
IMPROVEMENT OF HOPFIELD
ASSOCIATIVE MEMORY BY

CONTOUR ENHANCEMENT IN
LIBRARY PATTERNS

Jacek Mańdziuk
Institute of Mathematics, Warsaw University of Technology,

Plac Politechniki 1, 00-661 Warsaw, POLAND

(INVITED PAPER)

ABSTRACT: In this paper a modification of binary Hopfield Associative
Memory based on contour enhancement in library patterns is presented. The
intuition behind the proposed improvement is the following: in the classical Hop-
field’s approach all bits in stored patterns are treated evenly under the Hebb
storage rule, regardless of their ”relative importance”. On the other hand it is
intuitively clear that the ”importance” of a particular bit in a binary pattern
correlates with a number of its neighbours with opposite sign. Therefore, it is
proposed that in the storage process one should focus on bits lying on a contour
of a pattern rather than on spots composed of ON bits or OFF bits only. In or-
der to enhance the contour, patterns are transformed from a two-state (binary)
representation to a four-(or more)-state one.

Results of computer simulations performed on various sets of randomly gen-
erated patterns support the idea of contour enhancement in case of sparse
(dense) library patterns. High quality results are already obtained when a four-
state representation is used, with further improvement observed along with the
increase of the number of states.

Keywords - Associative Memory, Hopfield Model, Pattern Recognition, Con-
tour Enhancement

1. INTRODUCTION

In the early eighties a neural network model based on the idea similar to the
spin glass model in quantum mechanics was introduced (Hopfield, 1982; Hop-
field 1984). One of the major application areas of this model are Associative
Memories.

The capacity of Hopfield Associative Memory (HAM) under the Hebb stor-
age rule - measured as the number of uniformly generated patterns which can
be correctly recognized by HAM - is asymptotically equal to 0.15N , where N
is the length of patterns (Hopfield, 1982). In several applications this level of
performance is not satisfactory. Moreover, in case of sparse, dense or correlated

1



patterns the storage capacity of HAM degrades rapidly (Jagota & Mańdziuk,
1998).

This paper presents a modification of binary HAM based on contour en-
hancement in library (stored) patterns. The intuition behind the proposed
improvement is the following: in the classical Hopfield’s approach all bits in
stored patterns are treated evenly under the Hebb storage rule, regardless of
their ”relative importance”. On the other hand it is intuitively clear that the
”importance” of a particular bit in a binary pattern correlates with the number
of its neighbours with opposite sign. Hence, it is proposed in the paper that
in the storage process one should focus on bits lying on a contour of a pattern
rather than on spots composed of all ON or all OFF bits. In order to enhance
the contour, patterns are transformed from a two-state (binary) representation
to a four-(or more)-state one.

In order to verify the idea of contour enhancement computer simulations were
performed for several sets of patterns. In each data set, each library pattern
of length N was divided into �N

B
� blocks of size B composed of subsequent

pixels. All bits in a block were equal to one another and were equal to 1 with
probability p, and to −1 with probability 1−p. Hence, the degree of correlation
between patterns in the simulations was governed by parameter B - the block
size, whereas sparseness was defined by parameter p - the probability of all bits
in a particular block to be ON.

Results of computer simulations performed for various sets of randomly
generated patterns support the idea of contour enhancement in case of sparse
(dense) library patterns. High quality results are already obtained when a four-
state representation is used, with further improvement observed along with the
increase of the number of states.

The paper is organized as follows: in the next Section the classical Hopfield
Associative Memory is briefly reminded. In Section 3 proposed modifications
are introduced and their properties discussed. Computer simulation results are
placed in Section 4. Closing remarks and conclusions are presented in the last
Section.

2. HOPFIELD ASSOCIATIVE MEMORY - A BRIEF
DESCRIPTION

In this Section, HAM is briefly described and its main features are outlined. For
more details please refer to Hopfield’s papers (Hopfield, 1982; Hopfield, 1984).

Consider the set on M binary patterns X i = {xi
1, . . . , x

i
N}, xi

j ∈ {1,−1}, i =
1, . . . , M, j = 1, . . . , N . HAM used for storing and retrieving these patterns
is composed of N neurons y1, . . . , yN . The connection matrix T ∈ MN×N is
computed by the Hebb rule, i.e.

tij =
M∑

s=1

xs
ix

s
j i, j = 1, . . . , N (1)

where tij denotes connection weight from output of neuron yj to input of neuron
yi.



In the recognition procedure, for unknown input pattern Z = [z1, . . . , zN ]
each neuron yi, i = 1 . . . , N computes its output value according to the following
rule1:

yi = g(
N∑

j=1

tijzj) i, j = 1, . . . , N (2)

where g is the threshold function:

g(x) =
{

1 for x ≥ 0
−1 for x < 0

(3)

HAM model is an excellent tool for storing and retrieving patterns when the
number of them is relatively small and patterns are pairwise sufficiently distinct.

More precisely, it is shown in (Mc Ellice et al., 1987) that under some con-
ditions imposed on stored patterns, asymptotical capacity of bipolar HAM is
equal to N

4logN
, or in case the demand for a rigorous recognition is slightly less-

ened the estimated capacity equals N
2logN

. In rough estimation, asymptotical

capacity of bipolar HAM reported in (Hopfield, 1982) is equal to 0.15N .

Estimation of model’s capacity and an attraction radius by the use of a
single parameter is presented in (Wang et al., 1990). Some other estimations
for a generalized Hopfield’s network are given in (Xu & Tsai, 1990).

Unfortunately, the more patterns are stored in the network the poorer its av-
erage performance is. Moreover, performance degrades for sparse and correlated
patterns (Jagota & Mańdziuk, 1998). There are several ways to improve HAM’s
capacity. Some of improved methods rely on other than Hebb one storage rules,
e.g. pseudoinverse rule (Personnaz et al., 1986), perceptron-type rule (Kamp &
Hasler, 1990; Jagota & Mańdziuk, 1998), projection rule (Sezan et al., 1990),
unlearning procedure (Wimbauer et al., 1994), rules which include antiassocia-
tion (anticorrelation) terms (Jagota, 1994; Schultz, 1995), and others. Another
approach is based on design of individual thresholds in the input-output trans-
formation function of particular neurons. This can be done either in one-step
(Schultz, 1995) or iteratively (Mańdziuk, 1996).

Some of these modifications lead to significant improvements although usu-
ally paying the price of being non-local. Moreover, many of the effective methods
lack the intuitive simplicity and biological relevance. These three features are,
on the other hand, emphasized as strong points of the Hebb storage rule.

3. PROPOSED MODIFICATIONS OF HAM

In this paper three methods that attempt to alleviate HAM’s drawbacks by
paying relatively more attention to contours than to interior spots in stored
patterns are presented.

In order to achieve the above goal the set of library patterns is transformed
to the set of ”enhanced” patterns and then stored according to the Hebb rule.
Transformation operation together with the storage procedure will be called
Contour Enhancement Hopfield Associative Memory (CEHAM).

1The original recognition procedure proposed by Hopfield (Hopfield, 1982) was
asynchronous and iterative. The one-step synchronous recognition scheme described here is
one of the well-known alternatives.



Transformation procedure for each pixel in a pattern checks the number of
its neighbours which are different from this pixel and based on that information
computes a new value for this pixel. This new pixel’s value is usually different
from the original one, since the transformation converts a two-state (binary)
representation into multi-state one. In the simplest case considered, each pixel
after transformation can take one out of four possible values.

The following notation will be used in description of CEHAM. Denote by
Z the set of all rectangular, binary patterns composed of NR rows and NC
columns, and let N = NR · NC.

For any given pattern Y ∈ Z and i = 1, . . . , NR, j = 1, . . . , NC denote by
Dij the number of pixels adjacent to pixel Y [i][j] different than Y [i][j], by Sij

the sum of Y [i][j] and all its neighbours, by Nij the number of pixels adjacent
to Y [i][j] plus one, and by SUM the sum of all pixels in Y 2.

Suppose, that the set of library patterns X ⊂ Z is composed of M elements
Xk, k = 1, . . . , M . In the simplest case, denoted by CEHAM-A, transformation
of pattern Xk can be described as follows:

CEHAM-A

• compute Sij for all pixels Xk[i][j]

• put

Xk[i][j] :=

{
α · Xk[i][j] if Sij · Xk[i][j] < 0
Xk[i][j] otherwise

(4)

where α > 1 is a predefined coefficient.

Informally, pixels which have more than half (in case of interior pixels), or
more than half plus one (in case of side pixels) of their neighbours different
than themselves scale their values so as to become more relevant compared to
unmodified pixels.

In other words, pixels which are relatively distinct from their neighbours are
enhanced and become even more distinct.

Another transformation procedure, denoted by CEHAM-B, takes addition-
ally into account the sign of the sum of all bits in a library pattern.

CEHAM-B

• compute Dij and Nij for all pixels Xk[i][j] and compute SUM

• put

Xk[i][j] :=




Xk[i][j] − γ
Dij

Nij
if SUM ≥ 0

Xk[i][j] + γ
Dij

Nij
otherwise

(5)

where γ is a positive constant.

The intuition behind CEHAM-B is the following. In case of SUM ≥ 0,
the number of positive pixels in a pattern is greater or equal to the number of
negative ones. Therefore, the information about the location of negative pixels

2In the notation of Dij , Sij , Nij , and SUM the dependence on pattern Y is omitted for
the sake of clarity. This dependence will be clearly indicated by the context.



is (in average) more relevant for the recognition procedure than the information
about positive pixels. Therefore, since 0 ≤ Dij/Nij < 1, all negative pixels are
enhanced or remain unchanged, and the degree of an enhancement correlates
with a number of positive neighbours. For the same reason the magnitude
of positive pixels is either decreased or remains unchanged. Similar intuitive
reasoning can be applied in case of SUM < 0. In this case positive pixels are
enhanced or remain unchanged, and again the degree of a change depends on
the number of their negative neighbours. The magnitude of negative pixels is
lessened or remains unchanged.

CEHAM-B works efficiently for sparse (dense) patterns, that is when the
number of negative (positive) pixels is significantly greater than the number of
positive (negative) ones. Some problems may occur when p - the probability of
all bits in a block being ON - is close to 0.5. Consider for example, the case of
SUM ≥ 0. From eq. (5), as mentioned above, it is clear that not only negative
pixels are enhanced, but also positive ones are suppressed. This suppression is
harmful when the ratio between the number of negative pixels and the number
of positive ones is close to 1, because the enhancement of negative pixels is
”unbalanced”. Similar observation is true in the symmetric case of SUM < 0.

One of possible remedies to this problem is the last method proposed in this
paper, denoted by CEHAM-C, in which in case of p close to 0.5 the identity
transformation is applied. The description of CEHAM-C is the following:

CEHAM-C

• compute Dij and Nij for all pixels Xk[i][j] and compute SUM

• put

Xk[i][j] :=




Xk[i][j] − γ
Dij

Nij
if SUM

N
≥ β

Xk[i][j] + γ Dij

Nij
if SUM

N
≤ −β

Xk[i][j] otherwise

(6)

where β and γ are positive constants.

In all three methods, rectangular patterns after transformation are converted
to a 1-dimensional vector by scanning row by row and then stored with the Hebb
rule.

Recognition procedure in all three CEHAM methods is the same as the one in
HAM. In particular, test patterns are not transformed in the recognition phase.

3.1 Two illustrative examples

As previously mentioned, the capacity of bipolar HAM degrades in case of sparse
or dense patterns. In such situations modified methods perform significantly
better than HAM. Before presentation of main results let us discuss two simple
examples that illustrate potential benefits of proposed modifications.



X1 X2 X3

X4 X5

Figure 1. Set of sparse patterns from EXAMPLE #1.

X1 X2 X3 X4

X5 X6 X7

Figure 3. Set of corerlated patterns from EXAMPLE #2.



5,0 3,0 5,0 5,0 3,0 3,0 3,0 3,0 5,0
3,0 5,0 3,0 3,0 1,0 1,0 1,0 1,0 3,0
5,0 3,0 5,0 5,0 3,0 3,0 3,0 3,0 5,0
5,0 3,0 5,0 5,0 3,0 3,0 3,0 3,0 5,0
3,0 1,0 3,0 3,0 5,0 1,0 1,0 1,0 3,0
3,0 1,0 3,0 3,0 1,0 5,0 1,0 1,0 3,0
3,0 1,0 3,0 3,0 1,0 1,0 5,0 1,0 3,0
3,0 1,0 3,0 3,0 1,0 1,0 1,0 5,0 3,0
5,0 3,0 5,0 5,0 3,0 3,0 3,0 3,0 5,0

HAM

5,0 2,0 5,0 5,0 2,0 2,0 2,0 2,0 5,0
2,0 8,0 2,0 2,0 -1,0 -1,0 -1,0 -1,0 2,0
5,0 2,0 5,0 5,0 2,0 2,0 2,0 2,0 5,0
5,0 2,0 5,0 5,0 2,0 2,0 2,0 2,0 5,0
2,0 -1,0 2,0 2,0 8,0 -1,0 -1,0 -1,0 2,0
2,0 -1,0 2,0 2,0 -1,0 8,0 -1,0 -1,0 2,0
2,0 -1,0 2,0 2,0 -1,0 -1,0 8,0 -1,0 2,0
2,0 -1,0 2,0 2,0 -1,0 -1,0 -1,0 8,0 2,0
5,0 2,0 5,0 5,0 2,0 2,0 2,0 2,0 5,0

CEHAM-A

4,1 2,1 3,9 3,9 1,9 1,2 1,3 1,2 3,8
2,1 6,7 1,9 1,7 -0,7 -0,5 -1,4 -1,4 1,2
3,9 1,9 3,7 3,7 1,7 1,7 1,1 1,0 3,6
3,9 1,7 3,7 3,8 1,5 1,1 1,6 1,5 3,7
1,9 -0,7 1,7 1,5 6,7 -0,8 -0,5 -0,8 1,7
1,2 -0,5 1,7 1,1 -0,8 6,4 -1,5 -0,7 1,7
1,3 -1,4 1,1 1,6 -0,5 -1,5 6,2 -0,4 1,1
1,2 -1,4 1,0 1,5 -0,8 -0,7 -0,4 6,4 1,7
3,8 1,2 3,6 3,7 1,7 1,7 1,1 1,7 3,7

CEHAM-B

4,1 2,1 3,9 3,9 1,9 1,2 1,3 1,2 3,8
2,1 6,7 1,9 1,7 -0,7 -0,5 -1,4 -1,4 1,2
3,9 1,9 3,7 3,7 1,7 1,7 1,1 1,0 3,6
3,9 1,7 3,7 3,8 1,5 1,1 1,6 1,5 3,7
1,9 -0,7 1,7 1,5 6,7 -0,8 -0,5 -0,8 1,7
1,2 -0,5 1,7 1,1 -0,8 6,4 -1,5 -0,7 1,7
1,3 -1,4 1,1 1,6 -0,5 -1,5 6,2 -0,4 1,1
1,2 -1,4 1,0 1,5 -0,8 -0,7 -0,4 6,4 1,7
3,8 1,2 3,6 3,7 1,7 1,7 1,1 1,7 3,7

CEHAM-C

Figure 2. Matricies corresponding to sparse patterns from EXAMPLE #1



3.1.1 Example # 1. Sparse patterns

Consider the set of 5 patterns of size 3×3 presented in Figure 1. In the Figure
positive pixels are denoted by black squares and negative ones are represented
by white squares. Patterns are certainly sparse and therefore an advantage is
expected from applying modified methods, compared to HAM. This is actually
the case, since for each of these library patterns presented as the input, HAM
responds with all-white pattern, yielding a 1-bit error.

On the other hand, all three modified methods correctly recognize library
patterns. The reason for this behaviour becomes clear when comparing weight
matricies generated by the methods. These matricies are presented in Figure 2.
Parameters α, β and γ are set to 2, 0.2 and 1, respectively.

In HAM’s matrix, since all weights are positive and in a relatively small
range, input vectors composed of a small number of positive pixels (like library
patterns) produce negative response on all bits. On the contrary, in CEHAM-
A, CEHAM-B and CEHAM-C matricies there exist some negative weights, and
these weights support positive output on particular pixels in case of sparse input
patterns. Moreover, the range of weights is relatively bigger in these matricies,
compared to HAM.

Consider for example the 2nd row in CEHAM-A, CEHAM-B and CEHAM-C
matricies. In each case:

• the element on the main diagonal has a large, positive value,

• there are four negative elements introduced by patterns X2, X4, X3

and X5, respectively. These elements are emphasized on Figure 2.

Both, the self-feedback diagonal element and those negative elements are crucial
in preserving the positive 2nd bit in recognition of pattern X1.

Similarly, for example, the large self-feedback diagonal weight along with
the four negative elements in the 7th row are crucial in proper recognition of
pattern X3, which has the 7th bit ON. Again, these negative weights (in all
three matricies) are introduced by the other library patterns, i.e. X1, X2, X4

and X5, respectively in positions 2, 5, 6 and 8 of the 7th row.

Finally, note that for sparse patterns used in this example and for β = 0.2
there are no differences between CEHAM-B and CEHAM-C matricies.

3.1.2 Example # 2. Correlated patterns

In the second example the set of correlated patterns depicted in Figure 3 is
considered. Some of the patterns are pairwise very similar, e.g. X1 and X2 or
X3 and X4. Pattern X2 is the complement of X3. Moreover, X1 and X2 are
sparse, whereas X3, X4 and X6 are dense. Figure 4 presents matricies obtained
in four methods.

Again, for the choice of α = 2, β = 0.2 and γ = 1, there are no differences
between CEHAM-B and CEHAM-C methods.

In the recognition tests some of potential advantages and drawbacks of the
methods are clearly visible.

First, none of the methods is able to recognize X1, which is mistaken with
X2. Output value on the 5th bit of X1 equals 11.00, 18.00 and 2.17 for HAM,



7,0 3,0 7,0 5,0 -3,0 5,0 7,0 1,0 7,0
3,0 7,0 3,0 1,0 -3,0 1,0 3,0 5,0 3,0
7,0 3,0 7,0 5,0 -3,0 5,0 7,0 1,0 7,0
5,0 1,0 5,0 7,0 -1,0 7,0 5,0 -1,0 5,0
-3,0 -3,0 -3,0 -1,0 7,0 -1,0 -3,0 -1,0 -3,0
5,0 1,0 5,0 7,0 -1,0 7,0 5,0 -1,0 5,0
7,0 3,0 7,0 5,0 -3,0 5,0 7,0 1,0 7,0
1,0 5,0 1,0 -1,0 -1,0 -1,0 1,0 7,0 1,0
7,0 3,0 7,0 5,0 -3,0 5,0 7,0 1,0 7,0

HAM

7,0 1,0 7,0 4,0 -8,0 4,0 7,0 -2,0 7,0
1,0 13,0 1,0 -2,0 -5,0 -2,0 1,0 10,0 1,0
7,0 1,0 7,0 4,0 -8,0 4,0 7,0 -2,0 7,0
4,0 -2,0 4,0 10,0 -2,0 10,0 4,0 -5,0 4,0
-8,0 -5,0 -8,0 -2,0 22,0 -2,0 -8,0 1,0 -8,0
4,0 -2,0 4,0 10,0 -2,0 10,0 4,0 -5,0 4,0
7,0 1,0 7,0 4,0 -8,0 4,0 7,0 -2,0 7,0

-2,0 10,0 -2,0 -5,0 1,0 -5,0 -2,0 16,0 -2,0
7,0 1,0 7,0 4,0 -8,0 4,0 7,0 -2,0 7,0

CEHAM-A

3,8 0,9 3,8 2,7 -4,2 2,7 3,6 -1,0 3,6
0,9 9,5 0,9 0,0 -3,1 0,0 0,7 7,4 0,7
3,8 0,9 3,8 2,7 -4,2 2,7 3,6 -1,0 3,6
2,7 0,0 2,7 6,3 -0,9 6,3 2,5 -1,6 2,5
-4,2 -3,1 -4,2 -0,9 17,5 -0,9 -3,8 1,3 -3,8
2,7 0,0 2,7 6,3 -0,9 6,3 2,5 -1,6 2,5
3,6 0,7 3,6 2,5 -3,8 2,5 3,4 -0,5 3,4

-1,0 7,4 -1,0 -1,6 1,3 -1,6 -0,5 11,6 -0,5
3,6 0,7 3,6 2,5 -3,8 2,5 3,4 -0,5 3,4

CEHAM-B

3,8 0,9 3,8 2,7 -4,2 2,7 3,6 -1,0 3,6
0,9 9,5 0,9 0,0 -3,1 0,0 0,7 7,4 0,7
3,8 0,9 3,8 2,7 -4,2 2,7 3,6 -1,0 3,6
2,7 0,0 2,7 6,3 -0,9 6,3 2,5 -1,6 2,5
-4,2 -3,1 -4,2 -0,9 17,5 -0,9 -3,8 1,3 -3,8
2,7 0,0 2,7 6,3 -0,9 6,3 2,5 -1,6 2,5
3,6 0,7 3,6 2,5 -3,8 2,5 3,4 -0,5 3,4

-1,0 7,4 -1,0 -1,6 1,3 -1,6 -0,5 11,6 -0,5
3,6 0,7 3,6 2,5 -3,8 2,5 3,4 -0,5 3,4

CEHAM-C

Figure 4. Matricies corresponding to correlated patterns from EXAMPLE #2



CEHAM-A and CEHAM-B(C), respectively. CEHAM-B(C) is closest to the
negative value, but nethertheless the output on the 5th bit is positive also in
this method.

Second, X6 is mistaken with X5 in HAM and CEHAM-A. In case of HAM,
the reason for this error is too small self-feedback diagonal element, which is
unable (together with the 2nd and the 8th ones) to suppress negative contri-
butions from the other six elements. In CEHAM-A, the diagonal element is
much larger, but due to the transformation procedure, which favors negative
bits (there are only two of them in X6) the negative elements in the 5th row
are also enhanced. On the contrary, in CEHAM-B(C) the diagonal element is
also much larger than in HAM, but the enhancement of negative pixels is kept
in a reasonable range. As a result the output on the 5th bit of X6 equals to
−3.00,−10.00, 1.38 in HAM, CEHAM-A, CEHAM-B(C), respectively.

Third, HAM does not recognize patterns X4, X5 and X7, which are mis-
taken with X3, X4 and X2, respectively. Here, for all three patterns the same
observations are valid. As an example, consider pattern X4, which produces
uncorrect output on the 8th bit, yielding pattern X3. In HAM matrix there are
six elements in the 8th row which contribute to errorneous positive output on
the 8th bit of pattern X4. On the contrary, in CEHAM-A and CEHAM-B(C)
matricies all elements but one support negative output on this bit. Moreover,
diagonal self-feedback element is enhanced in these matricies. Consequently,
the output value on the 8th bit of X4 equals 1.00,−25.00,−11.72, respectively
in HAM, CEHAM-A, CEHAM-B(C).

3.1.3 Summary

The examples reveal that results of enhancement transformation in CEHAM-A,
CEHAM-B and CEHAM-C methods can be twofold.

First, in case of crucial pixels self-feedback diagonal elements are larger in
these methods than in HAM. The highest values are obtained in CEHAM-A
method. This can be clearly seen in the second example, in which diagonal
elements in rows number 5, 8 and 2 are magnified, in order to preserve proper
recognition of bits number 5, 8 and 2. These bits are the only distinctions
between X1 and X2 as well as X5 and X6 for the 5th bit, X3 and X4 for the
8th bit and X4 and X5 for the 2nd one.

Moreover, in case of ”unimportant” pixels diagonal elements are usually
smaller in CEHAM-B(C) methods than in HAM or CEHAM-A. In the first
example there are four pixels which are ”less important” than the others, i.e.
pixels number 1, 3, 4 and 9. Therefore, in respective rows of CEHAM-B(C)
matricies diagonal elements are smaller than in HAM and CEHAM-A matricies.

Second, in CEHAM-A and CEHAM-B(C) matricies there are several ele-
ments with reversed contribution to the output pixel value, that is elements
with opposite sign compared to the ones in HAM matrix, e.g. five elements in
the 8th row of matricies from Example 2 (emphasized in Figure 4).

Generally, the enhancement in CEHAM-B(C) is more selective and not so
radical as in CEHAM-A. First of all, diagonal elements in CEHAM-A are
stronger than in CEHAM-B(C). Additionally, several elements in CEHAM-A



matricies are stronger than their counterparts in CEHAM-B(C) or HAM ma-
tricies, e.g. [4, 8], [2, 8] or [5, 7] in Example 2.

An interesting illustration of differences between methods are elements [2, 4]
and [2, 6] in Example 2, which are positive in HAM, equal 0 in CEHAM-B(C),
and are negative in CEHAM-A. Consequently, the 2nd and the 4th bits as well
as the 2nd and the 6th ones are correlated in HAM, non-correlated in CEHAM-
B(C) and anti-correlated in CEHAM-A.

3.2 Mutual relations between methods

CEHAM-A and CEHAM-C can be regarded as extensions of HAM. CEHAM-A
uses local information about the relative importance of a particular bit in a stored
pattern, and based on that information either enhances this pixel or leaves it
unchanged. Enhancement coefficient α is global and therefore, in spite of the
locality of checking neighbourhood procedure, a magnitude of the enhancement
is equal for all ”relevant” pixels. Setting α = 1 in (4) leads to HAM, in which all
bits are treated evenly. Consequently, CEHAM-A is a generalization of HAM
in the above sense.

CEHAM-C, uses parameter β to separate the region in which HAM storage
procedure is used from the region in which contour enhancement is applied.
By varying parameter β one may either extend or shrink the region in which
HAM formulation is applied. In particular, for β > 1 in (6) the formulation of
CEHAM-C is the same as the one of HAM. Therefore, HAM can be regarded
as a special case of CEHAM-C with β > 1, i.e. without contour enhancement.

4. SIMULATION RESULTS

The effectiveness of proposed modifications was tested on several sets of square
patterns for various N . In each data set, all patterns were generated randomly
with respect to two generic parameters: B and p. Namely,

• each pattern was divided into �N
B
� blocks composed of B subsequent

pixels3. All bits in a block were either equal to +1 or to −1,

• p defined the probability of a particular block to be a +1-block.

Blocks in rectangular patterns were defined in a linear manner, that is pat-
terns were scanned row by row starting from the top, downwards. The degree
of correlation between patterns in a data set depended on B. Correlation in-
creased along with an increase of B. Sparseness of patterns was defined by p
and increased along with a decrease of p(1 − p).

For example, a set of uniformly distributed patterns was generated with
< B, p >=< 1, 0.5 >.

The efficacy of CEHAM-A, CEHAM-B and CEHAM-C will be presented for
the following choice of parameters: NC = NR = 10, M = 10, 20, 30, 40, and
50. For each choice of M , three values of p are tested: p = 0.1, 0.3 and 0.54.

3Due to the end effects, the last block could be smaller.
4Values of p > 0.5 are not tested because of symmetry of HAM and CEHAM

methods with respect to p.



0 
bi

ts
M

=1
0

M
=2

0
M

=3
0

M
=4

0
M

=5
0

H
A

M
1

3
5

1
3

5
1

3
5

1
3

5
1

3
5

0.
1

9,
40

9,
47

9,
00

9,
88

8,
97

9,
42

9,
71

9,
50

9,
11

9,
70

9,
70

9,
08

9,
70

9,
50

9,
40

0.
3

6,
43

6,
90

4,
33

16
,0
8
11
,1
7

8,
42

22
,5
0
14
,7
9
10
,1
7
25
,2
6
17
,3
8
13
,9
2
26
,8
2
19
,8
7
13
,2
7

0.
5

0,
00

0,
80

1,
50

0,
32

1,
45

3,
67

0,
70

2,
48

2,
78

1,
45

2,
62

1,
92

1,
71

1,
89

1,
10

C
EH

A
M

-A
1

3
5

1
3

5
1

3
5

1
3

5
1

3
5

0.
1

8,
40

8,
23

6,
40

9,
65

8,
78

9,
35

9,
71

9,
50

8,
99

9,
70

9,
70

9,
08

9,
70

9,
50

9,
40

0.
3

0,
70

2,
77

2,
93

2,
13

5,
33

4,
40

3,
64

5,
38

3,
39

4,
75

5,
84

4,
15

5,
07

6,
42

4,
50

0.
5

0,
27

2,
53

3,
30

2,
48

3,
77

5,
62

3,
28

4,
32

4,
81

4,
24

4,
36

4,
08

4,
75

4,
40

4,
71

C
EH

A
M

-B
1

3
5

1
3

5
1

3
5

1
3

5
1

3
5

0.
1

8,
37

8,
63

7,
20

9,
80

8,
93

9,
25

9,
71

9,
50

9,
11

9,
70

9,
70

9,
08

9,
70

9,
50

9,
40

0.
3

1,
20

2,
80

3,
47

2,
48

4,
88

2,
98

3,
66

3,
77

2,
21

4,
18

3,
25

1,
63

4,
27

2,
71

1,
53

0.
5

1,
30

3,
67

4,
10

2,
15

3,
93

5,
57

2,
90

4,
08

4,
44

3,
45

3,
91

2,
95

4,
09

3,
09

2,
53

C
EH

A
M

-C
1

3
5

1
3

5
1

3
5

1
3

5
1

3
5

0.
1

8,
37

8,
63

7,
20

9,
80

8,
93

9,
25

9,
71

9,
50

9,
11

9,
70

9,
70

9,
08

9,
70

9,
50

9,
40

0.
3

0,
97

2,
67

2,
67

2,
60

3,
53

3,
10

3,
50

3,
21

1,
98

4,
15

2,
88

1,
75

4,
15

2,
46

1,
08

0.
5

0,
10

1,
30

2,
23

0,
50

2,
07

4,
92

0,
82

3,
23

4,
28

1,
61

3,
23

2,
52

1,
85

2,
58

1,
69

T
ab

le
 1

. S
ta

bi
lit

y 
re

su
lts

 fo
r 

di
ff

er
en

t c
ho

ic
es

 o
f p

ar
am

et
er

s B
, p

 a
nd

 M
. 



Block-size B is equal to 1, 3 or 5. Coefficients α, β and γ are set to 2, 0.2 and
1, respectively. Coefficients’ values were assigned in a reasonable way, but no
coefficient optimization was performed. Remarks on more efficient choices of
α, β and γ are presented in Section 4.3.

Numerical results of computer simulations are presented in Tables 1, 2 and
3.

4.1 Stability results

Table 1 describes stability results, obtained in recognition of a set of uncorrupted
library patterns. Values in Table 1 denote average numbers of incorrect bits per
pattern in respective pattern sets. Each value is averaged over three independent
data sets. For each triple < M, B, p >, the same data sets are used for all four
methods.

For example, value 2.48 in section CEHAM-A/M=20 in row denoted by
0.5 and column denoted by 1 should be interpreted in the following way: in
the method CEHAM-A, in case of M = 20, for three independent data sets
generated with < B, p >=< 1, 0.5 >, the average number of incorrect bits per
pattern in the recognition phase computed among all library patterns is equal
to 2.48.

The main qualitative observations from Table 1 and the rest of experimental
data (not reported in the paper) are the following.

• In case of p = 0.5, HAM performs slightly better than
CEHAM-C, and outperforms CEHAM-B and CEHAM-A.

From definitions of HAM and CEHAM-C, it is expected that in case of p = 0.5
both methods perform in the same way. This statement is true, however, only
when the actual value of p is close to 0.5. Since the value of threshold β in the
experiment was equal to 0.2 and γ was equal to 1, from eq. (6) it is clear that
CEHAM-C performs as HAM if and only if 0.4 ≤ pact(X) ≤ 0.6, for all patterns
in all data sets used in simulations, where pact(X) denotes the ratio between the
number of positive pixels and the number of all pixels in pattern X.

In the experimental data pact(X) was outside the above limits for several
patterns X. Consequently, for these patterns one of the first two cases of eq.
(6) was applied in CEHAM-C method. Certainly, this difference between HAM
and CEHAM-C will disappear for greater values of β.

• In case of p = 0.3, the improvement in all three CEHAM
methods is significant compared to HAM.

There are mainly two reasons for such an improvement. First, HAM degrades on
sparse patterns (cf. Jagota & Mańdziuk, 1998). Second, contour enhancement
on the contrary, works efficiently for sparse patterns, in which the distinction
between ”important” pixels and ”background” ones is especially visible and
more relevant for the proper recognition than in the case of uniformly distributed
patterns.

The difference between three CEHAM methods in case of p = 0.3 is more
subtle. For small pattern sets (M = 10, 20) composed of uncorrelated patterns



1 
bi

t
M

=1
0

M
=2

0
M

=3
0

M
=4

0
M

=5
0

H
A

M
1

3
5

1
3

5
1

3
5

1
3

5
1

3
5

0.
1

9,
40

9,
47

9,
00

9,
88

8,
97

9,
42

9,
71

9,
50

9,
11

9,
70

9,
70

9,
08

9,
70

9,
50

9,
40

0.
3

6,
70

6,
60

5,
00

15
,9
5
10
,8
7

8,
25

22
,4
7
14
,6
8
10
,4
4
25
,0
2
17
,1
3
14
,2
1
26
,7
7
19
,4
8
13
,7
0

0.
5

0,
00

0,
90

1,
67

0,
37

1,
55

3,
83

0,
94

2,
34

2,
61

1,
65

2,
58

2,
00

2,
17

2,
13

1,
10

C
EH

A
M

-A
1

3
5

1
3

5
1

3
5

1
3

5
1

3
5

0.
1

8,
37

8,
23

6,
40

9,
65

8,
78

9,
35

9,
71

9,
50

8,
99

9,
70

9,
70

9,
08

9,
70

9,
50

9,
40

0.
3

0,
83

2,
97

3,
27

2,
37

5,
17

4,
47

3,
80

5,
34

3,
31

4,
88

5,
90

4,
18

5,
11

6,
77

4,
37

0.
5

0,
47

2,
40

3,
20

2,
68

3,
72

5,
80

3,
91

4,
57

5,
04

4,
44

4,
63

4,
31

5,
26

4,
82

5,
02

C
EH

A
M

-B
1

3
5

1
3

5
1

3
5

1
3

5
1

3
5

0.
1

8,
43

8,
60

7,
23

9,
80

8,
93

9,
25

9,
71

9,
50

9,
11

9,
70

9,
70

9,
08

9,
70

9,
50

9,
40

0.
3

1,
17

2,
93

3,
43

3,
00

4,
72

2,
90

3,
78

4,
06

2,
34

4,
56

3,
53

1,
70

4,
55

2,
90

1,
60

0.
5

1,
50

3,
57

3,
93

2,
15

4,
18

5,
52

3,
21

4,
22

4,
54

3,
73

3,
95

3,
06

4,
63

3,
33

2,
65

C
EH

A
M

-C
1

3
5

1
3

5
1

3
5

1
3

5
1

3
5

0.
1

8,
43

8,
60

7,
23

9,
80

8,
93

9,
25

9,
71

9,
50

9,
11

9,
70

9,
70

9,
08

9,
70

9,
50

9,
40

0.
3

0,
97

2,
83

2,
93

3,
00

3,
78

3,
13

3,
67

3,
37

2,
07

4,
45

3,
23

1,
87

4,
59

2,
70

1,
26

0.
5

0,
10

1,
57

2,
40

0,
53

2,
18

5,
15

1,
04

3,
31

4,
42

1,
76

3,
28

2,
67

2,
27

2,
93

1,
85

T
ab

le
 2

. E
rr

or
 c

or
re

ct
io

n 
re

su
lts

 in
 c

as
e 

of
 1

-b
it 

di
st

or
tio

n 
fo

r 
ea

ch
 o

f t
he

 li
br

ar
y 

pa
tt

er
ns

. 



10
 b

its
M

=1
0

M
=2

0
M

=3
0

M
=4

0
M

=5
0

H
A

M
1

3
5

1
3

5
1

3
5

1
3

5
1

3
5

0.
1

9,
40

9,
47

9,
00

9,
88

8,
97

9,
42

9,
71

9,
50

9,
11

9,
70

9,
70

9,
08

9,
70

9,
50

9,
40

0.
3

8,
13

6,
80

5,
50

16
,3
7
11
,1
3

8,
42

21
,3
3
13
,8
6
10
,9
4
24
,3
0
17
,8
2
14
,2
1
25
,7
3
18
,7
0
13
,6
3

0.
5

0,
23

0,
80

1,
50

1,
72

3,
17

4,
50

3,
61

4,
66

4,
61

5,
13

4,
82

3,
58

6,
43

4,
56

3,
37

C
EH

A
M

-A
1

3
5

1
3

5
1

3
5

1
3

5
1

3
5

0.
1

8,
60

8,
13

6,
93

9,
70

8,
75

9,
22

9,
71

9,
50

8,
94

9,
70

9,
70

9,
08

9,
70

9,
50

9,
39

0.
3

2,
30

3,
33

4,
97

4,
52

6,
23

5,
42

6,
49

6,
58

5,
06

7,
74

7,
69

5,
81

8,
23

8,
25

5,
76

0.
5

1,
80

3,
53

2,
77

4,
97

5,
85

5,
68

7,
30

6,
91

6,
96

9,
10

7,
19

6,
29

10
,0
1

7,
28

6,
22

C
EH

A
M

-B
1

3
5

1
3

5
1

3
5

1
3

5
1

3
5

0.
1

8,
57

8,
47

7,
07

9,
77

8,
92

9,
38

9,
71

9,
50

9,
11

9,
70

9,
70

9,
08

9,
70

9,
50

9,
40

0.
3

3,
27

3,
50

4,
70

6,
05

5,
77

4,
05

7,
18

5,
83

4,
16

8,
68

5,
98

3,
84

9,
10

5,
93

3,
51

0.
5

2,
90

4,
37

5,
03

5,
75

6,
45

6,
88

7,
62

6,
24

6,
71

9,
38

6,
70

5,
16

11
,0
1

5,
87

4,
17

C
EH

A
M

-C
1

3
5

1
3

5
1

3
5

1
3

5
1

3
5

0.
1

8,
57

8,
47

7,
07

9,
77

8,
92

9,
38

9,
71

9,
50

9,
11

9,
70

9,
70

9,
08

9,
70

9,
50

9,
40

0.
3

2,
70

3,
33

4,
73

5,
97

4,
80

4,
58

7,
04

4,
99

3,
54

8,
59

5,
83

3,
55

9,
09

5,
37

2,
89

0.
5

0,
27

1,
73

2,
37

1,
98

4,
67

5,
07

3,
82

5,
26

6,
07

5,
33

5,
65

4,
46

6,
55

5,
37

4,
14

T
ab

le
 3

. E
rr

or
 c

or
re

ct
io

n 
re

su
lts

 in
 c

as
e 

of
 1

0-
bi

t d
is

to
rt

io
n 

fo
r 

ea
ch

 o
f t

he
 li

br
ar

y 
pa

tt
er

ns
. 



(B = 1), CEHAM-A performs a little better than CEHAM-B and CEHAM-C.
Moreover, for M = 10, B = 3, 5, CEHAM-A outperforms CEHAM-B, but not
CEHAM-C. In the other cases with p = 0.3 reported in Table 1, CEHAM-C
usually performs better than CEHAM-B, and CEHAM-B is usually superior to
CEHAM-A.

• In case of p = 0.1 there are no relevant differences among four
methods.

• For M > 10, p = 0.1 performance of HAM increases in
comparison with p = 0.3.

The two last observations can be explained as follows (cf. Jagota & Mańdziuk,
1998). When p = 0.1 there are very few attractors, perhaps only two: (−1)N

and its complement 1N . Therefore, for each library pattern approximately 0.1N
of its bits should be unstable (all and only bits equal to 1). Table 1 reveals that
this is indeed the case.

For HAM, in case of p = 0.3 there is probably only a few attractors as well,
and therefore between p = 0.1 and p = 0.3 performance decreases. However,
this reasoning cannot be extended to the case of p = 0.5, since as p increses new
attractors emerge. Unless M

N
is too large, these attractors are closer to library

patterns, yielding smaller average bit-error.
Results presented in Table 1 can be improved by more judicious choice of

coefficients α, β and γ. In particular, the improvement can easily be achieved in
case of p = 0.1. A discussion on more efficient choices of α, β and γ is presented
in Section 4.3.

4.2 Error correction results

The layout of Table 2 and Table 3 is exactly the same as the one of Table 1.
Table 2 presents results for the case, in which 1 randomly chosen bit in each
library pattern is flipped in the recognition phase, whereas Table 3 concerns the
case of flipping 10 randomly chosen bits in the recognition phase. Errorneous
input bits are chosen independently for each library pattern. Again, results are
averaged over three data sets - the same ones that were used to evaluate stability
performance in Section 4.1.

Error correction results reported in Table 2 (1 bit distortion case) and Table 3
(10 bit distortion case) and the rest of experimental data (not reported in the
paper) permit the following qualitative conclusions.

• The four main observations presented in the previous Section
are generally true also for error correction results.

The explanations presented in Section 4.1 also remain valid.

• For p = 0.3, M > 10 performance of HAM remains on the same
level in the error correction case as in the stability case.

The possible explanation of this phenomenon is the fact that for relatively sparse
patterns (p = 0.3) there exist strong attractors and consequently the distortion
is suppressed by the magnitude of these attractors.



CEHAM-A B=1 B=3 B=5
M=10 4,26 3,16 4,46
α 4 4 5

M=20 6,00 5,06 4,10
α 4 5 5

M=30 6,05 4,42 3,47
α 5 6 6

M=40 5,31 4,45 3,51
α 6 6 6

M=50 4,30 4,11 3,59
α 6 7 7

CEHAM-C B=1 B=3 B=5
M=10 4,23 4,06 4,43
γ 3 3 3

M=20 5,68 4,98 5,11
γ 3 4 4

M=30 6,38 4,32 4,00
γ 3 5 5

M=40 5,76 4,09 4,31
γ 4 5 5

M=50 5,51 5,02 5,13
γ 4 5 5

Table 4. Enhanced results in case of p=0.1, 
for CEHAM-A and CEHAM-C(B) methods.



4.3 Tuning of α, β and γ

In the simulations reported so far it was assumed that the distribution of library
patterns was unknown, and therefore α, β and γ were fixed for all test sets to
values 2, 0.2 and 1, respectively.

In order to present potential improvements, which can be achieved by more
judicious choice of α, β and γ some effort was devoted to experimental establish-
ing of more appropriate values for them. One of the goals was to find efficient
α, β, γ for different choices of B and M , in case of p = 0.1. In the experimental
evaluation, integer values between 2 and 10 were checked as candidates for α
and γ. Value of β remained unchanged, since for p = 0.1 CEHAM-C should be
simplified to CEHAM-B, i.e. without HAM subcase in (6).

For CEHAM-A method it was found that 4 ≤ α ≤ 7 was a better choice
than α = 2. Stability results for best choices of α among tested candidates,
averaged over the same three data sets as the ones used in the main experiment
are presented in Table 4.

The average bit-error over all values of M is approximately equal to 5.2, 4.2,
and 3.8 for B = 1, 3, and 5, respectively.

For CEHAM-C (CEHAM-B) method, efficient values of γ are equal to 3, 4
and 5. Stability results in this case are presented in Table 4.

The average bit-error over all choices of M is approximately equal to 5.5, 4.5
and 4.6, respectively for B = 1, 3 and 5.

For all three methods efficient value of the parameter (α or γ) increases along
with the increase of B and independently along with an incresase of M (for B
fixed). The improvement is about the factor of 2 compared to previous choices
of α and γ.

For the clarity of the paper, error correction results in case of p = 0.1 as
well as results for other values of p are not presented. The general conclusion
is that efficient values of α, β and γ depend on the range of p, B and M . Re-
sults presented in the paper can serve as guidelines for appropriate choices of
coefficients in case of other combinations of parameters p, B, M .

5. CONCLUSIONS

In the paper, three variants of a modification of Hopfield Associative Memory are
presented. Suggested modification is based on contour enhancement in library
patterns. In short, it is proposed to emphasize pixels which lie on the contour
of a (content of a) pattern. Consequently, interior and background pixels (spots
composed of all ON or all OFF bits) are relatively suppressed.

Results of computer simulations presented in the paper show that for sparse
patterns the improvement is evident even in the simplest method (CEHAM-A).
Further improvement is observed for more complex transformations (CEHAM-
B and CEHAM-C). In case of uniformly generated patterns, modified methods
perform slightly worse than HAM.

Our current research is devoted to theoretical analysis of performance of
proposed methods, and in particular to deriving analytical bounds for efficient
values of α, β, γ with respect to the degree of correlation between patterns - B,
sparseness of patterns - p, and the number of them - M .



REFERENCES

1. Hopfield, J. J., (1982). Neural networks and physical systems with emergent
collective computational abilities. Proc. Natl. Acad. Sci. USA, v.79, pp.
2554-2558.
2. Hopfield, J. J., (1984). Neurons with graded response have collective com-
putational properties like those of two-state neurons. Proc. Natl. Acad. Sci.
USA, v.81, pp. 3088-3092.
3. Jagota, A., (1994). A Hopfield-Style Network with a Graph-Theoretic Char-
acterisation. Journal of Artificial Neural Networks, v.1(1), pp. 145-166.
4. Jagota, A., & Mańdziuk, J., (1998). Experimental study of Perceptron-
type local learning rule for Hopfield associative memory. Information Sciences,
v.111(1-4), pp. 65-81.
5. Kamp, Y., & Hasler, M., (1990). Recursive Neural Networks for Associative
Memory, John Wiley & Sons, New York.
6. Mańdziuk, J., (1996). Improving performance of the bipolar Hopfield net-
work by supervised learning. Proc. of the World Congr. on Neural Networks
(WCNN’96), San Diego, CA, USA, pp. 267-270.
7. Mc Ellice R.J., et al., (1987). The Capacity of the Hopfield Associative
Memory. IEEE Trans. on Inf. Theory IT-33, v.4, pp. 461-482.
8. Personnaz, L., Guyon, I., & Dreyfus, G., (1986). Collective computational
properties of neural networks: new learning mechanism. Phys. Rev., A, v.34(5),
pp. 4217-4228.
9. Schultz, A., (1995). Five variations of Hopfield Associative Memory Network.
Journal of Artificial Neural Networks, 2(3), pp. 285-294.
10. Sezan, M. I., Stark, H., & Yeh, S-J., (1990). Projection method formulations
of Hopfield-type associative memory neural networks. Applied Optics, v.29(17),
pp. 2616-2622.
11. Wang, J-H, et al., (1990). Determination of Hopfield Associative Memory
Characteristic Using A Single Parameter. Neural Networks, v.3, pp. 319-331.
12. Wimbauer, S., Klemmer, N., & van Hemmen, J. L., (1994). Universality of
Unlearning. Neural Networks, v.7(2), pp. 261-270.
13. Xu, X., & Tsai, W. T., (1990). Constructing Associative Memories Using
Neural Networks. Neural Networks, v.3, pp. 301-309.

Published in
Neural, Parallel & Scientific Computations 7(3), 359-377, (1999)


	FIGS123.pdf
	Arkusz1
	FIG2.pdf
	Arkusz1


	FIG4.pdf
	Arkusz1

	TAB1.pdf
	Arkusz1

	TAB2.pdf
	Arkusz1

	TAB3.pdf
	Arkusz1

	TAB4.pdf
	Arkusz1


