A Monte Carlo Tree Search approach to finding efficient
patrolling schemes on graphs

Jan Karwowski*, Jacek Mandziuk

Faculty of Mathematics and Information Science, Warsaw University of Technology,
Koszykowa 75, 00-662 Warsaw, Poland

Abstract

In this paper we propose an evader-defender type of game for modeling
multi-step patrolling scenarios on a graph. The game utilizes a specifically
designed graph-based setting which captures spatial arrangements of the
protected area, for instance industrial premises or warehouses, wherein cer-
tain valuable assets are stored. The game is played by two sides: the evader
who attempts to steal or destroy the assets and the defender whose aim is to
intercept the evader and prevent him/her from accomplishing his/her goal.

Real-life specificity of the proposed game assumes information asym-
metry between the two sides as the evader can usually observe defender’s
patrolling schedules prior to making decision of an attack. For this rea-
son, we employ the Stackelberg Game principles to model our game and
consequently focus on approximation of Stackelberg Equilibrium during the
solution process. To this end we propose a novel approach, called Mixed-
UCT, which relies on Upper Confidence Bound applied to Trees algorithm
— a variant of Monte Carlo Tree Search.

The efficacy of the proposed solution method is experimentally evaluated
on randomly generated games played in warehouse-like, industrial environ-
ment. The results show that Mixed-UCT is efficient and scales very well
for multi-step games with reasonable number of steps, leading to optimal or
close-to-optimal strategies.

Keywords: Game theory, Stackelberg Games, MCTS, Security Games

1. Introduction

In many real-life situations, effective planning of patrolling schedules
is critical for ensuring adequate level of security for assets, locations or
people (Haveman et al., 2005; Tambe, 2011). While such a task can be (and

*Corresponding author
Email addresses: jan.karwowski@mini.pw.edu.pl (Jan Karwowski),
J.Mandziuk@mini.pw.edu.pl (Jacek Maridziuk)

Preprint submitted to Elsevier

often is) performed by a human, using an algorithmic approach offers several
advantages:

e it may potentially lead to discovering of highly effective, though counter-
intuitive for humans, patrolling schemes (Neuringer, 1986).

e planned-by-humans patrolling schedules tend to be schematic, while
algorithmically developed schemes, especially when backed-up by game-
theoretic models, can lead to higher patrolling effectiveness (Fang
et al., 2013; Jain et al., 2010b; Wang et al., 2018),

e human assessment of a security situation may not be fully rational and
is often biased by some kind of subjectivity (Rubinstein, 1998).

In this paper, a patrolling-based approach to the problem of protection
of certain areas, like warehouses or factory premises, modeled on graphs, is
considered. On a general note, the considered environment admits a complex
structure and includes valuable assets (e.g. commodities or machines), stored
in certain places, which require special care from the patrolling security
troops.

In order to capture the properties of such an environment, an undirected
graph-based representation of locations is used. Graph vertices correspond
to particular locations in the area. Edges denote the possibility of moving
between the respective adjacent locations. Some locations, as mentioned
above, contain certain assets that need to be protected from unauthorized
access.

The solution relies on game-theoretic modeling of optimal responses.
Patrolling scenarios are represented in the form of a sequential game played
by two sides: the evader (attacker) who tries to reach the assets located in
graph vertices, and the defender, possessing one or more patrolling units,
whose goal is to intercept the evader. As patrolling is a repetitive activity,
the defender’s goal is to maximize the average expected utility value across
infinitely many games, not an outcome of a single sequential playout.

A formal description of a game is presented in the next section. In
short, it follows the Stackelberg Game (SG) model, which assumes infor-
mation asymmetry between the players in the form that the evader knows
the defender’s mixed strategy (probability distribution of actions) before
committing to a particular attack-related decision. This property, and con-
sequently selection of SG as a baseline model, is motivated by the fact that
in our settings an evader, during attack preparation, can surveil patrolling
schedules of the defender and infer their probability distribution. The SG
model has proven suitable in many similar applications, e.g. (Korzhyk et al.,
2011; Johnson et al., 2012; Fang et al., 2013; Gan et al., 2015).

The proposed solution method (called Mized-UCT) relies on approxi-
mation of the Stackelberg Equilibrium (SE) (Stackelberg, 1934; Leitmann,

1978) by means of Monte Carlo Tree Search (MCTS) (Browne et al., 2012)
simulations. A particular MCTS variant used in Mixed-UCT is Upper Confi-
dence Bound applied to Trees (UCT) (Kocsis and Szepesvari, 2006). Mixed-
UCT extends our previous approach, initially sketched in (Karwowski and
Mandziuk, 2016) and its main advantage is very good scalability, beyond
state-of-the-art exact approaches. Application of Mixed-UCT leads to op-
timal or close-to-optimal solutions for game instances intractable by the
existing algorithms.

1.1. Related literature

The most popular realization of SGs are Security Games which encom-
pass a broad spectrum of SE-related evader-defender situations. Vast ma-
jority of Security Games presented in the literature differ from our approach
by considering only single-step game scenarios. Other, more complex, multi-
step SGs refer to specific (different from ours) game settings or game struc-
ture (Korzhyk et al., 2011; Johnson et al., 2012; Fang et al., 2013; Gan et al.,
2015; Basilico et al., 2012). Furthermore, some patrolling games do not as-
sume the possibility of exploiting the defender’s strategy by the evader (and
consequently do not aim at approximation of SE), e.g. (Zoroa et al., 2012;
Saksena, 1979; Baykal-Giirsoy et al., 2014; Hohzaki and Maehara, 2010).

The most common approach to calculation of SE relies on Linear Pro-
gramming (LP) (Conitzer and Sandholm, 2006) or Mixed Integer Linear
Programming (MILP) (Paruchuri et al., 2008a). A typical (MI)LP approach
requires the use of at least O(nm) variables and O(m) constraints, where n
and m are the numbers of defender’s and evader’s strategies, respectively.
Finding SE in multi-step games was proven to be NP-hard (Conitzer and
Sandholm, 2006). Values of n and m grow exponentially with the number
of steps making calculation of SE prohibitive. Mitigation of this problem is
an important part of SG research and includes:

e the use of marginal strategies (Schlenker et al., 2016) and compact
game forms, e.g. flow graphs (Wang et al., 2018), which impose ad-
ditional constraints on games, most notably the requirement of being
Zero-sum;

e the use of column-generation strategy (Jain et al., 2010a) which re-
lies on initially solving a game with small subset of defender’s strate-
gies and gradually adding the missing ones, according to some heuris-
tic. Construction of an efficient heuristic is a complicated and game-
dependent task that cannot be generalized to other types of games;

e the use of constraint generation (Bosansky et al., 2014) which gradu-
ally adds evader’s strategies to a program. This approach is limited
to games with specific utility structures, e.g. zero-sum ones;

e employment of approximation techniques with theoretically proven
bounds on solution quality (Jain et al., 2011);

e application of memetic algorithms which rely on domain-based heuris-
tics and offer very good time and memory scalability (Karwowski et al.,
2019).

All the above-mentioned approaches lead to reduction of computational de-
mands when searching for SE strategies but are restricted to specific games
and require significant amount of work to be adequately applied to another
type of game.

On the contrary, the approach proposed in this paper is general and
straightforwardly applicable to various SG settings. The heart of the method
is MCTS algorithm (Browne et al., 2012) which proved to be successful in
various application domains, e.g. playing games with large state spaces (Sil-
ver and Veness, 2010; Silver et al., 2017), General Game Playing (Finns-
son and Bjornsson, 2008; Swiechowski and Marndziuk, 2014), planning and
scheduling (Walgdzik and Maridziuk, 2018), or bus traffic regulation (Cazenave
et al., 2009).

Another field of study that aims at solving problems of similar type is
network interdiction (Smith et al., 2013). A typical network interdiction
problem is defined on a graph with certain costs of traversing each edge
and, optionally, capacities of edges. Network interdiction problem models
competition between the two sides: (1) — the one that tries to traverse the
network while minimizing the sum of weights of traversed arcs or maximize a
flow through a network under some cost constraints and (2) — its opponent
that tries to minimize the outcome of (1) by blocking some arcs in the
network. The defender can play the role of either (1) or (2), depending
on a particular application. For example, (1) may try to smuggle some
cargo trough a border and the defender (2) is blocking some of the possible
routes (Morton et al., 2007). An example of the opposite setting is resilience
of a power grid, where (1) tries to build a power grid capable of supplying
requested amount of power to each node and (2) attempts to destroy certain
connections in the grid (Brown et al., 2006). Typically, network interdiction
problems are instances of bi-level optimization, either min-max or max-min.
Network interdiction covers many application areas, including interdicting
development of nuclear weapons by adversary countries (Brown et al., 2009),
preventing smuggling of radioactive material (Morton et al., 2007), detecting
entities crossing borders or trespassing restricted areas (Romich et al., 2015),
or fighting large fires, both wildfires as well as fires purposely started by a
human (Rashidi et al., 2018b,a).

A model considered in this paper differs from a typical network interdic-
tion approach in the following four main aspects:

e the defender controls one or more units which constantly move on a

graph instead of statically blocking particular arcs (Smith et al., 2013;
Romich et al., 2015);

e the attacker initially possesses full knowledge of both a graph struc-
ture and the defender’s strategy since the defender plays the role of
the leader in Stackelberg Game model. This situation differs signifi-
cantly from recent network interdiction approaches where the attacker
starts with incomplete knowledge and learns new information with
subsequent game plays (e.g. Borrero et al., 2016, 2018). Furthermore,
in our model the defender commits to a mixed strategy instead of a
deterministic assignment of patrolling routes;

e the game is general-sum and therefore each of the players maximizes
their own utility function, what leads to a max-max bi-level optimiza-
tion problem, formally defined in Section 2.2. Typical network inter-
diction games are formulated as max-min or min-max bi-level prob-
lems.

1.2. Main contribution

The main contribution of this paper is twofold:

e it presents a new method of solving multi-step SGs which relies on
Monte Carlo Tree Search. The proposed approach is called Mixed-
UCT and extends our initial works in this area (Karwowski and Mandziuk,
2016, 2017) into a fully-developed, fast and efficient method of esti-
mation of the optimal defender’s strategy (approximation of SE) in
multi-step, non-zero sum SGs and is not limited to particular game;

e it proposes a practically-motivated new type of patrolling game sce-
nario which may be applied, for instance, to industrial areas, e.g. large
factory premises;

In addition, a generator of games embedded in industrial settings' is pre-
sented.

To the best of our knowledge there is only one other approach to SGs
that utilizes MCTS (Marecki et al., 2012) which, however, differs from ours
in two significant aspects: (1) the cited method is of online nature, and (2)
its goal is to optimize the sum of payoffs of a series of games in which the
defender gradually discovers preferences of the evader. Consequently, the
approach to calculation of mixed strategies proposed by Marecki et al. is
completely different from ours.

!The source code of industrial-type game generator and of Mixed-UCT method is
available at the project website (Maridziuk, 2018).

The remainder of this paper is organized as follows: Section 2 formally
defines a game model used in the paper. The next section introduces Mixed-
UCT approach — a novel method of approximating the optimal defender’s
patrolling strategy in multi-step SGs. Section 4 presents experimental setup
(including a generator of random industrial-type benchmark games) and
experimental results. The last section provides conclusions based on exper-
imental evaluation and specifies our future plans related to continuation of
this research.

2. Game Model

The game is played by two players: the evader and the defender, on
a graph G = (V, E) consisting of a set of vertices (also called nodes) V/
and a set of undirected edges E C {{z,y}|r,y € V Az # y}. Without
loss of generality we will assume that elements of V' are labeled by natural
numbers from 0 to |V| — 1. The evader is a single entity and the defender is
a centralized authority that has one or more mobile units at their disposal.
Both the evader and the defender’s units can move between the neighboring
vertices.

An underlying graph represents a spatial arrangement of industrial premises
which require protection. Each vertex represents a particular part of the
premises, e.g. a building, a room, a corridor, a segment of a road, etc.
FEdges denote direct connections between the neighboring areas. A direct
connection means that leaving one area is equivalent to entering the other
one (with no space “in between”). In the case of buildings, such connections
are realized by means of gates, doors, etc. In the case of outside spaces,
edges refer to adjacent areas not separated by walls, fences, etc.

Each graph G = (V, E) contains several special vertices: vy € V — a
starting vertex for the defender’s units, v, € V' — an entry vertex for the
evader, and a few vertices in which assets are located — these vertices are
referred to as target vertices or simply targets.

Each target vertex v; has two values assigned:

° UiEJr, which is the evader’s reward for successfully reaching target v;
(and capturing the asset located therein)

o U iD ~, which is a penalty for the defender for a successful opponent’s
attack (and losing the asset located in v;).

Furthermore, each vertex v; (either target or non-target) has assigned a
reward value for the defender when he/she intercepts the evader in a given
vertex, and a respective penalty for the evader. These payoffs are denoted
by UZ-E ~ and UZ-D T, respectively. While this is not a formal requirement,
typically utility values with minus sign in an upper index are negative (the
respective player looses a game) and utilities with plus sign are positive

(they are assigned to the game winner). The game is general-sum, i.e. it is
not assumed that utilities of players sum up to 0 and each player maximizes
his/her own utility function.

2.1. Game rules

The game consists of at most (7' > 1) rounds and is played according to
the following rules:

1. A defender has n units, all initially placed in vg; an evader has one
unit initially placed in ve;

2. In each round players simultaneously make decision about new loca-
tions of their units. Each unit can be either left in the current vertex
or moved to an adjacent vertex;

3. After making the above decisions, units are placed in the chosen ver-
tices;

4. Let’s assume that the evader is currently in vertex vi. Then,

(a) if there is at least one defender unit in v, the evader is intercepted
and the game ends with the payoffs U, k,E -, U,? * for the evader and
the defender, respectively;

(b) if vy is a target vertex and the condition from point 4a is not
met, the evader succeeds and the game ends with the respective
payoffs of U ,f U ,f) ~ for the evader and the defender;

(¢) if the limit 7" on the number of rounds is reached, the game ends
with the payoff U,, (neutral) granted to each of the players;

(d) otherwise the game continues from point 2.

Consequently, the game is played until either a defender’s unit and the
evader meet in any of the vertices, or the evader reaches a target, or the
round limit 7" is exceeded. In the game setting, it is assumed that players
cannot directly observe each other during the game. They get to know
the opponent’s location only when both parties meet in a common vertex
(cases 4a, 4b on the above list) what ends the game.

From the perspective of the game theory, the game has an extensive
form, is sequential (multi-step), of simultaneous moves, and with imperfect
information (players cannot directly observe each other during the game).

2.2. Stackelberg Game

Before introducing an equilibrium of the game we describe game-theoretic
idea of pure and mixed strategies. A pure strategy, sometimes called a pure
realization plan, is an assignment of an action to each potentially reachable
state of the game. In our game a pure strategy of each player is a sequence of
legal decisions concerning locations of their units in each of 7" game rounds.
Therefore, a pure strategy can be represented as a vector of vertices o € V1
such that each subsequent position of a unit is either equal to or adjacent

to its previous position in the graph. In case of the defender there may be
more than one unit, so in such a situation a vector of tuples is used — one
element per unit. A set of all pure strategies of player ¢ € {D, E} (defender
and evader, respectively) will be denoted by ¥;. Please note that some of
decision points may not materialize if game ends earlier, so not all of planned
decisions will be used in a particular game realization.

A mixed strategy is a probability distribution over ¥;. Let’s denote a set
of all possible mixed strategies by II; and its elements by m; € II;. We will
extend the payoff related notation U},i € {ET, E~, D%, D™}, introduced
in the previous subsection, to functions U*(7p, 7) which will represent the
expected utility value for player i assuming that the defender commits to
playing strategy mp and the evader decides to play strategy wg. The goal
of the defender is to find a mixed strategy that maximizes their expected
payoff when playing infinitely many games instead of optimizing an outcome
of a single game.

Furthermore, it is assumed that once the defender commits to a partic-
ular mixed strategy, the evader can observe the defender’s patrolling units
for a sufficiently long time to gain knowledge about his/her mixed strategy,
before deciding about an attack. In order to model this information asym-
metry between the players, our model follows the principles of Stackelberg
Game. Finding a solution of the game is therefore equivalent to finding the
Stackelberg Equilibrium. In SG there are two players: the leader and the
follower,

e the leader commits to some probability distribution of possible moves
at the start of the game and subsequently chooses moves according to
that distribution;

e the follower chooses their move distribution so as to maximize their
expected reward, being aware of the probability distribution of the
leader’s moves.

In our model the defender plays the role of the leader and the evader that of
the follower. Please note that even though the evader knows the probability
distribution of the patrolling routes of defender’s units, he/she does not
possess precise knowledge about which route will be actually used in a given
playout.

Using the above notation the SE can formally be defined as a pair
(mp,mp) satisfying the following equations:

BR(np) = argmax U” (np, n) (1)
mr€llp
argmax U (mp, BR(wp)) (2)
np€llp

Equation (2) selects the defender’s mixed strategy that yields the best utility
for the defender against the best evader’s response (to this strategy). The

best response is defined in equation (1) and denotes the evader’s strategy
that optimizes their utility against a given defender’s mixed strategy.

SE is not well defined when there exists more than one best response
strategy (1). For this reason, a variant of SE called Strong Stackelberg
Equilibrium (SSE) (Leitmann, 1978) was proposed. SSE specifies the def-
inition of BR by selecting the evader’s response that provides the highest
utility for the defender, among those fulfilling (1). Less formally, in SSE, ties
among BR(7wp) fulfilling (1) are broken in favor of the defender. The goal
of the game is to find the mixed strategy for the defender, i.e a probability
distribution of defender’s moves, that fulfils the SSE conditions.

SE/SSE has an important theoretical property which has strong practical
(computational) consequences. Namely, it can be proven (Conitzer and
Sandholm, 2006) that in SE/SSE among all possible evader’s best response
strategies (1), there always exists at least one strategy that is in the form of
a pure strategy. It is therefore possible to enumerate a finite number of pure
evader’s strategies when calculating SE/SSE. Please note that this property
does not hold for the defender’s strategies.

2.8. FExample game

An example game is presented in Fig. 1a (industrial warehouse scenario)
and Fig. 1b (its graph-based model). For simplicity, it is assumed that there
is only one defender’s unit and that the game has 5 steps. In order to enter
any of the three target rooms (vertices 0, 1, 2) the evader, who starts in
vertex 8, must go around the building. Therefore, he/she has to choose a
direction, i.e. to go either clockwise or counter-clockwise. Due to round limit
(T = 5) while going clockwise only rooms 1 and 2 can be reached by them,
and when going counter-clockwise only rooms 0 and 1 are reachable.

2.3.1. Strong Stackelberg Equilibrium of the game

Since in our example there is only one defending unit, pure strategies for
both the evader and the defender are represented as vectors of length 7" =5
(c.f. Section 2.2). Table 1 presents mixed strategies that comprise SSE for
the example game along with the respective players’ utility values. The
structure of the SSE illustrates a crucial balance between two conflicting de-
fender’s goals: protecting either the clockwise path or the counter-clockwise
path to the warehouse. The mixed strategy of the evader is composed of
three possible sequences — three variants of a clockwise route, each of them
to be chosen with probability % The numbers in each sequence denote ver-
tices visited by the evader in consecutive steps of the game. The defender’s
mixed strategy comprises of two move sequences with probabilities 0.4 and
0.6, respectively. Please note that the evader can use any of these three pure
strategies (with probability 1), to attain exactly the same result.

Observe that at first sight playing the first sequence by the defender
does not seem to be correct as the expected utility is low (equals —15, since

200

1700000000000 9 B(-1)

(a) A sketch of a warehouse. Dashed area is (b) Graph-based representation of the premises

a fenced pavement around the building, with presented in Fig. la. A red circle (vertex num-

the only gate in the bottom left. The building ber 8) denotes the evader entry point, diamond-

consists of three rooms, all accessible from shaped vertices (0, 1 and 2) are targets that con-

the outside, each containing an asset. tain assets. All defender’s units start in vertex
0.

oy /7 /'// /7 ////
55050051 LY 0 Y
Y Y Y oy
ey 1 5ECL) |] 4E(D
A e e 1 D(1) D(1)
_ mr> .
Sy S 1
ey 1
5555555555 1000 6 E(-1) 3 E(-1)
ey i D(1) D(1)
Yy v
1000000000 0 [
1
Iy 0000
P 20 TE(1) 10
ey D(1) E(-1)
ey 1 D(1)
ey 1
0007 00000
7 ’
7 ’

NN
NNNNANNNNAY
SNNNNINNNNY
NNNNNNNNNY
NNNNNNNNNY
SNNNNINNNNY
NNNNNNNNNY
N

Figure 1: Industrial premises in the form of a warehouse building with a road around it.
Each non-target vertex has two utility values assigned: E(UF~) and D(UPT). In target
vertices there are four values: E(UFT,UF~) and D(UP',UP~). Please see Section 2.1
for the meaning of these payoffs.

the evader successfully reaches vertex 2 in this scenario). However, playing
this sequence with a certain probability (0.4) is actually indispensable for
keeping the evader away from vertex 0. If this sequence was played with
lower probability, the evader would switch their focus to vertex 0, as this
scenario would then become much more appealing to them. This situation is
illustrated in Table 2 which presents a slightly distorted defender’s strategy
for this game and the responsive evader’s strategy. The expected payoffs for
the defender and the evader are equal to —4.20 and 11.40 in the case of the
optimal defender’s strategy, and —7.98 and 11.81 in the case of the distorted
strategy.

The following two remarks are apparent conclusions from the above ex-
ample.

Remark 1. Even a slight divergence from the optimal defender’s strategy
in SSE may cause significant deterioration of his/her expected utility.

Remark 2. Probabilities of defender’s moves in the SSE strategy are of-
ten not proportional to their respective utilities under the optimal evader’s
response. The defender may have to play some moves with poor utility to
prevent the evader from changing their strategy.

10

Table 1: Optimal defender’s strategy and the corresponding optimal evader’s strategy for
an example game depicted in Fig.1b. The rightmost columns present the expected game
reward associated with the particular sequence of moves. See description within the text
for a detailed discussion.

Optimal Defender Evader
Pr. Sequence E(Up) Pr. Sequence E(Ug)
04 0,0,0,0,0 15 033 7.7,6,5 2 11.40
0.6 3,4,5 2 2 3 033 7,6,6,5 2 11.40
033 8,7,6,52 11.40

b

Table 2: A slightly distorted optimal defender’s strategy and the respective optimal
evader’s response strategy. Observe that even small deviation from the optimal defender’s
strategy may cause a complete redefinition of the evader’s mixed strategy (choosing a
counter clockwise path instead of a clockwise one, as in Table 1), which is now more
beneficial for them.

Suboptimal Defender Evader
Pr. Sequence E(Up) Pr. Sequence E(Ug)
0.39 0,0,0,0,0 3 033 9,9,10,3,0 11.81
0.61 3,4,5,2, 2 -15 0.33 9,10,10,3,0 11.81

033 8,9,10,3,0 11.81

Both of the above remarks are critical factors taken into account when
designing the method of SSE approximation presented in the next section.

3. Mixed-UCT Method

In this section the proposed UCT-based method for approximating the
mixed defender’s strategy in imperfect-information multi-step SG is pre-
sented. In Section 3.1, the vanilla UCT algorithm, which performs heuristic
search for the best move in perfect-information games is described. This
baseline UCT description is followed in Section 3.2 by a presentation of cer-
tain modifications which make the method suitable for imperfect-information
games. In the last section our iterative Mixed-UCT method which relies on
applying this imperfect-information UCT version against gradually improv-
ing evader, in order to derive an approximation of the optimal defender’s
mixed strategy is introduced.

3.1. UCT

Upper Confidence Bounds applied to Trees (UCT) proposed by Kocsis
and Szepesvari (2006) is a variant of Monte-Carlo Tree Search (MCTS)
method for choosing the best move for the currently moving player (UCT-
player) in finite multi-step perfect-information games. UCT gradually builds
a game tree composed of nodes — representing game states and edges —

11

representing moves/actions. Game states can be either terminal or non-
terminal. For each of the players, each terminal state has some payoff value
assigned. The goal is to maximize the expected long-term payoff of the
UCT-player. Within the allotted time (e.g. a tournament time for making a
move) UCT performs as many game simulations as possible, starting from
the current game state and going down the game tree until the terminal
state is reached. In that state the payoff of the UCT-player is read out and
back-propagated along the move sequence which led to this state, up to the
root node. Based on this back-propagated payoff value, the expected payoff
(estimated quality) of each move on the path is updated.

The underlying difference between the baseline MCTS formulation and
UCT is the way of choosing the next move in the above-described simula-
tions. MCTS selects the move uniformly among all available moves, while
UCT chooses the move based on the current estimation of the candidate
moves’ strengths and visit counters, relying on the so-called Upper Confi-
dence Bounds (UCB) method by Auer et al. (2002). The UCB method pro-
vides a formula to balance the frequency of using the strongest moves recog-
nized so far and the exploration of other, potentially underestimated, moves.
The method addresses the classical exploration-exploitation dilemma (Ishii
et al., 2002), offering theoretically justified optimal solution in the sense of
maximization of the expected long-term cumulative payoff.

In the realm of game playing, the UCT player performs multiple simula-
tions from the current game state. In each simulation, while in game state
s being faced with the selection of move to be played (simulated), it applies
the following UCB action-selection rule:

1. choose uniformly any move among those not yet tried in previous sim-
ulations (if one exists);

2. otherwise (if all moves available in a given state have been tried al-
ready), select move a* which maximizes the following formula:

. In N(s)
= arg max C
a aa%A(S {Q(s,a)Jr N(Sm}, (3)

where A(s) is the set of all available moves in state s, Q(s, a) is the average
utility of playing action a in state s in previous simulations, N(s) is the
number of times state s has been visited, and N (s, a) is the number of times
move a has been sampled in this state so far.

Formula (3) postulates to select actions with the highest expected re-
wards, but, on the other hand, repetitive sampling of the same moves needs
to be avoided, due to incrementing of N(s,a) after each trial of action a.
Please observe that constant C plays a crucial role in maintaining the appro-
priate balance between exploration (the right term) and exploitation (the
left term).

12

The UCT method, while simulating game actions, traverses the game
tree and in each visited node chooses the move according to the UCB formula
(3). As stated above, once the terminal node is reached, the accomplished
utility value is propagated back, all the way up to the root node. In each
node s on this path the visit counters N(s) and N (s, a) related to visiting
state s and playing action a in that state, respectively, are incremented.
Likewise, the average utility, which corresponds to quality estimation of
move a in node s - Q(s,a), is updated.

Once the time allotted for simulations is utilized and a real decision in
the current root state s needs to be made, a move with the highest Q(s, a)
estimation is selected to be executed. Alternatively, a move with the highest
number of visits (the most reliable selection) N(s,a) or some combination
of these two scores may be considered (Browne et al., 2012).

UCT was successfully applied to many board games, in particular Go (Sil-
ver et al., 2017; Wang and Gelly, 2007; Gelly and Silver, 2011), Havan-
nah (Teytaud and Teytaud, 2010) or the so-called General Game Play-
ing competitions (Finnsson and Bjérnsson, 2008; Swiechowski et al., 2016;
Swiechowski and Mandziuk, 2014; Waledzik and Mandziuk, 2014). In all
these highly challenging AI domains UCT defines de facto state-of-the-art
approaches, as vast majority of top machine players implement this tech-
nique as its base search engine. It is important to note that in two-player
games, as the number of game simulations approaches infinity, the UCT out-
come converges to the min-max assessment of moves (Kocsis and Szepesvari,
2006).

Recently, the method also gained popularity in stochastic problem do-
mains including decision problems based on Partially Observable Markov
Decision Processes (Kolobov et al., 2012; Keller and Eyerich, 2012; Feld-
man and Domshlak, 2014), Dynamic Vehicle Routing Problems (Maridziuk
and Swiechowski, 2017) or Risk-Aware Project Scheduling (Waledzik and
Mandziuk, 2018). For a detailed description of the UCT method please
consult, for instance, (Kocsis and Szepesvari, 2006; Browne et al., 2012;
Swiechowski et al., 2015).

3.2. UCT in imperfect-information games

As stated in the previous section, UCT is typically applied to decision
problems with perfect-information, whose decision sequences can be rep-
resented as paths in a graph (usually a tree or directed acyclic graph).
Utilization of UCT in imperfect-information domains requires its specific
adjustment. Such a modification of UCT, rendering the method suitable
for imperfect-information games, called I12-UCT, was proposed in our pre-
vious work presenting the initial attempt to solving SGs (Karwowski and
Mandziuk, 2015).

In imperfect-information games each player can observe only some pro-
jection of the game state which does not comprise full game state descrip-

13

tion, i.e. a player can observe an information set containing several poten-
tially achievable game states, which are indistinguishable for them. Infor-
mation sets are used in game theory to represent imperfect information in
a game (Kuhn, 1950; Basar and Olsder, 1998). In the case of our model
the imperfect-information nature of the game is reflected by the fact that
players are not aware of positions of the opponent’s units. Consequently, the
game state observed by the defender can, in principle, correspond to various
real (perfect-information) game states depending on particular placement
of the evader. Since the UCT-based game simulation is performed by the
defender from the concrete game state, some assumption about the evader’s
current position must be made. This problem was addressed in (Karwowski
and Mandziuk, 2015) and, in short, resolved in the following way. In the
case of imperfect-information games we propose that UCT be assisted with
a certain state sampling procedure, which would yield one of the real game
states (among all feasible ones) based on a sequence of defender’s moves
that led to a given information set. Hence, the UCT simulations do not
start from a fixed current state, but instead, before each simulation, the
current state (the root for the simulation) is sampled in the following way
(cf. Algorithm 1 for the details):

1. Define state as the initial game state.

2. Play a sequence of defender’s moves, which leads to the current infor-
mation set, against the sampled sequence of evader’s moves.

Next, a standard UCT simulation is performed from the state reached in
point 2 above.

Algorithm 1: [2-UCT — Imperfect-Information UCT

Input: depth— (depth in game tree) number of previous moves

moves— vector of defender’s moves that led to the current situation

1 for i + 1...simCount do

2 state < InitialState

3 for d < 1---depth — 1 do

4 MakeMove (state, moves [d/) // Make move and simulate
evader response

5 SingleRun(state)// A single UCT simulation from sampled

state.

The above described imperfect-information version of UCT is a core
part of a method for mixed strategy approximation introduced in the next
section.

Please observe that the main difference between 12-UCT and other re-
lated approaches to imperfect-information games (PIMC (Ginsberg, 2001)
or ISMCTS (Cowling et al., 2012)) is that our method samples states with

14

respect to the opponent’s strategy while the two other ones use uniform
distribution for state sampling.

Another related idea is the HyperPlay algorithm proposed by Schofield
et al. (2012) which also offers an interesting approach to sampling a game
state after a given sequence of moves. The method differs from 12-UCT in
the two following main aspects: (1) it maintains a set of possible states and
refines it along with the game advancement, as opposed to sampling brand
new states in each step, performed by I12-UCT; (2) it does not focus on the
opponent’s strategy in any specific way.

3.8. UCT for mized strategies

The remainder of this section describes the main contribution of the
paper which is an iterative algorithm for finding mixed strategy for the
defender in SG. The main idea of the method was briefly announced in
a short 2-page paper (Karwowski and Mandziuk, 2016) in three possible
variants. In this paper its most promising version called Full Tree is further
developed, fully described and thoroughly evaluated. Generally speaking,
within allotted time, the system performs as many game simulations as
possible and gathers information about the respective evader’s responses
before committing to a particular mixed strategy in the real play.

Observe that in information-asymmetric (IA) games, in which the evader
knows the defender’s strategy, using a pure strategy by the defender is clearly
a weak approach as the evader may easily exploit its deterministic nature.
Instead, in [A games, the defender must adopt a mixed strategy to op-
timize their outcome. In other words we are facing the following bi-level
optimization problem: find the defender’s strategy which maximizes their
payoff against the optimal evader, where the optimal evader does not use
fixed strategy but a strategy which is a function of the defender’s strategy.

The underpinning idea of the solution method consists of two elements:

e Use I2-UCT to gather information about effective defender’s strategies
played against various evaders.

e Combine the collected pure strategies into one coherent mixed strategy
taking into account two remarks from Section 2.3.1.

It is worth to underline that the method does not require any specific
data structures or additional resources compared to baseline UCT version.
The same state-transition (game tree) structure is used to perform simula-
tions and to collect game statistics in both versions.

There is, however, a fundamental difference on the operational level. In
a typical UCT approach to sequential multi-step games, after each simula-
tion phase a move pointed by the algorithm is played and the next UCT
simulation phase starts from a new state defined by the performed move and

15

Perform 12-UCT

T Build defender’s
Initialize training against e detenders Return best known
evader’s strategy average of strategy from defender’s strategy
s given UCT tree
recent evaders yes

i ¥
Update no Check stop
evader’s strategy conditions

Figure 2: Outline of Mixed-UCT

an opponent’s response move. In Mixed-UCT, since we are using the Stack-
elberg Game model, the output of the method is not a single move, but a
probability distribution of move sequences (pure strategies) of length equal
to the number of game rounds. In other words, in Mixed-UCT the whole
simulation process is performed offline and only the final mixed strategy (a
set of pure strategies of length 7" with assigned probabilities) is used to play
the game.

Certainly, the most desirable approach to derive the final mixed strat-
egy would be to simulate the defender player against the optimal evader in
a one-shot procedure instead of making iterative simulations against grad-
ually changing evaders. However, due to bi-level problem formulation such
an approach is not feasible. Therefore, the proposed method adopts an it-
erative approach (see Fig. 2). The initial evader’s strategy is assumed to
be uniform. Then, the first UCT simulation phase (iteration) is performed
with the I12-UCT method against this initial evader. Based on the outcomes,
the first defender’s strategy is extracted from the UCT tree (the method of
strategy extraction is presented in the following subsection). Afterwards,
each subsequent UCT iteration is performed against a combination of the
evader’s strategies developed in previous iterations. In response, in each iter-
ation, the evader which, by game definition, is aware of the defender’s mixed
strategy and has the ability to explore its potential weaknesses, adapts its
strategy accordingly. This iterative procedure is repeated until predefined
stopping conditions are met.

The outline of the Mixed-UCT method is presented in Algo