and C: performing the final training with neural network and input variables

coded by that chromosome.

Common parameters of all experiments are described below, grouped according to

the above activities. Parameters, especially probabilities of mutations were chosen in

preliminary experiments so as to achieve desired dynamics of changes in the population.

The size of a population is a compromise between diversity and efficiency of the GA.

A: The initial pool of variables is selected manually and consists of the following

variables: all variables from the target stock market for the current day (30 variables),

moving averages and changes of all index values from the target stock market for past

days (40 variables), changes of closing index value in two other stock markets and two

exchange rates (4 variables).

B: The GA runs on the following parameters:

• population size = 48 chromosomes,

• maximum number of generations = 500,

• initial chromosomes sizes between 3 and 10 (plus one forced variable),

• chromosomes encoding one hidden layer networks only,

• the number of neural networks used to calculate fitness of each chromosome = 3,

• the best chromosome only if all neural networks are alive,

• one iteration of extra improvement after the GA terminated,

• maximum number of iterations during neural network learning for fitness calculation

in GA = 200,
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• the probability of mutation if not alive = 1,

• the probability of mutation if the average fitness is close to the minimum fitness =

0.2,

• the probability of mutation if alive, before parameters’ change = 0.2,

• the probability of mutation if alive, after parameters’ change = 0.05,

• one variable is changed in one mutation,

• allow mutation of alive chromosomes, if the number of them is greater than 90% of

the population size,

• forbid mutation of alive chromosomes, if the number of them is below 50% of the

population size,

• use a separate set of parameters for the first 20% of iterations.

C: The final neural network learning depends on the following parameters:

• maximum number of iterations during learning = 2000,

• the learning coefficient is changing within the range [0.1, 0.8],

• the value of the learning coefficient is renewed before each iteration,

• the momentum coefficient = 0.2.

All the above choices of exact values or ranges of particular parameters used in the final

experiments reflect the compromise between the desire for the highest possible efficiency of

the system and its time complexity. For the sake of practical applicability the simulation

time of a single run should not exceed 48 hours (on a single processor PC), since the

choice of variables is valid for 5 trading days only and need to be re-calculated over the

weekend. This was the main reason for keeping the population size and the number of

GA’s generations relatively low. Likewise, neural architectures used for chromosomes’

assessment were very simple, with the restricted size of the input layer (the number of

variables in a chromosome) and small numbers of training epochs. Only the final training of

the ultimate neural network was performed in the more time-consuming regime. In general,

system’s parameters were chosen rationally based on a limited number of preliminary tests.

Hence, the above choice by no means should be treated as optimal, although it constitutes

a kind of “local maximum” in the parameter space (with respect to the data granulation

used in the preliminary tests).

Aside from the above settings, some specific parameters are used in each experiment.

These parameters are presented in Table 2 and explained and motivated in the following

section.
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Parameter Exp. 1 Exp. 2 Exp. 3 Exp. 4

X cross-type cross-type combined-type combined-type

Y yes yes yes no

Z increases decreases decreases decreases

Table 2: Parameters of four experiments. X - denotes type of crossover (cross-type or
combined-type), Y - splitting population in the initial 20% of GA’s iterations, Z - changing
in time of the neural network learning coefficient.

5.1 A typical pass of the algorithm

Before presentation of the experimental results let us visualize variations in GA inter-

nal parameters (minimum, average, maximum chromosome fitness (Fig. 10), minimum,

average, maximum chromosome size (Fig. 11), and the number of parent chromosomes’

exchanges with the offspring (Fig. 12)) in a typical step of the algorithm.

Figure 10: Minimum (lower line), average (middle line), and maximum (upper line) fitness
of chromosomes in subsequent generations in one step of the experiment.

In the example the first 20% (i.e. 100) of GA’s iterations were performed with a sep-

arate set of parameters having a high probability of mutation, equal to 0.2. Before the

38th iteration (see Fig. 10) the population was rapidly developing better and better chro-

mosomes. Afterwards, there was a period of stabilization when, despite relatively high

number of mutations, there were no visible signs of progress. After the 100th iteration,

when the probability of mutation was lowered to 0.05, there was a short period (20 it-
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erations) of growth of the average fitness. Likewise, the maximum fitness was rapidly

increasing during the initial period of 38 iterations, and then stabilized within a narrow

range.

Moreover, in discussed example a size mutation mechanism was triggered on in the 22nd

iteration since the average size of chromosomes became close to their maximum size in the

population (equal to 11) - see Fig. 11. In order to allow further grow of the chromosomes,

the size of some number of randomly selected chromosomes was increased step-by-step with

probability psize (eq. 9), achieving the maximum value of 13. Then, between the 85th and

163rd iterations, a gradual decrease of the average chromosomes’ size was observed, caused

by both size mutations and natural elimination of weak chromosomes. After this period

the changes are insignificant and the average chromosomes’ size in the population varied

mainly between 8 and 9.

Figure 11: Minimum (lower line), average (middle line), and maximum (upper line) num-
bers of variables coded by chromosomes in subsequent generations in one step of the
experiment.

High number of mutations before the 120th iteration also influenced the crossing mech-

anism. Due to low fitness in early iterations many of parent chromosomes were exchanged

with offspring (see Fig. 12). This process introduced fresh variables into chromosomes.

Once the initial period of frequent mutations and extensive crossing-based exchange of

chromosomes was over, the populations stabilized. The best chromosome was discovered

in the 267th iteration.
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Figure 12: The number of parent chromosomes exchanged with the child ones in subse-
quent generations in one step of the experiment.

6 Results

6.1 Numerical efficacy of prediction

Results of experiments performed according to the above described scenarios are summa-

rized in Table 3. In each experiment the amount of initial money was equal to 100, 000

units. Please recall, that Model 5 assumes the exact knowledge about the future. The

result of Model 1 (which implements buy and hold strategy) is proportional to the change

of index value in the considered period of time. In Fig. 13 the Earned Value (EV) defined

Model/Experiment Return [%]

Model 1 -5.46

Model 2 -7.54

Model 4 -3.59

Model 5 39.56

Model 3/Exp. 1 -1.75

Model 3/Exp. 2 5.20

Model 3/Exp. 3 6.07

Model 3/Exp. 4 9.31

Table 3: Return of proposed models attained in different experiments.

as the difference between possessed assets (indices and money) and the starting budget
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(i.e. 100, 000 units) is presented for various parameters’ settings (Exp. 1,..., Exp. 4) in

Model 3. Prediction based on settings of Exp. 4 outperforms all other experiments. In the

20th day the algorithm in Exp. 1 made a mistake which cost almost 6, 000 units. There

was a chance to catch up with results of at least Exp. 2 in the 37th day but the difference

was too big. Exp. 3 and 4 (both implementing the combined-type crossover) are clearly

more profitable than the others. Model of Exp. 3 made two mistakes: on days 20 and

48, which caused difference compared to Exp. 4. Besides these two points both methods

attained similar return. Finally, at the end of the testing period, the algorithm based

on settings of Exp. 4 earned 3, 200 (4, 100) units more than the one based on parameters

of Exp. 3 (2), and 11, 000 units more than in Exp. 1. Results of experiments show that

methods based on combined-type crossover (Exp. 3 and 4) are more effective than those

based on classical cross-type crossover. The idea of increasing learning coefficient (Exp. 1)

appeared to be ineffective. The difference between results of Exp. 3 and 4 shows that split

into two separate populations is not beneficial in proposed scenario.

Figure 13: Comparison of returns obtained by Model 3 (neuro-genetic prediction system).

Settings of Exp. 4 are chosen for further detailed analysis. A comparison between

Models 1, 2, 4 and Model 3 (with the same settings as in Exp. 4) is presented in Fig. 14.

Model 4 based on MACD oscillator was finally only 2% more profitable than Model 1,

which in turn outperformed Model 2 by a visible margin.

Our model based on neuro-genetic prediction (Model 3) outperformed all comparative
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Figure 14: Comparison of returns of proposed system and comparative models (except for
the prophetic one).

models (except for the prophetic Model 5, not presented in the figure).

Changing in time differences between results of Model 3 and the four other ones are

presented in Fig. 15. Positive values show higher effectiveness of the proposed model than

the testing ones. In the first 4 days all models yielded similar results. Afterwards the

prophetic model started to excel all other systems, however Model 3 was more profitable

than Models 1, 2 and 4 through all the time. After the 19th day accurate decisions allowed

our system to gradually increase its advantage.

It is interesting to compare Model 3 with the prophetic one. For the first 14 days both

of them produced similar outcomes. In the same period the remaining models attained

noticeably worse results. In several later subperiods the proposed system also kept up

with the prophetic model. These days, depicted by arrows, can be recognized as the flat

parts of the chart, e.g. days 18–27, 37–44 or 68–74.

In order to examine the properties of Model 3 in more detail two specific periods were

cut out from Fig. 14. The first one from day 28th to day 59th represents an upward trend

(see Fig. 16) and the other one between days 14 and 28 - a downward trend (Fig. 17).

An examination of the two above periods shows that prediction based on neuro-genetic

model works well during both uptrend and downtrend. When the index value goes down

our model is able to gain some extra money on local changes of the trend. At the same

27



Figure 15: Differences in returns between proposed system and comparative models. Pos-
itive values indicate higher profit of the proposed system.

time Model 4 based on MACD signals is comparable, but slightly worse. MACD generated

signal buy on the first day and signal sell on the next day. No more signals were generated,

so the model was not active during the downtrend. In case of an increasing trend our

algorithm is still able to utilize local changes of an index rate. Thanks to consequently

rising index value the final result of Model 1 (which makes profit by definition in case of

upward trend) is only slightly worse. Contrary to downtrend case, Model 4 places the

worst in uptrend situation. Model 2 places the third in both figures.

6.2 Repeatability of results

In order to verify whether the proposed method leads to repeatable results, the basic

experiment concerning Model 3 with Exp. 4 settings was repeated several times with the

same algorithm settings and for the same time period. The results are presented in Table 4.

The outcomes of returns ranged from 3.41% to 9.31% (with the average of 5.76%), which

is a promising result compared to loses of Models 1, 2 and 4 presented in Table 3. An

important feature of the repeated experiments was pairwise similarity between the variable

sets selected by GA in individual runs. In detailed analysis performed for the first three

runs, the variables chosen at each step (out of 20) were compared. At each step, the

number of variables common for all three runs and common for any two out of three ones

28



Figure 16: Comparison of returns of proposed system and comparative models in upward
trend.

#1 #2 #3 #4 #5 #6 avg. mean dev.

9.31 4.68 3.51 3.41 5.96 7.67 5.76 1.89

Table 4: Return [%] of proposed model attained in six experiments performed with the
same algorithm settings and for the same period of time.

was calculated. The respective figures show high degree of shared inputs across these three

runs. Namely, 43% of variables were chosen in all three instances and 26% of them were

shared by two sets chosen by GA. The remaining 31% chosen variables existed exclusively

in one of the chosen sets. The analysis confirmed the stability of the GA choices. There

existed quite a large set of variables, which were frequently chosen in all three experiments

defining a stable and reliable foundation for the prediction system.

In order to further verify algorithm’s reliability the experiment was performed with the

same settings for another period of 100 working days, between 2002/08/01 and 2002/12/18.

The results are presented in Table 5. In the “Bear” market the difference between proposed

neuro-evolutionary system and buy and hold strategy remains at the level of 15%. The

advantage over MACD-based system is equal to about 7%. Model 2 was clearly inferior

compared to all other strategies mainly due to high volatility of the index value in the

tested period. This was also the reason for relatively poorer performance of all tested

methods, except for the prothetic model, which gained additional advantage in the case

of frequently changing index value.
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Figure 17: Comparison of returns of proposed system and comparative models in down-
ward trend.

Model Return [%]

Model 1 -15.21

Model 2 -26.45

Model 3 0.19

Model 4 -7.39

Table 5: Returns of tested models attained in another time period lasting from 2002/08/01
to 2002/12/18.

6.3 Stability of results

Additional experiment was performed to examine the stability of attained results. The

test period of 100 trading days was shifted by 5, 10, 15, and 20 days. The other experiment

conditions remained unchanged. The results obtained for neighboring 100-day time periods

(overlapped in 95%) were compared. As can be seen from Table 6 the maximum absolute

change of the final budget between subsequent 5-day shifts equals 2.08%. In other words,

during the tested periods, the gain of the neuro-genetic system varied between 8214 and

10468 units, which is between 8.21% and 10.47% of the initial budget. The percentage

difference between investment periods shifted by 20 days (a−e
a 100%) is less than 0.02%.

Relatively small changes of returns in subsequent periods support the claim that the

results of the neuro-genetic system are stable and repeatable.
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Time shift Final budget [units] Change [%]

0 (original experiment) a = 109 315.36 -

5 days b = 110 076.75 a−b
a 100 = −0.70

10 days c = 108 214.21 b−c
b 100 = +1.69

15 days d = 110 467.53 c−d
c 100 = −2.08

20 days e = 109 297.39 d−e
d 100 = +1.06

Table 6: Returns of neuro-genetic system in subsequent time-windows.

6.4 “Rationality” of GA-based variable selection

Along with numerical tests an analysis of variables chosen in subsequent steps was per-

formed. The hypothesis to be verified is that variables are repeated in several subsequent

steps according to their importance in the current situation. In other words, it is claimed

that variables are not randomly chosen but selected by the algorithm with some visible

sense.

The expected ”rationality” of GA-based choices is manifested by its consistency with

the general rules used by professional stock market traders. In particular, the following

four observations come out from the analysis of the variable sets selected by the GA in

subsequent steps: (1) the frequent choice of variables from the target market compared to

the other sources of variables; (2) preference of stock-related variables over the exchange-

rates; (3) preference of NYSE variables over the TSE ones; and (4) different time of

usability of particular oscillators. As mentioned above all these four features are pertinent

factors of the human way of trading and they all reflect common knowledge in the field

(e.g. much higher influence of US stock market than the Japanese one on the European

markets).

The above four claims and discussed in the remainder of this section. First, the re-

sume of the variables’ selection during the first three steps (out of 20 ones performed) is

presented. For each step the variable percentage closing value was also present since it was

forced by the GA implementation. This variable is not listed. Variables from the target

GSE stock market were calculated for any of the t− n last days, for n = 0, ..., 5.

The note “en”, where 1 ≤ n ≤ 20 denotes that this particular variable also appeared (in

exactly the same form) in step number n. The prefix s preceding the step number means

that the meaning of the respective variable (in current step and in step n) is practically

the same (e.g. the average value of the past 20 days is nearly the same for today and

yesterday). For example,

• DAX[t] > IMPET10 [s4, s7, s8, s13, s15, s17, e20]

in the first line of Step 1 below means that the IMPET of the last 10 days (today’s

closing value of DAX (i.e. DAX[t]) minus closing value od DAX 10 days before) was chosen
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as the first input variable and this same variable was also chosen in exactly the same form

in Step 20 and in a very similar form (e.g. calculated for days [t-1] and [t-11]) in Steps

4, 7, 8, 13, 15, 17. CHANGEn(%) denotes n days change in per cent of the respective

value, for n = 5, 10, 20. CHANGE O(C) denotes a change in opening(closing) value of

particular variable.

Step 1:

• DAX[t] > IMPET10 [s4, s7, s8, s13, s15, s17, e20];

• DAX[t] > SO [e3, e4, e6, e7];

• DAX[t] > IMPET20 [s4, s7, s8, e13, s15, s17, s20];

• DAX[t-2] > CHANGE10(%) [s2, s4, s5, s6, s8, s10, s11, s12, s14, s15, s16, s18, s19, s20];

• DAX[t-5] > MOV AVG10 [s4, s6, s7, s11];

• DAX[t] > CHANGE5(%) [s2, s4, s5, s6, s8, s10, s11, s12, s14, e15, s16, s18, s19, s20];

• DAX[t] > DAY NO [e2, s5, e8, e9, e10, s11, e12, e13];

• DAX[t-2] > CHANGE20(%) [s2, s4, s5, s6, s8, e10, s11, s12, s14, s15, s16, s18, s19, s20];

Step 2:

• DAX[t-1] > CHANGE5(%) [s1, s4, s5, s6, s8, s10, s11, s12, s14, s15, s16, s18, s19, s20];

• DAX[t] > DAY NO [e1, s5, e8, e9, e10, s11, e12, e13];

• DAX[t-4] > CHANGE10(%) [s1, s4, s5, s6, e8, s10, e11, s12, s14, s15, s16, s18, s19, s20];

• DAX[t-1] > CHANGE10(%) [s1, s4, s5, s6, s8, s10, s11, s12, s14, s15, s16, s18, s19, s20];

• DAX[t-1] > CHANGE C(%) [s1, s3, s4, s5, s6, s7, s8, s9, s11, s12, s13, s14, s15, s16, s17,

s18, s19, s20];

• DJIA[t] > CHANGE C(%) [e3, e4, e8, e9, e12, e14, e16, e17, e19];

• DAX[t] > CHANGE5(%) [s1, s4, s5, s6, s8, s10, s11, s12, s14, e15, s16, s18, s19, s20];

• DAX[t] > PATTERN SHIFTED [s9, s10];

• DAX[t] > CHANGE O(%) [s1, s3, s4, s5, s6, s7, s8, s9, s11, s12, s13, s14, s15, s16, e17, s18,

s19, s20];

Step 3:

• DAX[t] > SO [e1, e4, e6, e7];

• USD/JPY[t] > CHANGE C(%) [e7, e9, e10, e20];

• DJIA[t] > CHANGE C(%) [e2, e4, e8, e9, e12, e14, e16, e17, e19];
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In the remaining steps 4-20 the situation was analogous: the majority of chosen

variables came from the target market (GSE), but aside from these variables there were

also variables from the other sources (NYSE, TSE and exchange rates). The frequency

of choosing variables from various sources is presented in Table 7. These figures should

be compared with the overall availability of variables from particular sources. Table 8

presents a comparison of percentage use of variables from particular sources across all 20

steps and the percentage availability of them in the whole pool of variables used by the

GA. These two distributions are clearly different. Except for the data from GSE, which

covers the majority of available variables, each of the remaining four sources provides one

variable, hence having the same probability of occurrence (1, 35%). The GA visibly prefers

the data from American NYSE (DJIA index closing value) over the one from Japanese

TSE (NIKKEI index closing value). Such preference is in line with investors’ knowledge,

who consider the US stock market as being more indicative for the changes on European

stock markets than the Japanese one. This observation is additionally validated by the

correlation plot presented in Fig. 4.

Another conclusion from Table 8 is that stock related variables are generally more

important than exchange rates. This observation is again in line with the knowledge

possessed by investors and stock analysts and confirms conclusions presented in the lit-

erature [55]. An order of frequency of the use of variables from different stock markets

generally agrees with preliminary analysis of correlation between variables.

Origin of variable Occurrence in steps

GSE all 20 steps

NYSE 10 steps

TSE 6 steps

USD/JPY 5 steps

EUR/USD 3 steps

Table 7: Frequency of choosing variables during the experiment.

Origin of variable Occurrence in results [%] Availability for GA [%]

GSE 84.11% 94.60%

NYSE 6.62% 1.35%

TSE 3.97% 1.35%

USD/JPY 3.31% 1.35%

EUR/USD 1.99% 1.35%

Table 8: Percentage use of variables.

It is worth to underline that any variable chosen in any step is also present in at least a

few more steps either directly or as a similar (s.) type of variable. Some of the variables are

being chosen (survive) in a few steps in a row. Both the above observations suggest that
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the selection of input variables performed by the neuro-genetic system in not accidental

and some variables are visibly preferred over the other ones. Variables are chosen according

to their impact on networks effectiveness. The results suggest that for a given period of

time (5 trading days) selected variables provide relevant information concerning current

situation on a stock market, which allows making a high quality prediction.

An interesting observation is related to frequent appearance of oscillators among chosen

input variables. These oscillators are usually preferred for one or at most two consecutive

time steps and then replaced by another ones. This is in accordance with stock market

analysts’ judgement who use particular oscillators only for a limited period of time, since

changes on stock market require adequate adaptation of these instruments. The appear-

ance of oscillators in different steps of experiment is presented in Table 9. The most

frequently used ones are Impet (8 times), Stochastic, and MACD (5 times each). These

figures prove the usefulness of the information represented by oscillators in stock market

index prediction. Recall that one of the comparative models (Model 4) is based exclusively

on signals generated by the MACD oscillator.

Step 1 - Stochastic and Impet Step 11 - ROC
Step 2 - no oscillator chosen Step 12 - Williams
Step 3 - Stochastic Step 13 - Impet
Step 4 - Stochastic and Impet Step 14 - MACD
Step 5 - RSI, ROC and MACD Step 15 - Impet and Williams
Step 6 - Stochastic and ROC Step 16 - 2 AVG’s
Step 7 - Stochastic, Impet, Williams and MACD Step 17 - Impet
Step 8 - Impet and 2 AVG’s Step 18 - no oscillator chosen
Step 9 - MACD Step 19 - 2 AVG’s and MACD
Step 10 - no oscillator chosen Step 20 - Impet

Table 9: Oscillators chosen in subsequent steps.

Another key observation coming out from manual data analysis is high consistency of

the variable selection process between experiments. As we have presented in Section 6.2

the main experiment was repeated 6 times for the same period of time and with the same

parameters settings (though each time with random selection of the initial population).

One of the crucial findings was the observation that if for any of the 6 experiment in any

given step n, 1 ≤ n ≤ 20 all of the selected values were connected to DAX index, then in

all the remaining experiments all selected values in step n were also connected with DAX

(either in the form of an exact repetition or as a similar value - as described above in this

section). Only sporadically (in 4 steps out of 20 in 1 out of 6 runs) an additional variable

appeared, which was not connected with DAX. Certainly, the frequency of choosing DAX

variables is not surprising considering the fact that they constitute 81% of all variables,

but what is surprising is the consistency of the choices in the same steps across various
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runs/experiments. For example, in Step 3, in all experiments the selected variable sets

include index DJIA and the currency exchange rates (which are very uncommon among

the whole pool of input variables). This observation clearly suggests that the choice made

by the GA is governed by some underlying “logic”.

The consistency of the variable selection process, for the sake of clarity of the figure

illustrated across the first three experimental runs only, is presented in Fig. 18.

Figure 18: Consistency of variable selection across three independent experiments.

Additional analysis of “rationality” of the GA-based variable choices was performed

by modifying the experiment’s scenario in a way that the network proposed by GA was

not applied to the immediate time window prediction, but for the next one (shifted one

step forward). This so-called shifted neuro-genetic system (see Fig. 19) was compared

with the previously described one (cf. Fig. 9). The results are presented in Table 10

and Fig. 20. The original neuro-genetic system outperforms its shifted version by more

than 10%. The results show that using the same choice of input variables and the same

network architecture (although retrained on the new, current data) for the next 5 days is

less effective than applying a new choice of inputs and new neural architecture (chosen by

the GA), which are better fitted to the actual situation on the market. On the other hand

the shifted neuro-genetic system’s profit is higher than the one of buy and hold strategy,

which suggests that the network chosen in the previous step of GA (after retraining on

new, available data) still yields reasonable results.

The difference between earned values of the original and the shifted systems during the
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Figure 19: A modified scenario for experiment with network used for the shifted 5-day
window.

Model Return [%]

Buy and hold −4.99

Shifted neuro-genetic −2.26

“Original” neuro-genetic 8.31

Table 10: Return generated by buy and hold, “original” neuro-genetic and shifted neuro-
genetic models. Please note, that the difference in results achieved by the “original”
neuro-genetic model reported in Tables 3 and 10 is caused by a shorter investment period
in the latter case, i.e. 100 vs. 95 trading days, resp. The same note applies to the buy
and hold strategy.

test phase is presented in Fig. 21. Every increase of the value in the plot means that the

original system gets higher return than the shifted one, and vice versa. There are two time

periods, during which the original system visibly increases its profit, i.e. days 13–20 with

rapid growth and days 33–69 with moderately increasing trend though taking place over

a long time period. On the other hand short periods with the superiority of the shifted

system are also observable, e.g. days 29–33, 85–95 and day 81, however the magnitude of

profit’s decrease is comparably lower.

7 Summary and conclusions

A hybrid neuro-genetic method of prediction with application to financial task, which is

prediction of the closing value of DAX - the German Stock Exchange index, is presented

and examined in the paper. Assuming the flow of information between different stock

markets and their mutual relations the proposed system uses data from five different

sources: three stock markets and two exchange rates. The analysis of the use of variables

confirms the hypothesis of a correlation between different stock markets. The frequency of

choosing variables from NYSE (TSE) markets was respectively 5(3) times higher than their
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Figure 20: Changes of return of between buy and hold, original neuro-genetic and shifted
neuro-genetic models during 19 steps.

percentage availability in the pool of variables. These variables were also more preferable

than the exchange rates.

Due to changing in time dependencies between variables describing financial markets

(indices, oscillators, exchange rates, etc.) and assuming that the usefulness of any variable

is limited in time, the proposed approach relies on applying the GA to frequent input data

selection (among the predefined pool of variables from the above mentioned five sources).

The standard GA procedure is enhanced by adding a new type of crossover operator

and a mechanism that controls the range of chromosomes’ sizes. Furthermore, the chro-

mosomes are categorized as being either alive (i.e. the neural net architectures coded by

them are able to learn) or dead (in the opposite case). Based on the ratio between alive

and dead chromosomes the probabilities of genetic operators are changing accordingly in

order to get rid of useless, non-alive chromosomes.

Another modification to the “canonical” GA implementation is introduction of the

three categories of variables: best chromosome, often selected and common with different

probabilities of selection for crossover and mutation. Performed numerical tests confirmed

the usefulness of the above variability of the input data, which accelerated the convergence

of the GA without having a negative impact on the quality of results.

All of the above triggers and control mechanisms are based on predefined rules and

therefore the prediction system once set-up and started works subsequently without human
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Figure 21: Difference in return between original neuro-genetic and shifted neuro-genetic
models.

intervention or prompting.

During the test phase, the proposed method of prediction attained between 3.4% and

9.3% of a profit compared to the loss of 3.6% or more yielded by the other tested methods

(excluding the omnipotent, prophetic model). Moreover, the proposed system was able to

keep up with the prophetic (locally optimal) model in several subperiods of testing days.

Comparable results were also attained for another 100-day period in the year 2002, when

neuro-genetic system outperformed Models 1, 2 and 4 by more than 7.5%. The system

works well in both upward and downward trend situations on the stock market.

Except for encouraging numerical results, the very important aspect of this research

was the “qualitative behavior” of the proposed system, that is its ability to choose the

efficient set of input variables and neural net’s architecture adequately defining the current

situation on the predicted stock market. Consequently the “rationality” of GA’a choices

was examined. First of all, in all steps of the test phase various similarities between

choices of input variables in subsequent steps were discovered. Since the exactness of

any financial indicator (oscillator, signal, etc.) varies in time, having some indicators

shared between subsequent steps is an expected and promising feature. Certainly, in each

step a number of new variables is also expected to appear and replace the “used” and not

adequate ones. Additionally, the experiment with using the neural architecture and the set

of input variables chosen in the previous step for prediction shifted one step forward (after

retraining on the latest available input data) output noticeably worse results compared

38



to the case of using these networks with associated input sets for the related (current)

prediction steps.

The results confirm the hypothesis about changing in time dependencies between vari-

ables. The frequency analysis of choosing variables from three different stock markets to

the current input set proved the hypothesis that stock markets are related and that the

influence of NYSE on the GSE (generally, on European stock markets) is prevailing the

one of Japanese TSE. Although this observation is well-known for any professional trader,

discovering and considering such relation by the prediction system itself is an indication

of system’s reliability and efficiency.

Numerical results and the above qualitative observations support a conclusion that the

evolutionary-based input variables selection and the choice of network’s architecture are

reasonable and the proposed hybrid, neuro-genetic prediction system works efficiently.

8 Directions for future research

The main future goal is the extension of the system allowing for generation of the wait

signal not only in the case of zero-change forecast, but also in case none of the two other

possible decisions (buy, sell) is convincing enough.

We also plan to improve the settings of parameters of the GA and the learning process

of the final neural network, which should result in overall better prediction abilities.

We also think of applying the method to prediction of a particular stock instead of an

index.

Moreover, we plan to do comparative analysis of our approach and the one presented

in [43] where, similarly to our work, GA was applied to input variable pre-selection. In

order to make this comparison fair both methods would be modified with respect to the

length of the applicability period of GA-based variable set (which is equal to one year

in [43]) as well as applied on the common data sets.

Finally, the use of dynamic correlations between variables in order to guide the selection

process implemented by the GA seems to be a potentially promising direction. We plan

to investigate this research avenue, however, the results of initial tests indicated that the

effectiveness of the neural prediction system (with no use of GA), which input choice was

based solely on correlation between variables yielded inferior results compared to using

full neuro-genetic procedure. This observation, if proven in extensive tests, would further

confirm the strength and usefulness of genetic algorithm based variable selection.
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Appendix 1. A pseudocode of the proposed system

main()

{
rawDataSet = LoadData(file);

dataSet = CreateDataSet(rawDataSet);

/* Further description of algorithm is limited to main experiment scenario only

(input variables selected by GA). Functionalities of selection by autocorrelation or

manual selection or expert voting are not described. */

PerformPredictionsForExperiment(dataSet);

/* It runs GA for variables selection, performs NN learning and testing.*/

AddPredictionsForComparison(dataSet);

/* It calculates decisions buy or sell using alternative methods. This is not presented

in details.*/

RunGame(dataSet);

/* It calculates final result of the experiment based on saved decisions. This

is not presented in details.*/

}

rawDataSet: LoadData(file)

{
rawData = LoadDataFromFile(file);

rawDataSet = CreateRawDataSet(rawData);

AddSimpleTrasformations(rawDataSet);

AddOscillators(rawDataSet);

AddOscillatorsSignals(rawDataSet);

CleanRawData(rawDataSet);

return rawDataSet;

}

dataSet: CreateDataSet(rawDataSet)

{
dataSet = ConvertRawDataSet(RawDataSet);

CleanDataSet(dataSet);
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CalculateAttributes(dataSet); /* min/max attributes */

return dataSet;

}

PerformPredictionsForExperiment(dataSet)

{
SetUpLearningParamters(context);

for (each step)

/* If experiment is without repeating learning after each step it is understood

as one-step experiment.*/

{
/* Select variables according to experiment set up.*/

if (context.selectVariablesByGA = true) SelectVariablesByGA(dataSet);

if (context.selectVariablesByAC = true) SelectVariablesByAC(dataSet);

if (context.selectVariablesManually = true) SelectVariablesManually(dataSet);

dataSetsForLearning = SetUpDataSetsForLearning(dataSet);

/* Prepare learning / test / validation sets.*/

for (each day within step)

{
if (context.expertVoting = true and context.selectVariablesByGA = true)

{
for (each chromosome in context.listOfBestChromosomes[])

{
network = CreateNetworkBasedOnSelectedVariables(chromosome);

network.LearnBP(dataSetsForLearning);

RunPrediction(network, dataSetForLearning);

/* Number of predictions is generated. Finally voting will point out buy or sell

signal.*/

}
}
else

{
network = CreateNetworkBasedOnSelectedVariables();

network.LearnBP(dataSetsForLearning);

RunPrediction(network, dataSetForLearning); /* One prediction is generated.*/

}
}
}
}

inputVariables: SelectVariablesByGA(dataSet)
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{
SetUpRunningParameters(context);

/* Context means all external variables set up in application.*/

if (initialTruncateOfVariables) SelectMainVariablesAvailableForGA();

else SelectAllVariablesAvailableForGA();

if (initialPreselectionByAutocorrelation) SelectVariablesByAC(dataSet);

/* This is not further described.*/

SetUpGeneralParametersOfGA(context, dataSet);

/* Static parameters like size of population are set.*/

probabilityOfMutation = SetUpInitialParametersOfGA(parametersSet1);

/* There are two sets of parameters for GA: initial and one dedicated for last iterations

of GA. In this implementation this set consists of mutation probability only.*/

SetUpInitialPopulation(context, dataSet);

SetUpNeuralNetworksSetsForGAPopulation(context, dataSet);

/* Each chromosome is represented by set of NNs.*/

poolOfThreads = SetUpStructuresForParallelComputations(context);

SetUpStructuresForGA(dataSet);

for (iteration <= context.iterationLimit)

{
if (iteration = = thresholdForParamtersChange)

probabilityOfMutation = SetUpInitialParametersOfGA(parametersSet2);

/* Calculating adaptation values for each chromosome if it is not calculated (initial

population or after mutation).*/

SetUpSteeringParametersForLearning(parents = true);

for (each thread)

{
poolOfThreads(thread) = new Thread ParallelLearningNN();

poolOfThreads(thread).start();

}
WaitForAllThreadsDone(poolOfThreads);

if (iteration > 1)

/* There are no children in first iteration.*/

{
SetUpSteeringParametersForLearning(children = true);

for (each thread)

{
poolOfThreads(thread) = new Thread ParallelLearningNN();

poolOfThreads(thread).start();

}
WaitForAllThreadsDone(poolOfThreads);

ChangeParentsToChildren();

/* This function checks if parent is indicated to be replaced according to results

of ranking and does it only if adaptation value of children is higher than parent.*/
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}
/* Mutation of population */

for (each chromosome in population)

{
if (chromosome is not bestChromosome or context.mutationDoesNotAffectBestChromosome

= false)

{
chromosome.Mutate(allAlive, sizeMutation, probabilityOfMutation);

/* Mutation has different probability if population is young with many ’dead’ chromosomes

than mature population. Situation when mutation of size is also considered.*/

}
}
DrawParsForRanking();

/* Randomly matches chromosomes into pairs which will compete to be parents.*/

for (each two pars : par1, par2)

{
winningPar = PointParWhichWillBeParents();

/* This is done according to adaptation values.*/

if (winningPar = par1) loosingPar = par2; else loosingPar = par1;

CreateChildren(context.typeOfCrossing, takeCodeFrom = winningPar, markForReplacement

= loosingPar);

/* It does crossing of different types: by dividing point or by product of parents.*/

}
bestChromosome = PointBestChromosome(bestChromosome);

/* Find current best chromosome and change global best one if it is better adapted.*/

}
if (context.extraImprovement = true)

/* Create new population of mutated best chromosome*/

{
SetUpInitialPopulationOfMutatedBestChromosome();

/* This population will be created by chromosomes that differs in one variable from

best one.*/

for (iteration <= bestChromosome.size)

/* Every variable of best chromosome will be changed to new one.*/

{
for (each indexOfVariable)

/* Every not used variable will be placed instead of changed variable of best chromosome.*/

{
if (indexOfVariable in bestChromosome) next;

/* In case of duplication of variables within single chromosome omit this variable.*/

mutatedBestChromosome=bestChromosome;

mutatedBestChromosome.variable[iteration] = indexOfVariable;

AddChromosomeToPopulationOfMutatedBestChromosome(mutatedBestChromosome);
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}
}
/* Calculate adaptation of population of mutated best chromosome.*/

SetUpSteeringParametersForLearning(extraImprovement = true);

for (each thread)

{
poolOfThreads(thread) = new Thread ParallelLearningNN();

poolOfThreads(thread).start();

}
WaitForAllThreadsDone(poolOfThreads);

bestChromosome = PointBestChromosome(bestChromosome);

/* Check if there is new global best chromosome in population of mutated best chromosome.*/

}
context.listOfBestChromosomes[] = FindBestChromosomesInFinalPopulation(context.numberOfExperts);

/* There is scenario in which decision is based not on one network answer but set

of best networks.*/

SelectVariables(bestChromosome);

return inputVariables;

}

chromosome: Mutate(allAlive, sizeMutation, probabilityOfMutation)

{
if (allAlive = true)

chromosome.DoMutationOfVariables(probabilityOfMutationIfAllAlive(probabilityOfMutation));

else

chromosome.DoMutationOfVariables(probabilityOfMutationIfNotAllAlive(probabilityOfMutation));

/* Probability of mutation is different in early iterations when many chromosomes

are not alive which means that coded set of variables is not sufficient for successful

learning.*/

if (sizeMutation = true) chromosome.DoMutationOfSize();

chromosome.RemoveDuplicatedVaraibles();

return chromosome;

}

ParallelLearningNN()

{
Monitor.Enter();

if (CheckExitCondition() = true) return;

SetUpLocalThreadParamters(context);

Monitor.Exit();

for (each chromosome)
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{
dataSetsForLearning = SetUpDataSetsForLearning();

/* Prepare learning / test sets specific for chromosome.*/

for (each network assigned to chromosome)

/* Adaptation is calculated according to results from number of networks.*/

{
network.LearnBP(dataSetsForLearning); /* BP learning algorithm.*/

mse[network] = network.Test(dataSetsForLearning);

/* Simple test of NN response.*/

}
if (context.fitnessByAverage = true) chromosome.SetUpAdaptationByAverage(mse[network]);

if (context.fitnessByMinimum = true) chromosome.SetUpAdaptationByMinimum(mse[network]);

}
}
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