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Abstract. This paper considers the multilabel classification problem, which is a 
generalization of traditional two-class or multi-class classification problem. In 
multilabel classification a set of labels (categories) is given and each training 
instance is associated with a subset of this label-set. The task is to output the 
appropriate subset of labels (generally of unknown size) for a given, unknown 
testing instance. Some improvements to the existing neural network multilabel 
classification algorithm, named BP-MLL, are proposed here. The modifications 
concern the form of the global error function used in BP-MLL. The modified 
classification system is tested in the domain of functional genomics, on the 
yeast genome data set. Experimental results show that proposed modifications 
visibly improve the performance of the neural network based multilabel 
classifier. The results are statistically significant. 

Keywords: multilabel, learning system, neural network, backpropagation, 
bioinformatics, functional genomics. 

1   Introduction 

Multilabel classification is a generalization of traditional two-class or multi-class 
classification. In both cases a finite set of labels (categories) is given, but unlike in the 
latter case, where the task is to associate each problem instance with one category, the 
multilabel classification associates each instance with a subset of the set of labels. In 
other words, a multilabel classifier transforms the domain of instances X to the power 
set of the set of labels 2Y: 

h: X → 2Y (1)

where X ⊆ Rd denotes the set of instances and Y = {0, 1, …, Q-1} represents the set of 
possible labels. In many practical situations the mulitilabel classification problem is 
converted to the problem of defining a function f: X × Y → R such that for any xp ∈ X 

f(xp, y1) > f(xp, y2) (2)
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for all y1 ∈ Yp and y2 ∉ Yp. In other words instead of defining the classification of the 
form (1) it is sufficient to find function f(.,.) which provided higher outputs for the 
elements belonging to Yp than for those not belonging to Yp, where (xp, Yp) is a 
training (testing) instance. 

Many real-world problems can be modeled by multilabel classification systems. 
The most popular application domains include text categorization [6], [7] and 
bioinformatics [3], in particular a functional genomics area. This latter problem is 
considered in this paper in order to verify the efficacy of proposed modifications. 

Our work is inspired by Min-Ling Zhang and Zhi-Hua Zhou’s paper [1], where a 
neural network based method is proposed as an approach to multilabel classification 
problem in the domains of functional genomics and text categorization. Up to our 
knowledge, the paper [1] is the first attempt to apply neural networks to multilabel 
classification. Previous approaches include using decision trees [4], [11] and kernel 
methods [3], [8]. In the case of single-label classification problem, current studies are 
based on kernel methods. However, experimental results presented in [1] indicate that 
in the case of multilabel classification, neural network based method [1] outperforms 
kernel method proposed in [3]. So we decided to consider neural network approach. 

The paper is organized as follows: in the next section a brief description of the 
neural network based multilabel classifier introduced in [1] is presented together with 
some modifications to the global error function proposed in this paper. The most 
popular performance measures that are applied in this paper are also introduced. 
Experimental results in the domain of functional genomics are presented and 
discussed in Section 3. The last section is devoted to conclusions and possible  
future work. 

2   Neural Networks in Multilabel Classification 

The simplest approach to solve the multilabel classification problem is its 
decomposition into multiple set of classification problems – one for each label. This 
solution, however, has a significant disadvantage – it does not take into account 
dependencies between different categories. Hence a different approach need to be 
employed. One of the candidate algorithms is the well-known BackPropagation (BP) 
learning method [9], [10] which, after appropriate adaptation to the multilabel 
classification case, can be used to solve the problem. This idea was exploited in [1], 
where the algorithm named BP-MLL (Backpropagation for Multilabel Learning) was 
developed and experimentally verified. 

2.1   A Brief Description of BP-MLL 

BP-MLL is applied in [1] to a multilayer perceptron with sigmoidal neurons with one 
hidden layer and additional biases from the input and hidden layer. The size of the 
input layer is equal to the instance domain dimension (plus a bias neuron). The size of 
the output layer equals the number of labels (i.e. Q). Training is based on the classical 
BP algorithm, but in order to address the dependencies between labels, the new global 
error function of the following form is proposed: 
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where m is the number of learning pairs, Yp ⊆ Y = {0, 1, …, Q-1} is the set of labels 
associated with the p-th training instance, cq

p (named rank value) is the actual output 
value of the q-th output neuron (corresponding to the q-th label), 

pY  denotes the 

complementary set of Yp (i.e. 
pY  = Y \ Yp) and h(xp) denotes the set of labels attached 

to xp by the network. Minimizing (3) tends to get higher output values by neurons 
corresponding to the labels belonging to Yp than those not belonging to Yp. 

The next step to achieve multilabel classifier is determining the set of labels 
belonging to the input instance. This information can be retrieved from the neural 
network output values (rank values) by means of the threshold function which 
depends on the input vector. If the output neuron value is higher than the threshold 
value, then corresponding label belongs to the input instance. Otherwise, the label 
does not belong to the instance. More detailed description of BP-MLL can be found 
in [1]. 

2.2   Error Function Modifications 

In this paper we propose some improvements of the error function used in [1]. The 
first introduced modification is integration of the threshold value into the error 
function used in BP-MLL. It results in the following form of the error function: 
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The last output neuron’s value (cQ
p) is interpreted as the threshold. The meaning of 

the remaining output neurons is the same as in case of using the BP-MLL method. 
Proposed solution allows to determine the threshold value by adaptation during neural 
network learning. Hence, unlike in the method described in [1], additional step 
devoted to definition of the threshold function is not required. 

The above error function (4) can be further generalized (and the whole process 
becomes more autonomous) by introducing independent thresholds for different labels: 
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In the case of equation (5) two output neurons (indexed by 2q and 2q+1) per each 
category q are considered. The first one of them (number 2q) represents the output of 
the respective category (label) like in (3), and the other one (number 2q+1) defines 
the respective threshold value for the q-th category. 

Finally, in the error function comparisons between all the rank values of categories 
belonging to Yp (

pY  resp.) and their respective threshold values can be taken into 

account, which leads to the following equations of the error function (6) and (7): 
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Note that (6) and (7) differ from (5), where each rank value is compared only with 
one threshold assigned to it. In (6) and (7) each rank value of category belonging to Yp 
(

pY  resp.) is compared with each threshold value of category belonging to Yp (
pY  

resp.) Moreover, (7) extends (6) by also considering differences between threshold 
values (cf. the first terms in the numerators of both equations). In effect minimization 
of (7) results in lower threshold values corresponding to labels belonging to Yp , for p 
= 1, …, m, than to those not belonging to this set. 

2.3   Evaluation Metrics 

Before presentation of experimental results let us briefly introduce the most popular 
error measures used in multilabel classification domain [1], [3]. The three of them, 
namely the Hamming loss, the one-error and the ranking loss are considered in this 
paper. 

The Hamming loss measure (8) indicates the frequency (with respect to the size of 
the testing set K) of incorrect classification (the instance is classified as associated 
with particular label when it is actually not the case or vice-versa the instance is not 
classified as associated with this label in case it should be). 
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The one-error measure (9) points out how often the label with the highest rank 
value (the top-one) does not belong to Yp. Function f in (9) is defined by equation (2). 
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The third error measure, the ranking loss (10) indicates how often the label 
belonging to Yp has got lower or equal rank value than the one not belonging to Yp 
(which is not the expected outcome). 
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Ranking loss and one-error denote the function f defined in (2) and Hamming loss 
denotes the function h defined in (1). Both Hamming loss and ranking loss consider 
the frequencies of incorrect output values (in the case of Hamming loss incorrect label 
assignment and in the case of ranking loss incorrect order of rank values). Both meas-
ures well address multilabel classification characteristics. One-error takes into ac-
count only the label with the highest rank value and ignores other labels. One-error 
does not measure general performance of multilabel classifier but is specialized for 
penalizing classifiers which frequently give the highest rank value to the labels not 
belonging to Yp. 

3   Application to Functional Genomics 

Our modifications to the BP-MLL method were tested against real-world multilabel 
classification problem in the domain of functional genomics [1], [3], [4], [5]. The goal 
is to determine (various) functions of genes based on biological data such as gene 
expression levels [5] (from DNA micro arrays), sequence data (sequences of 
nucleotides or amino acids) or phylogenetic profiles [5]. 

3.1   Yeast Genome Data Set and Learning Parameters 

In particular in our experiments a data set [2] dealing with yeast genome was 
considered. This set was also used by other researchers, e.g. [1], [3]. It contains 2417 
genes associated with functional classes. Every gene is described by 103-dimensional 
vector consisting of the information about phylogenetic profile and gene expression 
levels. This vector forms the neural network input. Each input vector is associated 
with a subset of the set of 14 possible functional classes. In average, each example 
(gene) is associated with 4.24 ± 1.57 labels. 

During training process the learning rate was set to 0.05. In order to avoid 
overfitting, similarly to [1] a weight decay (equal to 0.5) was introduced. Due to the 
relatively small size of the data set, tenfold cross-validation was applied. Training was 
performed separately on each of the five multilabel classifiers – one for each global 
error function (3) – (7). 

The size of a hidden layer was equal to 20 and 40 neurons, respectively for the 
classifiers with error functions (3), (4) and (5), (6), (7). The number of training epochs 
was equal to 100. In the case of (3) the threshold function (t) was set to be the zero 
constant function. 
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3.2   Experimental Results 

Five experiments, each based on tenfold cross validation, were performed for each 
classifier. This resulted in 50 evaluations of each of the tested classifiers for each of 
the three error measures (Hamming loss, one-error and ranking loss). Table 1 presents 
means and standard deviations of those evaluations. Results of statistical tests (t-test 
at 5 percent significance level) are shown in Table 2. 

Table 1. Means and standard deviations of considered multilabel classifiers evaluations 

Hamming loss One-error Ranking loss Error 
function Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

(3) 0,2754 0,0188 0,2324 0,0292 0,1729 0,0150 
(4) 0,2005 0,0071 0,2311 0,0255 0,1705 0,0102 
(5) 0,2023 0,0094 0,2351 0,0215 0,1721 0,0107 
(6) 0,1988 0,0094 0,2252 0,0230 0,1659 0,0120 
(7) 0,1987 0,0089 0,2247 0,0242 0,1657 0,0117 

Table 2. Statistical tests results (t-test at 5 percent significance level). The results below the 5 
percent level are presented in boldface. 

Test Hamming loss  
p-value 

One-error  
p-value 

Ranking loss  
p-value 

(3) vs. (4) 0 0,8202 0,3569 
(3) vs. (5) 0 0,5950 0,7786 
(3) vs. (6) 0 0,1778 0,0116 
(3) vs. (7) 0 0,1578 0,0089 
(4) vs. (5) 0,2787 0,4010 0,4335 
(4) vs. (6) 0,2981 0,2289 0,0410 
(4) vs. (7) 0,2594 0,2026 0,0310 

The results of experiments presented in both tables allow to make some 
performance comparisons between various neural network multilabel classifiers taken 
into account. Considering the Hamming loss shows that all modified classifiers (i.e. 
(4), (5), (6) and (7)) are significantly better than the original one (3). Moreover, there 
are no statistically significant differences in the results accomplished by classifier (4) 
vs. (5), (6) or (7). One-error performance measure does not permit to make any 
conclusions about potential differences between multilabel classifiers in question. 
They are statistically comparable. This can be caused by the characteristics of one-
error measure which only considers some details of classifier and does not address 
multilabel classifier performance in general. Finally, classifiers (6) and (7) outperform 
(3) and (4), with statistical significance when ranking loss measure is considered. 

Table 3 presents comparison of BP-MLL with other approaches to multilabel clas-
sification (decision tree based method ADTBOOST.MH [11] and kernel method 
RANK-SVM [3]) on the Yeast Genome Data Set considered in this paper. This  
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Table 3. Mean values and standard deviations of considered multilabel classifiers evaluations 
for three approaches to multilabel classification (BP-MLL, ADTBOOST.MH and RANK-
SVM) 

Hamming loss One-error Ranking loss Error function 
Mean Std.Dev. Mean Std.Dev. Mean Std.Dev. 

BP-MLL 0,206 0,011 0,233 0,034 0,171 0,015 
ADTBOOST.MH 0,207 0,010 0,244 0,035 - - 
RANK-SVM 0,207 0,013 0,243 0,039 0,195 0,021 

comparison was made by authors of [1] and shows that BP-MLL outperforms both 
ADTBOOST.MH and RANK-SVM. 

4   Conclusions and Future Work 

Multilabel classification problem generalizes traditional two-class or multi-class 
classification since each instance in the training/testing set is associated with several 
(usually more than one) classes (labels). The problem is not easy to solve also because 
the size of the label-set associate with particular unseen instance is generally 
unknown. Various approaches to tackle this problem were presented in the literature, 
but – up to our knowledge – there has been only one attempt to apply a neural 
network for solving this task [1]. In this paper a few modifications of the global error 
function proposed in [1] are presented and experimentally evaluated. Generally, all of 
them improve performance of the multilabel neural classifier. The improvement – in 
case of the two most elaborate functions, i.e. (6) and (7) is noticeable and statistically 
significant. Overall, including the threshold values into the error function and 
considering differences between the rank values and the thresholds proved to be a 
promising direction for improvement of the multilabel classifier performance. 

Currently, we are focused on performing more tests (especially with other sizes of 
hidden layer) and on other data sets in order to further verify the efficacy of proposed 
modifications. 
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