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Abstract

In this work several approaches to prediction of natural gas consumption with neural

and fuzzy neural systems are analyzed and tested. The data covers daily natural

gas load in two different regions of Poland. Prediction strategies tested in the paper

include: single neural net module approach, combination of three neural modules,

temperature context based method, and application of fuzzy neural networks. The

results indicate the superiority of temperature context based method and the modular

approach over single neural net and fuzzy neural approaches. One of the interesting

issues observed in the paper is relatively good performance of tested methods in the

case of long-term (four week) prediction compared to mid-term (one week) prediction.

Generally, the results are superior to those obtained by linear and quadratic regression

models and by statistical methods currently used for this task in the gas company

under consideration.

Keywords - Feedforward networks, fuzzy neural networks, context networks, time

series prediction, gas consumption prediction

1. INTRODUCTION

The paper discusses several neural and fuzzy neural approaches to the problem

of prediction of natural gas consumption in two regions of Poland. The first one is

mostly rural with several villages and small cities and therefore the consumers are

mostly individual or they belong to small industry (bakeries, restaurants, laundries,

etc.). The other one covers highly industrialized and densely inhabited urban area.



Predicting consumption of natural gas is an interesting, non-trivial and highly

economically-motivated task (Browna et al., 1996; Khotanzad et al., 2000). The

conventional approach to solving it is based on applying statistical methods which

are usually efficient enough only if the large amount of historical data is available.

An alternative approach is to exploit soft-computing methods - and especially neural

and fuzzy neural network models.

Neural networks are well known to be universal non-linear approximators (Kol-

mogorov, 1957; Kurkova, 2000) and therefore are in general capable of close ap-

proximation of the prediction model without the need of its explicit (mathematical)

formulation in contrast to statistical approaches. The other advantage of using neural

networks over statistical methods in the application domain considered in this paper

is the problem of gas market volatility in Poland in recent years. On one hand several

new consumers are attracted by relatively low cost of this type of energy, but on the

other hand some gas consumers, especially in the rural regions, switch to alterna-

tive energy sources, like wood or coal. This type of structural instability of natural

gas consumers is very harmful for statistical approaches, which do not implement

adaptation mechanisms.

Three types of prediction are considered in this work: one day prediction (denoted

by D-type), one week prediction (denoted by W-type) and four week prediction (de-

noted by 4W-type). From the gas company point of view, the long term prediction

is the most valuable. Nevertheless, the short-term and the mid-term ones also play

significant role, for example in gas distribution planning.

The main research goal of this paper is to compare the efficacy of proposed neural

and fuzzy neural methods, with special attention put on checking their effectiveness

in the rural versus industrialized areas.

The paper is organized as follows: in the next section network architectures and

training methods used in this work are introduced. Data files and preprocessing

methods are described in section 3. Experimental results are presented in section 4.

Conclusions and directions for future development of this work are placed in the last

section.

2. NETWORK ARCHITECTURES AND TRAINING METHODS

In this section, two neural models for gas load prediction are presented: the

feedforward network and the fuzzy one.

Available data set contains the daily cumulative loads of natural gas provided by

the telemetric system as well as the average daily temperatures. We denote by G(t)

the actual gas consumption and by T (t) the average temperature on day t. It should

be noted that throughout the paper all references to temperature values concern the



observable average temperatures in a given period in the past. Due to seasonality of

the data the time factor defining the period of interest is also of major importance.

All the above values are taken as inputs for the neural networks. More details on

time coding and data preprocessing are presented in section 3.

2.1. Feedforward network

2.1.1. Network architecture

The first network architecture tested in this work is the common feedforward one

with sigmoidal neurons (see Fig. 1).
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Figure 1: Feedforward network architecture used in prediction.

Neurons in the input layer can be divided into three groups. The first k neurons

in the input layer represent daily gas loads. The second group of k neurons refers

to average daily temperatures from k previous days. The last input group τ1, . . . , τm

denotes the time factor defining the period under consideration.

The first hidden layer also consists of three groups of neurons. Neurons belonging

to the first group are fully connected to those in the first group of the input layer (i.e.

gas units). Similarly, neurons in the second group are fully connected to those in the

second input group (temperature inputs). The third group neurons are connected to

the rest of the inputs. All the first hidden layer neurons are fully connected to the

neurons in the second hidden layer, which are in turn connected to a single output

neuron. The real value produced by the output neuron, denoted by Ĝ(t + 1) for

prediction made on day t, represents the next day load in case of one day prediction

or the average daily load in a given time period in the case of one week or four week

prediction.

The goal of a partition of the first hidden layer neurons is to aggregate the input

data of each type (i.e. gas, temperature and time inputs) independently from the



rest of the input data. This information is then aggregated in the second hidden

layer, where no restrictions are imposed on connections to the previous layer. No

explicit temperature prediction was made since this kind of prediction was virtually

embedded in the gas load prediction network, due to its specific architecture.

2.1.2. Network training

Let us denote by N a particular feedforward neural network. Each instance Nw of

network N refers to a particular weight configuration w, w ∈ R
N, where N is the num-

ber of network parameters. Providing a training sample set T =
{

(xi, di) : i = 1, Q
}

,

where xi, di are input and output vectors, resp., Q is the number of training samples,

the network training problem can be considered as an optimization problem:

Find w∗, which minimizes some cost function E (w,T) . (1)

The cost function E (w,T) in general can be defined in various ways, depending on

particular application. In the gas load prediction problem considered in the paper,

the following cost function is assumed:

E (w,T) = E (w) =
1

2

∑

(xi,di)∈T

||Nw (xi) − di||
2 (2)

where ||.|| is the Euclidian norm in R
N. The optimization problem (1) can be solved

by various techniques, including genetic algorithms, simulated annealing and many

others. The most popular one is perhaps the gradient-based technique, which makes

use of the Taylor expansion of the cost function. The minimization process can be

considered as recursively constructing a series of weight vectors {wk}:

wk+1 = wk + αkpk (3)

where k ≥ 0, 0 6= pk ∈ R
N, αk ∈ R, so that {E (wk)} converges to a satisfactory

local minimum hopefully being the global one. Vector pk represents the local search

direction and αk ∈ R
N represents the learning rate at step k. The technique of

choosing pk and αk is essential for each gradient-based algorithm. In this paper, the

Scaled Conjugate Gradient Algorithm (Moller, 1993) is applied to train the prediction

networks (see Appendix 1).

2.2. Fuzzy neural networks (FNNs)

Several FNN models have been developed and successfully used in various appli-

cations (Buckley & Hayashi, 1994; Gupta & Rao, 1994; Vuorimaa, 1994; Karayiannis,

1996). The advantages of fuzzy over conventional neural networks are their high gen-

eralization abilities and the capability of dealing with imprecise data. Some fuzzy



neural networks can process fuzzy inputs directly. In some cases, fuzzy rules can be

extracted from trained fuzzy neural networks (Pal & Pal, 1999; Shann & Fu, 1995).

In the gas load prediction problem, the temperature input plays significant role. The

use of fuzzy neural network for this task is, among other things, motivated by the fact

that the available average daily temperature is only an approximation of the exact

temperature which varies throughout the day. In this section, first a fuzzy neural net-

work model is described together with its training algorithm. The rest of the section

discusses the use of this model in our prediction task.

2.2.1. The FNN model

The fuzzy neural network implemented in this work can be represented by a

one hidden layer feedforward architecture with N input units, K hidden units and M

output ones (Figure 2).
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Figure 2: The architecture of fuzzy-neural network used in simulations.

Each input neuron represents a crisp input value. Each connection between

input and hidden units has a weight equal to 1. Each unit in the hidden layer

represents a fuzzy set over the input space R
N. The output value of the i-th hidden

neuron for a given input vector X = [x1, x2, . . . , xN]T can be interpreted as the degree

of membership of X to the fuzzy set represented by this neuron. Neurons in the

hidden layer are fully connected with neurons in the output layer. Information of the

membership degree of vector X to each fuzzy set is aggregated in the output layer.

Assuming the Gaussian form of the membership function in the fuzzy sets repre-

sented by hidden neurons, the output of the i-th hidden neuron given X as input is

equal to:

µi = exp

{

−

(

‖ X − Ci ‖

σi

)2
}

, (4)



where ‖ . ‖ is the Euclidian norm, σi ∈ R, Ci = [ci1, ci2, . . . , ciN ]T ∈ R
N are

parameters associated with a given neuron.

Denoting by W = [wkm]K×M the weight matrix of connections between the hidden

layer and the output layer, the input value for the j-th output neuron is equal to:

uj =
K

∑

k=1

wkjµk. (5)

If we denote

s =
K

∑

k=1

µk, (6)

then the output value of that neuron is defined as:

yj =
uj

s
=

∑K
k=1 wkjµk
∑K

k=1 µk

. (7)

The FNN model described here can be interpreted in terms of an equivalent

fuzzy system. For the i-th neuron in the input layer (the fuzzification neuron), a

fuzzy IF-THEN rule Ri can be extracted:

Ri : IF X is µi THEN y1 = wi1 AND . . . AND yM = wiM.

It is clear that fuzzy properties µi as well as the (crisp) outputs wij of the fuzzy rules

are determined in the training process. Certainly the notion of µi indicates only a

fuzzy set over the input space, not any linguistic value. The fuzzy rule set is then

defined as:

S =
{

Ri : i = 1, K
}

,

and the inference engine for such fuzzy system is specified by (7).

2.2.2. FNN training

The fuzzy neural network described above can be trained in supervised mode.

For a single training sample (X,d), X = [x1, x2, . . . , xN]T , d = [d1, d2, . . . , dM]T , the

error function defined as:

E =
1

2

M
∑

j=1

(dj − yj)
2 (8)

is to be minimized w.r.t. σi, Ci

(

i = 1, K
)

and W. This minimization task can be

solved by any gradient based optimization algorithm. The partial derivatives of E

can be computed in the following way:

∂E

∂wij

= − (dj − yj)
∂yj

∂wij

,



∂E

∂cil

= −
M

∑

j=1

(dj − yj)
∂yj

∂cil

,

∂E

∂σi

= −
M

∑

j=1

(dj − yj)
∂yj

∂σi

for i = 1, K, j = 1, M and l = 1, N. Using (7) one can write:

∂yj

∂wij

=
µi

∑K
k=1 µk

=
µi

s
,

∂yj

∂cil

=
∂yj

∂µi

∂µi

∂cil

=
wijs − uj

s2

∂µi

∂cil

,

∂yj

∂σi

=
∂yj

∂µi

∂µi

∂σi

=
wijs − uj

s2

∂µi

∂σi

.

From (4) we have:

∂µi

∂cil

= 2
µi

σ2
i

(xl − cil) ,

∂µi

∂σi

= 2
µi

σ3
i

N
∑

n=1

(xn − cin)2
.

Finally:

∂E

∂wij

= δ
(1)
j µi, (9)

∂E

∂cil

= δ
(2)
i (xl − cil) , (10)

∂E

∂σi

= δ
(2)
i

1

σi

N
∑

n=1

(xn − cin)2
, (11)

where

δ
(1)
j = −

dj − yj

s
,

δ
(2)
i = 2

µi

σ2
i

M
∑

j=1

(

δ
(1)
j

(

wij −
uj

s

))

are the error signals in output and hidden neurons, resp. which can be computed

effectively in a back-propagation manner. Having the partial gradients determined

as in (9)-(11), the network’s parameters (i.e. wij, cil and δi) can be then adapted,

e.g. using the standard steepest descent algorithm. In this work the scaled conjugate

gradient algorithm (see Appendix 1) was applied.

One important issue worth mentioning here is the method of initializing FNN’s

parameters before training. Since each hidden neuron in such network represents a



fuzzy set of Gaussian membership function, the parameter vectors Ci, i = 1, K, i.e.

the medians of these fuzzy sets, should be initialized close to the centers of some

clusters that cover the input space. Then the training process moves these fuzzy sets

to an optimal configuration. In order to initialize parameters Ci before training, a

self-organizing map was first built from the training data set. In this paper, the maps

were built using the neural gas technique presented in (Martinetz et al., 1993).

3. DATA COLLECTING AND PREPROCESSING

3.1. Data collecting

The main problem in this particular prediction task is the lack of historical data.

The two available data sets - one refers to a rural region (denoted by RR) and the

other refers to a highly industrialized area (denoted by IR) - provided by the gas

company range only from Jan. 01, 2000 to Dec. 31, 2002. Since for these two data

sets the same preprocessing techniques were applied and the same types of tests were

performed, for the sake of simplicity, henceforth, in our description we shall refer to

these two sets as to one set (being either RR or IR set).

The data set was initially divided into two sets: the first one covering years

2000 − 2001 to compose the training set and the second one with 2002 year data

to form the test set. Furthermore 10% of the training data was randomly chosen

for validation. Each data record represents the daily cumulative load of natural gas

provided by the telemetric system as well as the average daily temperature. The

daily load distributions registered during the years 2000 and 2001 in RR and IR are

presented in Figure 3.
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Figure 3: Daily gas load data from Jan. 01, 2000 to Dec. 31, 2001 used as the training

and validating set for the RR (left) and the IR (right) areas, resp.

Due to a relatively small amount of past data, the sliding window mechanism

was used in order to artificially enlarge the data sets. Namely, for W and 4W-

type predictions the target periods are overlapping and subsequent target periods are



defined as [t + 1, t + n] - for prediction made on day t, [t + 2, t + n + 1] - for prediction

made on day t + 1, [t + 3, t + n + 2] - for prediction made on day t + 2, etc., where

n = 7 or n = 28 for W-type and 4W-type predictions, resp.

3.2. Data scaling

The available data (i.e. the daily gas load and the average daily temperature)

must be scaled to some appropriate range before being passed to the network. In

the case of temperature inputs, the maximum and the minimum daily temperatures,

denoted by tmax and tmin respectively, were determined from the training set. After-

wards the temperature range [tmin, tmax] was uniformly extended by 20% from each

side into the range [Tmin, Tmax], namely:

Tmin = tmin − [tmax − tmin] · 20%

Tmax = tmax + [tmax − tmin] · 20%,

in order to prevent some extreme values of the temperature which were not present

in the training set. Next, each temperature input t was replaced by a new value

t′ ∈ [−1, +1]:

t′ =











2t − Tmax − Tmin

Tmax − Tmin

if t ∈ [Tmin, Tmax]

−1 if t < Tmin

+1 if t > Tmax

(12)

The input daily loads were scaled into [0, 1] by dividing each value G(t) by Gmax,

where Gmax is the extended - as in the case of temperature - maximum daily load

over the training data set. The output (target) values in the training set, which are

the average daily loads for a given one-day, one-week or four-week period - depending

on the type of prediction - were scaled similarly, i.e. were divided by Gmax.

3.3. Defining the time factor

By analyzing the training data set, it can be observed (Figure 3) that the gas

consumption is highly seasonal: the highest loads occur in winter periods and the

lowest ones in summer time. Figure 4 shows a strong dependency of daily gas con-

sumption on the average daily temperature. Since the data is highly seasonal, it is

important to properly code the time factor for each prediction period. This statement

was confirmed by some additional experimental tests where no time factor was taken

into consideration. The results obtained in such a case turned out to be much worse

than those obtained when the time factor was concerned.

Denote by t the day of the year number of the first day of some n-day period

(n ≥ 1, 0 ≤ t ≤ 365). The consecutive days in that period are numbered by t + 1,
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Figure 4: The dependency of daily gas load on the average daily temperature for the

RR (left) and the IR (right) areas, resp. The data covers the period from Jan. 01,

2000 to Dec. 31, 2001.

t + 2, . . ., t + n − 1. For such a period, the two following time inputs are applied:

τ1 = sin
2π Dc

366
and τ2 = cos

2π Dc

366
, (13)

where Dc is a real value indicating the center day of the period under consideration,

i.e.:

Dc = t +
n − 1

2
(14)

It can be observed that the use of (13) allows smooth coding of the season of the

year, which is especially important in the case of mid-term and long-term prediction.

In the case of D-type prediction there is an additional time coding input τ3, which

indicates the type of the next day, where τ3 = −1 for working days and τ3 = +1

for non-working days1. This input can be interpreted as to define the working and

non-working day context of one day prediction networks.

4. EXPERIMENTAL RESULTS

For each prediction horizon the following experiments were performed: naive pre-

diction, prediction using linear and quadratic regression models, single neural network

prediction module, prediction using a combination of three neural modules, prediction

using three neural modules - each of which was devoted to a predefined temperature

range, single neural network prediction performed for the working days only (con-

cerns D-type prediction only) and prediction based on a single fuzzy neural network

1Actually, for the sake of simplicity, only weekend days are treated as non-working days. All

holidays that occurred in weekdays are treated as working days.



module.

4.1. Experiment description

4.1.1. Naive prediction

In the first experiment, no neural network is involved. The predicted average

daily load in a n-day period [t + 1, t + n] is simply assumed to be the average daily

load in the preceding period, i.e. [t− n + 1, t], where n = 1, 7, 28, resp. for one day,

one week and four week predictions.

4.1.2. Prediction using a single feedforward network

In this experiment, a single feedforward network described in section 2.1 was

involved in the prediction module. The only difference between the networks for one

day, one week and four week predictions are the numbers of input and hidden neurons.

Various network configurations were tested for each type of prediction. The following

configurations were finally chosen:

• For one day prediction, the gas load and temperature from the last three days

were taken as inputs (i.e. k = 3). In the first hidden layer, there were three

neurons in the first and three in the second groups of neurons. The number of

neurons in the third group was equal to two (see section 2.1.1 for details). And

finally the number of neurons in the second hidden layer was set to four.

• For one week prediction, the data from the last five days were used as the

inputs for the prediction networks. The number of neurons in each of the first

two groups in the first hidden layer was equal to four. There were also two

neurons in the last group of the first hidden layer. The second hidden layer was

composed of four neurons.

• In the case of four week prediction, the input data was taken from the last seven

days. The number of neurons in each hidden layer was the same as in the case

of one week prediction.

For each prediction horizon, 50 neural networks were trained using the training

sets. Next, each single network was used as the predictor. Note that the network sets

are separate for the two regions under consideration.

4.1.3. Working days prediction

In the case of highly industrialized area, it could be assumed that there may be

some difference between the gas consumption in the week days and the weekend days.



This experiment was performed for one day prediction only. The data corresponding

to the weekend days was removed from the training and test sets. The networks used

here were analogous to these described in section 4.1.2.

4.1.4. Combination of feedforward neural networks

It is interesting to combine the networks described in sect. 4.1.2 into one pre-

diction module. Since the networks were trained independently with different initial

weights, their responses may be different for the same input vector. Each network

may be treated as an independent agent and combination of several agents may reduce

prediction error.

In this experiment, for each prediction horizon, all combinations of three different

networks among the above 50 ones were tested. The output value was set to be the

average value of the outputs from each component network. Namely, for the three

networks N1, N2 and N3, the output given by the combined predictor C for a particular

input vector X was:

C (X) :=
1

3

3
∑

i=1

Ni (X) (15)

4.1.5. Temperature context networks

It has been stressed in the paper that temperature plays a major role in the task of

gas load prediction. So far the networks described in section 4.1.2 were trained based

on the whole training set covering the whole year. The main idea of the temperature

context approach is to train and evaluate each network within some particular range

of temperatures. This kind of partition may facilitate the learning task for prediction

networks (Bortolan & Pedrycz, 2002).

In this experiment the training set T was divided into three equipotent, over-

lapping subsets. For each training sample p, the average daily temperature tp of the

days covered by this sample was calculated. Let t1, t2 and t3 be some temperature

values where:

t1 < t2 < t3.

Let:

L =
{

p ∈ T : tp < t2
}

M =
{

p ∈ T : t1 ≤ tp < t3
}

H =
{

p ∈ T : tp ≥ t2
}

.

The values t1, t2 and t3 were chosen so that:

card (L) = card (M) = card (H) .



In other words, the training set was divided according to the temperature context.

The subsets L, M and H can be regarded as containing sample data corresponding to

“low”, “medium” and “high” temperatures. Certainly, such notions are subjective,

hence the use of quotation marks.

For each of these subsets, a set of 20 neural networks was independently trained.

The context-based partition of the training data could facilitate the prediction task

within each temperature range. In the test phase, all possible combinations of the

three modules (one of each type) were tested (8000 combinations in total). Please

note that due to some overlapping areas in the training sets, the effect of gluing the

modules was achieved in a straightforward way (c.f. Sharkey, 1997; Waibel, 1989).

For a given test sample, the corresponding average input temperature was calculated

and then depending on this value, one or (usually) two appropriate networks were

activated. The ultimate prediction was the average value of the outputs of the modules

involved in prediction.

4.1.6. Prediction with a single fuzzy neural network

Analogously to the case of feedforward networks, the fuzzy neural networks used

here received the daily gas load and the average daily temperature from the last few

days as the input: three days for short-term, five days for mid-term and seven days

for long term prediction.

In all FNNs used here, the number of hidden units was arbitrarily set to four2.

Each network contained one output neuron that produced the predicted average daily

gas load (c.f. section 2.1). For each prediction horizon, an ensemble of 50 FNNs was

trained and tested analogously as in the experiment with single neural modules.

4.1.7. Linear and quadratic regression models

In order to compare the efficiency of all neural network based approaches de-

scribed above with some statistical methods of gas consumption prediction, linear

and quadratic regression models were built for each type of prediction using statisti-

cal toolbox in MATLAB. The input data for those regression models were the same

as for neural networks. The regression models’ parameters were computed based on

the same data set which was used for training prediction networks.

4.2. Results

The test data set, in the case of one week and four week predictions was artificially

enlarged by using the sliding window mechanism in the same manner as for the

2This parameter was selected experimentally based on preliminary tests.



training set. In order to examine the capabilities of each prediction model, several

experiments with various neural configurations were performed. In all tests the same

error measure - the Mean Absolute Percentage Error (MAPE) defined as:

MAPE =
1

Q

Q
∑

i=1

∣

∣

∣

∣

yi − di

di

∣

∣

∣

∣

× 100%, (16)

commonly used in prediction tasks (Khptanzad et al., 2000; Zhang et al., 1998), was

applied. Here yi is the predicted value, di the expected output and Q the number of

samples in the test set.

For each experiment defined is section 4.1 the average, min, max (in percent) and

standard deviation of MAPE over all tested networks (or all their combinations, where

applicable) were calculated. The results for both RR and IR regions are presented

in Tables 1-3.
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Figure 5: Test results for D-type prediction in the period Jan. 01, 2002- Dec. 31,

2002 in the RR (left) and the IR (right) areas, resp.
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Figure 6: Test results for W-type prediction in the period Jan. 01, 2002- Dec. 31,

2002 in the RR (left) and the IR (right) areas, resp.

Examples of D-type, W-type and 4W-type predictions obtained using a combi-

nation of three networks, each of which was trained for some temperature range are

presented in Figures 5-7, resp. The solid lines indicate the exact values taken from

the test set, the dotted ones the predicted values produced by neural modules.
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Figure 7: Test results for 4W-type prediction in the period Jan. 01, 2002 - Dec. 31,

2002 in the RR (left) and the IR (right) areas, resp.

The following general conclusions can be drawn from Tables 1-3:

• Comparing the average MAPE values the best performance is observed for the

combination of three temperature context based modules (in case of D-type

and W-type predictions) and the combination of three non-temperature-based

networks (in case of 4W-type predictions). These two outperform the single

neural and the single fuzzy neural approaches.

• The efficiencies of single fuzzy neural network and single neural network modules

are comparable. It is important to note, however, that for each type of predic-

tion, the size of a fuzzy neural network module was much smaller compared to

the corresponding crisp neural module.

• In the case of D-type prediction an interesting issue is to compare the working

days prediction WorkD versus all days prediction SingleN. As can be observed

in Table 1, such a comparison is inconclusive. In case of the RR region WorkD

results slightly outperform the SingleN ones, however in case of IR area the

situation is the opposite.

• In all experiments, the naive approach as well as linear and quadratic regression

models appeared to be visibly worse than neural-based methods. This obser-

vation confirms that prediction of natural gas consumption is a difficult, most

probably highly nonlinear task.

• The quality of results in all tested methods degrades along with the length of

prediction horizon. An interesting phenomenon is that the degradation between

W-type and 4W-type predictions is relatively much less significant than between

D-type and W-type ones. This suggests that at some point prediction error for

longer periods may stabilize at a certain level.



D-type RR IR

AV G MIN MAX SD AV G MIN MAX SD

Naive 4.56 −− −− −− 6.13 −− −− −−

LinRg 4.75 −− −− −− 6.04 −− −− −−

QuadrRg 4.38 −− −− −− 5.69 −− −− −−

SingleN 4.33 3.94 4.80 0.0018 5.44 4.93 6.20 0.0027

3AvgN 4.16 3.90 4.55 0.0009 5.28 4.93 5.82 0.0014

3TempN 4.04 3.97 4.60 0.0013 5.15 4.82 5.50 0.0012

WorkD 4.29 4.02 4.66 0.0018 5.68 5.13 6.67 0.0028

FuzzyN 4.24 3.97 4.60 0.0013 5.63 5.32 6.28 0.0016

Table 1: The average, the minimum and the maximum MAPE (in percent) and its

standard deviation for D-type predictions.

W-type RR IR

AV G MIN MAX SD AV G MIN MAX SD

Naive 10.64 −− −− −− 12.74 −− −− −−

LinRg 8.43 −− −− −− 11.49 −− −− −−

QuadrRg 8.34 −− −− −− 11.52 −− −− −−

SingleN 7.60 6.63 8.80 0.0049 10.32 9.16 11.60 0.0057

3AvgN 7.17 6.30 8.34 0.0028 9.69 8.50 10.91 0.0034

3TempN 7.04 6.34 7.78 0.0023 9.38 8.36 10.77 0.0033

FuzzyN 7.62 7.07 8.87 0.0037 10.44 9.57 12.27 0.0059

Table 2: The average, the minimum and the maximum MAPE (in percent) and its

standard deviation for W-type predictions.

5. CONCLUSIONS

The quality of results achieved by neural networks and fuzzy neural networks is

encouraging and acceptable from the natural gas company’s viewpoint. Statistical

methods used so far by the company yielded the average MAPE error for monthly

predictions in the RR and IR regions in the period 01.2000−12.2001 equal to 12.86%

and 13.93%, resp. At the moment a β-version of the program written based on the

methods described in the paper is tested in the company. The future goal is to develop

an application capable to practically support the process of natural gas purchasing.

In the numerical evaluation of the results it should be taken into account that

winter of the year 2002 was unusually cold (c.f. Fig. 7) and therefore making predic-

tions for the period Nov.-Dec. was much more difficult in the year 2002 than in the

two previous years.



4W-type RR IR

AV G MIN MAX SD AV G MIN MAX SD

Naive 21.64 −− −− −− 32.90 −− −− −−

LinRg 11.19 −− −− −− 17.14 −− −− −−

QuadrRg 11.80 −− −− −− 14.87 −− −− −−

SingleN 8.30 6.69 9.94 0.0071 10.95 9.87 12.61 0.0062

3AvgN 7.73 5.88 9.06 0.0048 10.37 9.37 11.62 0.0035

3TempN 7.86 6.08 9.89 0.0054 10.43 9.30 11.57 0.0034

FuzzyN 8.16 7.29 9.10 0.0037 11.37 9.80 14.35 0.0092

Table 3: The average, the minimum and the maximum MAPE (in percent) and its

standard deviation for 4W-type predictions.

Another comparison can be fairly made with the naive prediction approach, which

was outperformed by neural methods, especially in the case of long-term prediction.

The comparison of our results with the literature is ambiguous since the data

sets used in other works are different from ours and also the consumer profiles may

be different. One example is the work of Khotanzad et al. (2000) where the MAPE

error of 3.78% for D-type prediction involving temperature data is reported.

There are several directions in which this work can be continued. In the future

we plan to test the efficacy of partially recurrent and RBF networks as well as other

models of fuzzy neural networks for this task. Another issue is to test the quality of

prediction models in case of other temperature clusterization methods.
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APPENDIX 1. THE SCALED CONJUGATE GRADIENT

ALGORITHM

Let us now assume that E (w) is a quadratic function with a positive hessian H.

The idea of the conjugate gradient approach is to choose the search directions pk and

the learning rate αk so that at step k, the gradient g (wk), denoted hereby as gk, of

the cost function is orthogonal to each previous search direction, i.e.:

∀ i : 0 ≤ i ≤ k, pT
i gk+1 = 0. (17)

Let us assume that (17) is fulfilled. Note that:

gk+1 = gk + H (wk+1 − wk) = gk + αk H pk = gk + αk H pk, (18)

hence (17) can be rewritten as follows:

∀ i : 0 ≤ i ≤ k, pT
i (gk + αk H pk) = 0 (19)

For i = k we have:

pT
k (gk + αk H pk) = 0

⇔ αk =
−pT

k gk

pT
k H pk

(note that pT
k H pk > 0), (20)

for i < k:

pT
i (gk + αk H pk) = pT

i

(

gk + αk pT
i H pk

)

= αk pT
i H pk. (21)

Thus:

αk =
−pT

k gk

pT
k H pk

and pT
i H pk = 0 ∀ i < k (22)

We have shown that (22) is the necessary condition for (17). We will now show by

induction that it is sufficient as well. For k = 0, by choosing any p0 6= 0 and then

by applying (20) we can achieve pT
0 g1 = 0. Let (17) be true for all k < k∗ for some

k∗ ≥ 1, i.e.:

∀ i : 0 ≤ i < k∗, pT
i gk∗ = 0 (23)



Let now k = k∗. Again by applying (20) we have:

pT
k∗ gk∗+1 = pT

k∗ (gk∗ + αk∗ H pk∗) = 0 (24)

Furthermore, for i < k = k∗, according to (22) we have pT
i H pk∗ = 0, then taking

under consideration (23) we can write:

pT
i gk∗+1 = pT

i (gk∗ + αk∗ H pk∗)

= pT
i gk∗ + αk∗ pT

i H pk∗ = 0,

which ends our proof.

We have shown that the gradient gk+1 of the quadratic function E (w) at step

k + 1 will be orthogonal to all search directions pi, i ≤ k if and only if the search

directions are chosen to be H orthogonal and the learning rate is chosen as specified

in (22). Moreover, as shown in (Fine, 1999), in the case of quadratic error function,

this algorithm leads to the global minimum in no more than N steps, where N is

parameters’ space dimension.

We will now discuss how to iteratively choose the H-orthogonal search directions.

The first vector p0 6= 0 can be chosen arbitrarily. For k > 0 we choose:

pk := −gk + βk−1 pk−1, (25)

where:

βk =
pT

k H gk+1

pT
k H pk

(26)

It has been proven in (Fine, 1999) that the search direction vectors chosen in such

way fulfill the conditions given in (17). The hessian H can be eliminated from (26)

as follows (the Polak-Ribiere formula):

βk =
pT

k H gk+1

pT
k H pk

=
gT

k+1 H pk

pT
k H pk

=
gT

k+1 αk H pk

pT
k αk H pk

=
gT

k+1 (gk+1 − gk)

pT
k (gk+1 − gk)

, (27)

which leads to:

pk = −gk +
gT

k (gk − gk−1)

pT
k−1 (gk − gk−1)

pk−1 (28)

Up to now we have been assuming that the cost function E (w) is quadratic with a

(constant) positive hessian H. In fact, the cost function E (w,T) defined by eq. (2)

can only be approximated by some quadratic function E (w) (e.g. by using the Taylor

series expansion), and its hessian need not always be positive. Hence the computation

of the learning rate:

αk =
−pT

k gk

pT
k H (wk) pk

, (29)



which involves H (w), may be problematic. In the scaled conjugate gradient approach,

it can be avoided providing:

H (wk) pk ≈ sk :=
g (wk + σkpk) − g (wk)

σk

+ λkpk, (30)

where λkpk is a regularization factor and 0 < σk � 1. The value of λk must be

chosen so that δk := pT
k sk > 0. Let us assume that at step k, for a given value λk,

δk is negative. In this case, we must find another value of λk so that δk > 0. Let us

assume that such a value exists and denote it by λ∗
k. Let us denote the corresponding

value for sk by s∗k. Observe that:

s∗k = sk + (λ∗
k − λk) pk, (31)

then we have:

0 < δ∗k = pT
k s∗k = pT

k sk + (λ∗
k − λk) ||pk||

2

⇒ λ∗
k > λk +

−δk

||pk||2
. (32)

Though we should increase λk by some factor which is greater than −δk

||pk||2
to obtain a

positive value of δk. In (Moller, 1993) λ∗
k is chosen as follows:

λ∗
k = 2

(

λk −
δk

||pk||2

)

, (33)

which leads to

δ∗k = δk + (λ∗
k − λk) ||pk||

2 = −δk + λk||pk||
2, (34)

and finally:

α∗
k =

−pT
k gk

−pT
k sk + λk||pk||2

. (35)

As it can be observed in (35), the coefficient λk has some influence on the learning

rate, and consequently on the minimization process itself. In practice, values for λk

are chosen adaptively depending on the training progress.


