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Abstract

In this paper we propose an evader-defender type of game for modeling
multi-step patrolling scenarios on a graph. The game utilizes a specifically
designed graph-based setting which captures spatial arrangements of the
protected area, for instance industrial premises or warehouses, wherein cer-
tain valuable assets are stored. The game is played by two sides: the evader
who attempts to steal or destroy the assets and the defender whose aim is to
intercept the evader and prevent him/her from accomplishing his/her goal.

Real-life specificity of the proposed game assumes information asym-
metry between the two sides as the evader can usually observe defender’s
patrolling schedules prior to making decision of an attack. For this rea-
son, we employ the Stackelberg Game principles to model our game and
consequently focus on approximation of Stackelberg Equilibrium during the
solution process. To this end we propose a novel approach, called Mixed-
UCT, which relies on Upper Confidence Bound applied to Trees algorithm
– a variant of Monte Carlo Tree Search.

The efficacy of the proposed solution method is experimentally evaluated
on randomly generated games played in warehouse-like, industrial environ-
ment. The results show that Mixed-UCT is efficient and scales very well
for multi-step games with reasonable number of steps, leading to optimal or
close-to-optimal strategies.

Keywords: Game theory, Stackelberg Games, MCTS, Security Games

1. Introduction

In many real-life situations, effective planning of patrolling schedules
is critical for ensuring adequate level of security for assets, locations or
people (Haveman et al., 2005; Tambe, 2011). While such a task can be (and
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often is) performed by a human, using an algorithmic approach offers several
advantages:

• it may potentially lead to discovering of highly effective, though counter-
intuitive for humans, patrolling schemes (Neuringer, 1986).

• planned-by-humans patrolling schedules tend to be schematic, while
algorithmically developed schemes, especially when backed-up by game-
theoretic models, can lead to higher patrolling effectiveness (Fang
et al., 2013; Jain et al., 2010b; Wang et al., 2018),

• human assessment of a security situation may not be fully rational and
is often biased by some kind of subjectivity (Rubinstein, 1998).

In this paper, a patrolling-based approach to the problem of protection
of certain areas, like warehouses or factory premises, modeled on graphs, is
considered. On a general note, the considered environment admits a complex
structure and includes valuable assets (e.g. commodities or machines), stored
in certain places, which require special care from the patrolling security
troops.

In order to capture the properties of such an environment, an undirected
graph-based representation of locations is used. Graph vertices correspond
to particular locations in the area. Edges denote the possibility of moving
between the respective adjacent locations. Some locations, as mentioned
above, contain certain assets that need to be protected from unauthorized
access.

The solution relies on game-theoretic modeling of optimal responses.
Patrolling scenarios are represented in the form of a sequential game played
by two sides: the evader (attacker) who tries to reach the assets located in
graph vertices, and the defender, possessing one or more patrolling units,
whose goal is to intercept the evader. As patrolling is a repetitive activity,
the defender’s goal is to maximize the average expected utility value across
infinitely many games, not an outcome of a single sequential playout.

A formal description of a game is presented in the next section. In
short, it follows the Stackelberg Game (SG) model, which assumes infor-
mation asymmetry between the players in the form that the evader knows
the defender’s mixed strategy (probability distribution of actions) before
committing to a particular attack-related decision. This property, and con-
sequently selection of SG as a baseline model, is motivated by the fact that
in our settings an evader, during attack preparation, can surveil patrolling
schedules of the defender and infer their probability distribution. The SG
model has proven suitable in many similar applications, e.g. (Korzhyk et al.,
2011; Johnson et al., 2012; Fang et al., 2013; Gan et al., 2015).

The proposed solution method (called Mixed-UCT ) relies on approxi-
mation of the Stackelberg Equilibrium (SE) (Stackelberg, 1934; Leitmann,
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1978) by means of Monte Carlo Tree Search (MCTS) (Browne et al., 2012)
simulations. A particular MCTS variant used in Mixed-UCT is Upper Confi-
dence Bound applied to Trees (UCT) (Kocsis and Szepesvári, 2006). Mixed-
UCT extends our previous approach, initially sketched in (Karwowski and
Mańdziuk, 2016) and its main advantage is very good scalability, beyond
state-of-the-art exact approaches. Application of Mixed-UCT leads to op-
timal or close-to-optimal solutions for game instances intractable by the
existing algorithms.

1.1. Related literature

The most popular realization of SGs are Security Games which encom-
pass a broad spectrum of SE-related evader-defender situations. Vast ma-
jority of Security Games presented in the literature differ from our approach
by considering only single-step game scenarios. Other, more complex, multi-
step SGs refer to specific (different from ours) game settings or game struc-
ture (Korzhyk et al., 2011; Johnson et al., 2012; Fang et al., 2013; Gan et al.,
2015; Basilico et al., 2012). Furthermore, some patrolling games do not as-
sume the possibility of exploiting the defender’s strategy by the evader (and
consequently do not aim at approximation of SE), e.g. (Zoroa et al., 2012;
Saksena, 1979; Baykal-Gürsoy et al., 2014; Hohzaki and Maehara, 2010).

The most common approach to calculation of SE relies on Linear Pro-
gramming (LP) (Conitzer and Sandholm, 2006) or Mixed Integer Linear
Programming (MILP) (Paruchuri et al., 2008a). A typical (MI)LP approach
requires the use of at least O(nm) variables and O(m) constraints, where n
and m are the numbers of defender’s and evader’s strategies, respectively.
Finding SE in multi-step games was proven to be NP-hard (Conitzer and
Sandholm, 2006). Values of n and m grow exponentially with the number
of steps making calculation of SE prohibitive. Mitigation of this problem is
an important part of SG research and includes:

• the use of marginal strategies (Schlenker et al., 2016) and compact
game forms, e.g. flow graphs (Wang et al., 2018), which impose ad-
ditional constraints on games, most notably the requirement of being
zero-sum;

• the use of column-generation strategy (Jain et al., 2010a) which re-
lies on initially solving a game with small subset of defender’s strate-
gies and gradually adding the missing ones, according to some heuris-
tic. Construction of an efficient heuristic is a complicated and game-
dependent task that cannot be generalized to other types of games;

• the use of constraint generation (Bosanský et al., 2014) which gradu-
ally adds evader’s strategies to a program. This approach is limited
to games with specific utility structures, e.g. zero-sum ones;
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• employment of approximation techniques with theoretically proven
bounds on solution quality (Jain et al., 2011);

• application of memetic algorithms which rely on domain-based heuris-
tics and offer very good time and memory scalability (Karwowski et al.,
2019).

All the above-mentioned approaches lead to reduction of computational de-
mands when searching for SE strategies but are restricted to specific games
and require significant amount of work to be adequately applied to another
type of game.

On the contrary, the approach proposed in this paper is general and
straightforwardly applicable to various SG settings. The heart of the method
is MCTS algorithm (Browne et al., 2012) which proved to be successful in
various application domains, e.g. playing games with large state spaces (Sil-
ver and Veness, 2010; Silver et al., 2017), General Game Playing (Finns-
son and Björnsson, 2008; Świechowski and Mańdziuk, 2014), planning and
scheduling (Walȩdzik and Mańdziuk, 2018), or bus traffic regulation (Cazenave
et al., 2009).

Another field of study that aims at solving problems of similar type is
network interdiction (Smith et al., 2013). A typical network interdiction
problem is defined on a graph with certain costs of traversing each edge
and, optionally, capacities of edges. Network interdiction problem models
competition between the two sides: (1) – the one that tries to traverse the
network while minimizing the sum of weights of traversed arcs or maximize a
flow through a network under some cost constraints and (2) – its opponent
that tries to minimize the outcome of (1) by blocking some arcs in the
network. The defender can play the role of either (1) or (2), depending
on a particular application. For example, (1) may try to smuggle some
cargo trough a border and the defender (2) is blocking some of the possible
routes (Morton et al., 2007). An example of the opposite setting is resilience
of a power grid, where (1) tries to build a power grid capable of supplying
requested amount of power to each node and (2) attempts to destroy certain
connections in the grid (Brown et al., 2006). Typically, network interdiction
problems are instances of bi-level optimization, either min-max or max-min.
Network interdiction covers many application areas, including interdicting
development of nuclear weapons by adversary countries (Brown et al., 2009),
preventing smuggling of radioactive material (Morton et al., 2007), detecting
entities crossing borders or trespassing restricted areas (Romich et al., 2015),
or fighting large fires, both wildfires as well as fires purposely started by a
human (Rashidi et al., 2018b,a).

A model considered in this paper differs from a typical network interdic-
tion approach in the following four main aspects:

• the defender controls one or more units which constantly move on a
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graph instead of statically blocking particular arcs (Smith et al., 2013;
Romich et al., 2015);

• the attacker initially possesses full knowledge of both a graph struc-
ture and the defender’s strategy since the defender plays the role of
the leader in Stackelberg Game model. This situation differs signifi-
cantly from recent network interdiction approaches where the attacker
starts with incomplete knowledge and learns new information with
subsequent game plays (e.g. Borrero et al., 2016, 2018). Furthermore,
in our model the defender commits to a mixed strategy instead of a
deterministic assignment of patrolling routes;

• the game is general-sum and therefore each of the players maximizes
their own utility function, what leads to a max-max bi-level optimiza-
tion problem, formally defined in Section 2.2. Typical network inter-
diction games are formulated as max-min or min-max bi-level prob-
lems.

1.2. Main contribution

The main contribution of this paper is twofold:

• it presents a new method of solving multi-step SGs which relies on
Monte Carlo Tree Search. The proposed approach is called Mixed-
UCT and extends our initial works in this area (Karwowski and Mańdziuk,
2016, 2017) into a fully-developed, fast and efficient method of esti-
mation of the optimal defender’s strategy (approximation of SE) in
multi-step, non-zero sum SGs and is not limited to particular game;

• it proposes a practically-motivated new type of patrolling game sce-
nario which may be applied, for instance, to industrial areas, e.g. large
factory premises;

In addition, a generator of games embedded in industrial settings1 is pre-
sented.

To the best of our knowledge there is only one other approach to SGs
that utilizes MCTS (Marecki et al., 2012) which, however, differs from ours
in two significant aspects: (1) the cited method is of online nature, and (2)
its goal is to optimize the sum of payoffs of a series of games in which the
defender gradually discovers preferences of the evader. Consequently, the
approach to calculation of mixed strategies proposed by Marecki et al. is
completely different from ours.

1The source code of industrial-type game generator and of Mixed-UCT method is
available at the project website (Mańdziuk, 2018).
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The remainder of this paper is organized as follows: Section 2 formally
defines a game model used in the paper. The next section introduces Mixed-
UCT approach — a novel method of approximating the optimal defender’s
patrolling strategy in multi-step SGs. Section 4 presents experimental setup
(including a generator of random industrial-type benchmark games) and
experimental results. The last section provides conclusions based on exper-
imental evaluation and specifies our future plans related to continuation of
this research.

2. Game Model

The game is played by two players: the evader and the defender, on
a graph G = (V,E) consisting of a set of vertices (also called nodes) V
and a set of undirected edges E ⊆ {{x, y}|x, y ∈ V ∧ x 6= y}. Without
loss of generality we will assume that elements of V are labeled by natural
numbers from 0 to |V | − 1. The evader is a single entity and the defender is
a centralized authority that has one or more mobile units at their disposal.
Both the evader and the defender’s units can move between the neighboring
vertices.

An underlying graph represents a spatial arrangement of industrial premises
which require protection. Each vertex represents a particular part of the
premises, e.g. a building, a room, a corridor, a segment of a road, etc.
Edges denote direct connections between the neighboring areas. A direct
connection means that leaving one area is equivalent to entering the other
one (with no space “in between”). In the case of buildings, such connections
are realized by means of gates, doors, etc. In the case of outside spaces,
edges refer to adjacent areas not separated by walls, fences, etc.

Each graph G = (V,E) contains several special vertices: vd ∈ V — a
starting vertex for the defender’s units, ve ∈ V — an entry vertex for the
evader, and a few vertices in which assets are located — these vertices are
referred to as target vertices or simply targets.

Each target vertex vi has two values assigned:

• UE+
i , which is the evader’s reward for successfully reaching target vi

(and capturing the asset located therein)

• UD−i , which is a penalty for the defender for a successful opponent’s
attack (and losing the asset located in vi).

Furthermore, each vertex vi (either target or non-target) has assigned a
reward value for the defender when he/she intercepts the evader in a given
vertex, and a respective penalty for the evader. These payoffs are denoted
by UE−i and UD+

i , respectively. While this is not a formal requirement,
typically utility values with minus sign in an upper index are negative (the
respective player looses a game) and utilities with plus sign are positive

6



(they are assigned to the game winner). The game is general-sum, i.e. it is
not assumed that utilities of players sum up to 0 and each player maximizes
his/her own utility function.

2.1. Game rules

The game consists of at most (T ≥ 1) rounds and is played according to
the following rules:

1. A defender has n units, all initially placed in vd; an evader has one
unit initially placed in ve;

2. In each round players simultaneously make decision about new loca-
tions of their units. Each unit can be either left in the current vertex
or moved to an adjacent vertex;

3. After making the above decisions, units are placed in the chosen ver-
tices;

4. Let’s assume that the evader is currently in vertex vk. Then,

(a) if there is at least one defender unit in vk, the evader is intercepted
and the game ends with the payoffs UE−k , UD+

k for the evader and
the defender, respectively;

(b) if vk is a target vertex and the condition from point 4a is not
met, the evader succeeds and the game ends with the respective
payoffs of UE+

k , UD−k for the evader and the defender;
(c) if the limit T on the number of rounds is reached, the game ends

with the payoff Un (neutral) granted to each of the players;
(d) otherwise the game continues from point 2.

Consequently, the game is played until either a defender’s unit and the
evader meet in any of the vertices, or the evader reaches a target, or the
round limit T is exceeded. In the game setting, it is assumed that players
cannot directly observe each other during the game. They get to know
the opponent’s location only when both parties meet in a common vertex
(cases 4a, 4b on the above list) what ends the game.

From the perspective of the game theory, the game has an extensive
form, is sequential (multi-step), of simultaneous moves, and with imperfect
information (players cannot directly observe each other during the game).

2.2. Stackelberg Game

Before introducing an equilibrium of the game we describe game-theoretic
idea of pure and mixed strategies. A pure strategy, sometimes called a pure
realization plan, is an assignment of an action to each potentially reachable
state of the game. In our game a pure strategy of each player is a sequence of
legal decisions concerning locations of their units in each of T game rounds.
Therefore, a pure strategy can be represented as a vector of vertices σ ∈ V T

such that each subsequent position of a unit is either equal to or adjacent
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to its previous position in the graph. In case of the defender there may be
more than one unit, so in such a situation a vector of tuples is used — one
element per unit. A set of all pure strategies of player i ∈ {D,E} (defender
and evader, respectively) will be denoted by Σi. Please note that some of
decision points may not materialize if game ends earlier, so not all of planned
decisions will be used in a particular game realization.

A mixed strategy is a probability distribution over Σi. Let’s denote a set
of all possible mixed strategies by Πi and its elements by πi ∈ Πi. We will
extend the payoff related notation U ik, i ∈ {E+, E−, D+, D−}, introduced
in the previous subsection, to functions U i(πD, πE) which will represent the
expected utility value for player i assuming that the defender commits to
playing strategy πD and the evader decides to play strategy πE . The goal
of the defender is to find a mixed strategy that maximizes their expected
payoff when playing infinitely many games instead of optimizing an outcome
of a single game.

Furthermore, it is assumed that once the defender commits to a partic-
ular mixed strategy, the evader can observe the defender’s patrolling units
for a sufficiently long time to gain knowledge about his/her mixed strategy,
before deciding about an attack. In order to model this information asym-
metry between the players, our model follows the principles of Stackelberg
Game. Finding a solution of the game is therefore equivalent to finding the
Stackelberg Equilibrium. In SG there are two players: the leader and the
follower,

• the leader commits to some probability distribution of possible moves
at the start of the game and subsequently chooses moves according to
that distribution;

• the follower chooses their move distribution so as to maximize their
expected reward, being aware of the probability distribution of the
leader’s moves.

In our model the defender plays the role of the leader and the evader that of
the follower. Please note that even though the evader knows the probability
distribution of the patrolling routes of defender’s units, he/she does not
possess precise knowledge about which route will be actually used in a given
playout.

Using the above notation the SE can formally be defined as a pair
(πD, πE) satisfying the following equations:

BR(πD) = arg max
πE∈ΠE

UE(πD, πE) (1)

arg max
πD∈ΠD

UD(πD, BR(πD)) (2)

Equation (2) selects the defender’s mixed strategy that yields the best utility
for the defender against the best evader’s response (to this strategy). The
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best response is defined in equation (1) and denotes the evader’s strategy
that optimizes their utility against a given defender’s mixed strategy.

SE is not well defined when there exists more than one best response
strategy (1). For this reason, a variant of SE called Strong Stackelberg
Equilibrium (SSE) (Leitmann, 1978) was proposed. SSE specifies the def-
inition of BR by selecting the evader’s response that provides the highest
utility for the defender, among those fulfilling (1). Less formally, in SSE, ties
among BR(πD) fulfilling (1) are broken in favor of the defender. The goal
of the game is to find the mixed strategy for the defender, i.e a probability
distribution of defender’s moves, that fulfils the SSE conditions.

SE/SSE has an important theoretical property which has strong practical
(computational) consequences. Namely, it can be proven (Conitzer and
Sandholm, 2006) that in SE/SSE among all possible evader’s best response
strategies (1), there always exists at least one strategy that is in the form of
a pure strategy. It is therefore possible to enumerate a finite number of pure
evader’s strategies when calculating SE/SSE. Please note that this property
does not hold for the defender’s strategies.

2.3. Example game

An example game is presented in Fig. 1a (industrial warehouse scenario)
and Fig. 1b (its graph-based model). For simplicity, it is assumed that there
is only one defender’s unit and that the game has 5 steps. In order to enter
any of the three target rooms (vertices 0, 1, 2) the evader, who starts in
vertex 8, must go around the building. Therefore, he/she has to choose a
direction, i.e. to go either clockwise or counter-clockwise. Due to round limit
(T = 5) while going clockwise only rooms 1 and 2 can be reached by them,
and when going counter-clockwise only rooms 0 and 1 are reachable.

2.3.1. Strong Stackelberg Equilibrium of the game

Since in our example there is only one defending unit, pure strategies for
both the evader and the defender are represented as vectors of length T = 5
(c.f. Section 2.2). Table 1 presents mixed strategies that comprise SSE for
the example game along with the respective players’ utility values. The
structure of the SSE illustrates a crucial balance between two conflicting de-
fender’s goals: protecting either the clockwise path or the counter-clockwise
path to the warehouse. The mixed strategy of the evader is composed of
three possible sequences – three variants of a clockwise route, each of them
to be chosen with probability 1

3 . The numbers in each sequence denote ver-
tices visited by the evader in consecutive steps of the game. The defender’s
mixed strategy comprises of two move sequences with probabilities 0.4 and
0.6, respectively. Please note that the evader can use any of these three pure
strategies (with probability 1), to attain exactly the same result.

Observe that at first sight playing the first sequence by the defender
does not seem to be correct as the expected utility is low (equals −15, since
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E(30,0)
D(3,-15)

E(5,0)
D(3,-12)

E(20,0)
D(3,-15)

(a) A sketch of a warehouse. Dashed area is
a fenced pavement around the building, with
the only gate in the bottom left. The building
consists of three rooms, all accessible from
the outside, each containing an asset.

5 E(-1)
D(1)

4 E(-1)
D(1)

6 E(-1)
D(1)

2
E(30, 0)

D(3,−15)

1 E(5, 0)
D(3,−12)

3 E(-1)
D(1)

7 E(-1)
D(1)

0
E(20, 0)

D(3,−15)

10
E(−1)
D(1)

8 E(−1)
D(1)

9 E(−1)
D(1)

(b) Graph-based representation of the premises
presented in Fig. 1a. A red circle (vertex num-
ber 8) denotes the evader entry point, diamond-
shaped vertices (0, 1 and 2) are targets that con-
tain assets. All defender’s units start in vertex
0.

Figure 1: Industrial premises in the form of a warehouse building with a road around it.
Each non-target vertex has two utility values assigned: E(UE−

i ) and D(UD+
i ). In target

vertices there are four values: E(UE+
i , UE−

i ) and D(UD+
i , UD−

i ). Please see Section 2.1
for the meaning of these payoffs.

the evader successfully reaches vertex 2 in this scenario). However, playing
this sequence with a certain probability (0.4) is actually indispensable for
keeping the evader away from vertex 0. If this sequence was played with
lower probability, the evader would switch their focus to vertex 0, as this
scenario would then become much more appealing to them. This situation is
illustrated in Table 2 which presents a slightly distorted defender’s strategy
for this game and the responsive evader’s strategy. The expected payoffs for
the defender and the evader are equal to −4.20 and 11.40 in the case of the
optimal defender’s strategy, and −7.98 and 11.81 in the case of the distorted
strategy.

The following two remarks are apparent conclusions from the above ex-
ample.

Remark 1. Even a slight divergence from the optimal defender’s strategy
in SSE may cause significant deterioration of his/her expected utility.

Remark 2. Probabilities of defender’s moves in the SSE strategy are of-
ten not proportional to their respective utilities under the optimal evader’s
response. The defender may have to play some moves with poor utility to
prevent the evader from changing their strategy.
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Table 1: Optimal defender’s strategy and the corresponding optimal evader’s strategy for
an example game depicted in Fig.1b. The rightmost columns present the expected game
reward associated with the particular sequence of moves. See description within the text
for a detailed discussion.

Optimal Defender Evader
Pr. Sequence E(UD) Pr. Sequence E(UE)

0.4 0, 0, 0, 0, 0 -15 0.33 7, 7, 6, 5, 2 11.40
0.6 3, 4, 5, 2, 2 3 0.33 7, 6, 6, 5, 2 11.40

0.33 8, 7, 6, 5, 2 11.40

Table 2: A slightly distorted optimal defender’s strategy and the respective optimal
evader’s response strategy. Observe that even small deviation from the optimal defender’s
strategy may cause a complete redefinition of the evader’s mixed strategy (choosing a
counter clockwise path instead of a clockwise one, as in Table 1), which is now more
beneficial for them.

Suboptimal Defender Evader
Pr. Sequence E(UD) Pr. Sequence E(UE)

0.39 0, 0, 0, 0, 0 3 0.33 9, 9, 10, 3, 0 11.81
0.61 3, 4, 5, 2, 2 -15 0.33 9, 10, 10, 3, 0 11.81

0.33 8, 9, 10, 3, 0 11.81

Both of the above remarks are critical factors taken into account when
designing the method of SSE approximation presented in the next section.

3. Mixed-UCT Method

In this section the proposed UCT-based method for approximating the
mixed defender’s strategy in imperfect-information multi-step SG is pre-
sented. In Section 3.1, the vanilla UCT algorithm, which performs heuristic
search for the best move in perfect-information games is described. This
baseline UCT description is followed in Section 3.2 by a presentation of cer-
tain modifications which make the method suitable for imperfect-information
games. In the last section our iterative Mixed-UCT method which relies on
applying this imperfect-information UCT version against gradually improv-
ing evader, in order to derive an approximation of the optimal defender’s
mixed strategy is introduced.

3.1. UCT

Upper Confidence Bounds applied to Trees (UCT) proposed by Kocsis
and Szepesvári (2006) is a variant of Monte-Carlo Tree Search (MCTS)
method for choosing the best move for the currently moving player (UCT-
player) in finite multi-step perfect-information games. UCT gradually builds
a game tree composed of nodes – representing game states and edges –
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representing moves/actions. Game states can be either terminal or non-
terminal. For each of the players, each terminal state has some payoff value
assigned. The goal is to maximize the expected long-term payoff of the
UCT-player. Within the allotted time (e.g. a tournament time for making a
move) UCT performs as many game simulations as possible, starting from
the current game state and going down the game tree until the terminal
state is reached. In that state the payoff of the UCT-player is read out and
back-propagated along the move sequence which led to this state, up to the
root node. Based on this back-propagated payoff value, the expected payoff
(estimated quality) of each move on the path is updated.

The underlying difference between the baseline MCTS formulation and
UCT is the way of choosing the next move in the above-described simula-
tions. MCTS selects the move uniformly among all available moves, while
UCT chooses the move based on the current estimation of the candidate
moves’ strengths and visit counters, relying on the so-called Upper Confi-
dence Bounds (UCB) method by Auer et al. (2002). The UCB method pro-
vides a formula to balance the frequency of using the strongest moves recog-
nized so far and the exploration of other, potentially underestimated, moves.
The method addresses the classical exploration-exploitation dilemma (Ishii
et al., 2002), offering theoretically justified optimal solution in the sense of
maximization of the expected long-term cumulative payoff.

In the realm of game playing, the UCT player performs multiple simula-
tions from the current game state. In each simulation, while in game state
s being faced with the selection of move to be played (simulated), it applies
the following UCB action-selection rule:

1. choose uniformly any move among those not yet tried in previous sim-
ulations (if one exists);

2. otherwise (if all moves available in a given state have been tried al-
ready), select move a∗ which maximizes the following formula:

a∗ = arg max
a∈A(s)

{
Q(s, a) + C

√
lnN(s)

N(s, a)

}
, (3)

where A(s) is the set of all available moves in state s, Q(s, a) is the average
utility of playing action a in state s in previous simulations, N(s) is the
number of times state s has been visited, and N(s, a) is the number of times
move a has been sampled in this state so far.

Formula (3) postulates to select actions with the highest expected re-
wards, but, on the other hand, repetitive sampling of the same moves needs
to be avoided, due to incrementing of N(s, a) after each trial of action a.
Please observe that constant C plays a crucial role in maintaining the appro-
priate balance between exploration (the right term) and exploitation (the
left term).
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The UCT method, while simulating game actions, traverses the game
tree and in each visited node chooses the move according to the UCB formula
(3). As stated above, once the terminal node is reached, the accomplished
utility value is propagated back, all the way up to the root node. In each
node s on this path the visit counters N(s) and N(s, a) related to visiting
state s and playing action a in that state, respectively, are incremented.
Likewise, the average utility, which corresponds to quality estimation of
move a in node s - Q(s, a), is updated.

Once the time allotted for simulations is utilized and a real decision in
the current root state s needs to be made, a move with the highest Q(s, a)
estimation is selected to be executed. Alternatively, a move with the highest
number of visits (the most reliable selection) N(s, a) or some combination
of these two scores may be considered (Browne et al., 2012).

UCT was successfully applied to many board games, in particular Go (Sil-
ver et al., 2017; Wang and Gelly, 2007; Gelly and Silver, 2011), Havan-
nah (Teytaud and Teytaud, 2010) or the so-called General Game Play-
ing competitions (Finnsson and Björnsson, 2008; Świechowski et al., 2016;
Świechowski and Mańdziuk, 2014; Walȩdzik and Mańdziuk, 2014). In all
these highly challenging AI domains UCT defines de facto state-of-the-art
approaches, as vast majority of top machine players implement this tech-
nique as its base search engine. It is important to note that in two-player
games, as the number of game simulations approaches infinity, the UCT out-
come converges to the min-max assessment of moves (Kocsis and Szepesvári,
2006).

Recently, the method also gained popularity in stochastic problem do-
mains including decision problems based on Partially Observable Markov
Decision Processes (Kolobov et al., 2012; Keller and Eyerich, 2012; Feld-
man and Domshlak, 2014), Dynamic Vehicle Routing Problems (Mańdziuk
and Świechowski, 2017) or Risk-Aware Project Scheduling (Walȩdzik and
Mańdziuk, 2018). For a detailed description of the UCT method please
consult, for instance, (Kocsis and Szepesvári, 2006; Browne et al., 2012;
Świechowski et al., 2015).

3.2. UCT in imperfect-information games

As stated in the previous section, UCT is typically applied to decision
problems with perfect-information, whose decision sequences can be rep-
resented as paths in a graph (usually a tree or directed acyclic graph).
Utilization of UCT in imperfect-information domains requires its specific
adjustment. Such a modification of UCT, rendering the method suitable
for imperfect-information games, called I2-UCT, was proposed in our pre-
vious work presenting the initial attempt to solving SGs (Karwowski and
Mańdziuk, 2015).

In imperfect-information games each player can observe only some pro-
jection of the game state which does not comprise full game state descrip-
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tion, i.e. a player can observe an information set containing several poten-
tially achievable game states, which are indistinguishable for them. Infor-
mation sets are used in game theory to represent imperfect information in
a game (Kuhn, 1950; Basar and Olsder, 1998). In the case of our model
the imperfect-information nature of the game is reflected by the fact that
players are not aware of positions of the opponent’s units. Consequently, the
game state observed by the defender can, in principle, correspond to various
real (perfect-information) game states depending on particular placement
of the evader. Since the UCT-based game simulation is performed by the
defender from the concrete game state, some assumption about the evader’s
current position must be made. This problem was addressed in (Karwowski
and Mańdziuk, 2015) and, in short, resolved in the following way. In the
case of imperfect-information games we propose that UCT be assisted with
a certain state sampling procedure, which would yield one of the real game
states (among all feasible ones) based on a sequence of defender’s moves
that led to a given information set. Hence, the UCT simulations do not
start from a fixed current state, but instead, before each simulation, the
current state (the root for the simulation) is sampled in the following way
(cf. Algorithm 1 for the details):

1. Define state as the initial game state.

2. Play a sequence of defender’s moves, which leads to the current infor-
mation set, against the sampled sequence of evader’s moves.

Next, a standard UCT simulation is performed from the state reached in
point 2 above.

Algorithm 1: I2-UCT — Imperfect-Information UCT

Input: depth— (depth in game tree) number of previous moves
moves— vector of defender’s moves that led to the current situation

1 for i← 1 . . . simCount do
2 state ← InitialState
3 for d← 1 · · · depth− 1 do
4 MakeMove(state, moves [d]) // Make move and simulate

evader response

5 SingleRun(state)// A single UCT simulation from sampled

state.

The above described imperfect-information version of UCT is a core
part of a method for mixed strategy approximation introduced in the next
section.

Please observe that the main difference between I2-UCT and other re-
lated approaches to imperfect-information games (PIMC (Ginsberg, 2001)
or ISMCTS (Cowling et al., 2012)) is that our method samples states with
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respect to the opponent’s strategy while the two other ones use uniform
distribution for state sampling.

Another related idea is the HyperPlay algorithm proposed by Schofield
et al. (2012) which also offers an interesting approach to sampling a game
state after a given sequence of moves. The method differs from I2-UCT in
the two following main aspects: (1) it maintains a set of possible states and
refines it along with the game advancement, as opposed to sampling brand
new states in each step, performed by I2-UCT; (2) it does not focus on the
opponent’s strategy in any specific way.

3.3. UCT for mixed strategies

The remainder of this section describes the main contribution of the
paper which is an iterative algorithm for finding mixed strategy for the
defender in SG. The main idea of the method was briefly announced in
a short 2-page paper (Karwowski and Mańdziuk, 2016) in three possible
variants. In this paper its most promising version called Full Tree is further
developed, fully described and thoroughly evaluated. Generally speaking,
within allotted time, the system performs as many game simulations as
possible and gathers information about the respective evader’s responses
before committing to a particular mixed strategy in the real play.

Observe that in information-asymmetric (IA) games, in which the evader
knows the defender’s strategy, using a pure strategy by the defender is clearly
a weak approach as the evader may easily exploit its deterministic nature.
Instead, in IA games, the defender must adopt a mixed strategy to op-
timize their outcome. In other words we are facing the following bi-level
optimization problem: find the defender’s strategy which maximizes their
payoff against the optimal evader, where the optimal evader does not use
fixed strategy but a strategy which is a function of the defender’s strategy.

The underpinning idea of the solution method consists of two elements:

• Use I2-UCT to gather information about effective defender’s strategies
played against various evaders.

• Combine the collected pure strategies into one coherent mixed strategy
taking into account two remarks from Section 2.3.1.

It is worth to underline that the method does not require any specific
data structures or additional resources compared to baseline UCT version.
The same state-transition (game tree) structure is used to perform simula-
tions and to collect game statistics in both versions.

There is, however, a fundamental difference on the operational level. In
a typical UCT approach to sequential multi-step games, after each simula-
tion phase a move pointed by the algorithm is played and the next UCT
simulation phase starts from a new state defined by the performed move and
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Figure 2: Outline of Mixed-UCT

an opponent’s response move. In Mixed-UCT, since we are using the Stack-
elberg Game model, the output of the method is not a single move, but a
probability distribution of move sequences (pure strategies) of length equal
to the number of game rounds. In other words, in Mixed-UCT the whole
simulation process is performed offline and only the final mixed strategy (a
set of pure strategies of length T with assigned probabilities) is used to play
the game.

Certainly, the most desirable approach to derive the final mixed strat-
egy would be to simulate the defender player against the optimal evader in
a one-shot procedure instead of making iterative simulations against grad-
ually changing evaders. However, due to bi-level problem formulation such
an approach is not feasible. Therefore, the proposed method adopts an it-
erative approach (see Fig. 2). The initial evader’s strategy is assumed to
be uniform. Then, the first UCT simulation phase (iteration) is performed
with the I2-UCT method against this initial evader. Based on the outcomes,
the first defender’s strategy is extracted from the UCT tree (the method of
strategy extraction is presented in the following subsection). Afterwards,
each subsequent UCT iteration is performed against a combination of the
evader’s strategies developed in previous iterations. In response, in each iter-
ation, the evader which, by game definition, is aware of the defender’s mixed
strategy and has the ability to explore its potential weaknesses, adapts its
strategy accordingly. This iterative procedure is repeated until predefined
stopping conditions are met.

The outline of the Mixed-UCT method is presented in Algorithm 2. In
line 2, the initial evader’s strategy is defined as the optimal one against the
uniformly playing defender. In line 6, I2-UCT training is performed against
the newly re-calculated evader’s strategy. The evader’s strategy is calcu-
lated as a uniform distribution of m most recent evader’s best strategies,
what proven to be more effective than using the currently optimal evader’s
strategy alone. I2-UCT starts with learning the first move, then learns sub-
sequent ones (one at a time) with gradually increasing depth parameter (cf.
a loop in line 5). This way, the training loop generates a sequence of moves
of length T .

Except for the first iteration which starts off with an empty UCT tree,
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Algorithm 2: Outline of the Mixed-UCT method

output: defender’s strategy – the best of strategies developed in all
iterations

1 tree ← ∅
2 evaders ←[InitES()] // Vector of evader’s strategies in subsequent

iterations initialized with the optimal strategy against uniform

defender.

3 while not EndConditions() do
4 moves← []
5 for depth← 1 . . . T do
6 tree ← I2Uct(tree,EvaderStrategy(evaders), depth,

moves)
7 moves← Append(moves, BestMove(tree, depth))

8 defender ← StrategyFromTree(tree)
9 evaders ← Append(evaders,OptEvader(defender))

// Return the best strategy among all calculated in the loop

each subsequent iteration begins with a tree developed in the previous itera-
tion, which is extended by adding statistics gathered in the current iteration.
The details of the way the evader’s strategy is calculated in line 6 are pre-
sented in Section 3.5.

In line 8, a mixed strategy is extracted from the final UCT tree using
the method described in Section 3.4. In line 9, the optimal evader’s strategy
is built against the currently calculated defender’s strategy and appended
to the list of all evader’s strategies used so far. Once the above iterative
algorithm is completed the best of all defender’s strategies is returned. The
criterion used for defender’s strategy evaluation is the expected payoff ob-
tained when playing against the optimal evader calculated in response to
this strategy. Choosing the best strategy instead of the strategy developed
in the last iteration is motivated by Remark 1 from Section 2.3.1.

3.4. Strategy extraction from the UCT tree

As stated in Remark 2 it is crucial for the defender to maintain a balance
between moves which give them high rewards and those that prevent the
evader from changing their strategy. Therefore, when building defender’s
strategy, the move quality estimation Q(s, a) is generally not equivalent
to the move playing probability. Consequently, our method does not rely
on Q(s, a) in the move probability estimation. Instead, a cumulative visit
counter Nsum(s, a), calculated across all previous iterations, is used. Hence,
in the mth iteration

Nsum(s, a) = Σm
i=1Ni(s, a) (4)
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A function that calculates mixed defender’s strategy from UCT tree is pre-
sented in Algorithm 3. Please note that technically we consider a single-act
game and therefore each move that could be played is actually a move se-
quence represented as a path from the root node to a terminal game state.
A loop in line 3 iterates over all such sequences.

Strategy extraction is performed in two steps. Firstly, each move se-
quence is assigned a weight which is equal to the product of visit counters of
all single moves belonging to that sequence. For example, if the considered
compound move is a sequence A = (a1, a2, . . . , ak), k ≤ T , leading though
nodes (n0, n1, . . . , nk), where n0 is a root node and nk is a leaf node in the
UCT tree, then the weight w(A) for move A will be calculated as follows
(cf. line 4):

w(A) = Πk
i=1Nsum(ni−1, ai) (5)

Secondly, all weights are normalized to form a proper probability distri-
bution (line 5). Note, however, that the above-described strategy extraction
procedure leads to inclusion of quite a large number of moves with low proba-
bilities in the final probability distribution. Many of these moves were visited
“occasionally” during simulations, due to exploration component pressure
in eq. (3). In order to address this issue the strategy obtained in the above-
mentioned way is filtered, i.e. moves with probability occurrence lower than
a pre-defined threshold (α) are removed (line 6). The remaining probabilities
are re-normalized to sum up to 1.

A final selection of moves with assigned probabilities comprise the mixed
defender’s strategy extracted from the UCT tree. As mentioned in the pre-
vious section such a strategy is extracted after each UCT iteration and
represents the currently optimal strategy for the defender (cf. line 8 of Al-
gorithm 2).

Algorithm 3: Extraction of mixed defender’s strategy from the
UCT tree

1 Function StrategyFromTree(tree)
2 moves ← ∅
3 foreach p ∈ Paths(Root(tree), TerminalState(tree)) do
4 moves ← moves ∪(p,

∏
e∈Edges(p) NumVisits(e))

5 moves ← NormalizeWeights(moves)
6 moves ← FilterMoves(moves,α)
7 moves ← NormalizeWeights(moves)
8 return moves

3.5. Building evader’s strategy

Given a defender’s strategy, the respective mixed strategy for the evader
can be easily defined according to Algorithm 4. In the first step only com-
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Algorithm 4: Calculating optimal evader’s strategy against a
given defender’s strategy in SG

1 M ← AllMoves()

2 M1←{m∈M |EvaderPayoff(m)= maxm∈MEvaderPayoff(m)}
3 M2←{m∈M1|DefenderPayoff(m)=

maxm∈M1DefenderPayoff(m)}
4 return UniformStrategy(M2)

pound moves that provide the maximum payoff for the evader are chosen
(line 2). Then, this set of selected moves (M1) is filtered in line 3, so as
to break ties in favor of the defender (cf. SSE definition in Section 2.2).
In effect, only those moves from M1 which give the maximal payoff for the
defender are selected to form the set M2, which contains the collection of
optimal evader’s pure strategies. Finally, any distribution of moves from
M2 defines the optimal evader’s mixed strategy against a given defender’s
strategy. In our approach the uniform distribution is used (line 4).

4. Experimental Evaluation

In this section experimental setup and outcomes of experiments aimed
at performance evaluation of Mixed-UCT method with respect to solution
quality and scalability are presented. Firstly, two exact MILP-based meth-
ods, which serve as reference points for Mixed-UCT assessment, are briefly
introduced. Secondly, a set of industrial-type random games is summarized
in Section 4.3 (the source code of the game generator is available at the
project website (Mańdziuk, 2018)). Next, the Mixed-UCT parametrization
is discussed, followed by a presentation of solutions for a set of benchmark
games of various sizes developed using the above-mentioned game generator.
Then, the quality of Mixed-UCT solutions is evaluated in comparison with
(exact) MILP solutions on a subset of small game instances that are feasible
for MILP application. Lastly, the scalability of Mixed-UCT with respect to
increasing game length (T ) is assessed.

4.1. First reference method — DOBSS

A classical MILP formulation based on DOBSS method proposed by Par-
uchuri et al. (2008b) was used as the first reference method. This particular
MILP formulation was chosen for several reasons. Firstly, it calculates the
exact (optimal) solution and therefore serves as an excellent benchmark for
quality assessment. Secondly, DOBSS method of MILP formulation was
previously used as a reference approach by many authors, e.g. (An et al.,
2013; Jain et al., 2010b; Kiekintveld et al., 2009; Pita et al., 2009; Shieh
et al., 2012; Tsai et al., 2010).
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Since DOBSS accepts single-act games only, multi-step games considered
in this study had to be transformed into single-step matrix games. To this
end, instead of making a single move in each turn, each player selects a
compound move composed of a sequence of T moves on their first turn. Once
both players choose their compound moves the game is played according to
the rules presented before and completed when either the T -move sequences
are played or other termination condition is met.

An optimization problem formulation for the MILP solver, adapted from
DOBSS (Paruchuri et al., 2008b), is presented in eq. (6) where X is a set
of all defender’s moves, Q is a set of all evader’s moves, Rij and Cij are
game outcomes for the defender and the evader when the defender plays
move i and the evader plays move j, respectively, and M is a large constant.
Decision variables zij denote probabilities of an event that the defender plays
move i and the evader plays move j, respectively, in game equilibrium, a is
a slack variable, and qj are auxiliary variables.

maxq,z,a
∑
i∈X

∑
j∈QRijzij
s.t.

∑
i∈X

∑
j∈Q zij = 1, zij ∈ [0, 1]∑
j∈Q zi,j ≤ 1, ∀i∈X , qj ∈ {0, 1}

qj ≤
∑
i∈X zij ≤ 1,

∑
j∈Q qj = 1, ∀j∈Q a ∈ R

0≤(a−
∑
i∈X Cij(

∑
h∈Q zih))≤(1−qj)M , ∀j∈Q

(6)

A general idea of problem specification in DOBSS is to introduce variables
zij which represent joint probabilities that the defender and the evader will
play strategies i and j, respectively. Additionally, the evader is restricted to
choose exactly one strategy j ∈ Q, by means of auxiliary variables qj . The
last constraint in (6) forces the selected strategy j to be the best possible
evader’s response. A detailed description of the DOBSS method is presented
in (Paruchuri et al., 2008b).

4.2. Second reference method — BC2015

As DOBSS was designed for single-step games, it does not exploit a struc-
ture of multi-step games and thus demands more computational resources
than dedicated methods. Therefore, we have also compared Mixed-UCT
with a method devoted to multi-act games proposed by Bosanský and Cer-
mak (2015), referred to as BC2015 (authors’ initials and publication year).
The method is designed for non-zero-sum multi-step SGs and thanks to its
generic formulation can be applied to various game models.

BC2015 transforms an extensive form game into its equivalent sequence
form representation. Such a transformation makes the resulting MILP
smaller than in the case of DOBSS, but still time and memory exponen-
tial with respect to the game length. The BC2015 program formulation
adapted for our game is presented in eq. (7).
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max
p,r,v,s

∑
z∈Z

p(z)UD(z), s.t.

vinfE(σE) = sσE
+

∑
I′∈IE |seqE(I′)=σE

vI′ +
∑

σD∈ΣD

rD(σD)UE(σD, σE) ∀σE ∈ ΣE

ri(∅) = 1 ∀i ∈ N

ri(σi) =
∑

a∈Ai(Ii)

ri(σia) ∀i ∈ N ∀Ii ∈ Ii, σi = seqi(Ii)

0 ≤ sσE
≤ (1− rE(σE)) ·M ∀σE ∈ ΣE

0 ≤ p(z) ≤ ri(seqi(z)) ∀i ∈ N ∀z ∈ Z

1 =
∑
z∈Z

p(z)

rE(σE) ∈ {0, 1} ∀σE ∈ ΣE

0 ≤ rD(σD) ≤ 1 ∀σD ∈ ΣD

(7)

In the above equation, N = {D,E} is a set of players, Z is a set of
all possible game realizations (defined by pairs of the defender’s and the
evader’s pure strategies), Ii is a set of information sets of player i, i ∈ N .
infi(σi) is an information set in which the last action of sequence σi was
played. seqi(I) is a sequence of moves of player i that led to information set
I.

Game transformation to MILP form in BC2015 relies on introduction of
a family of variables ri, which model the flow of probabilities of moves, i.e.
for each node in a game tree and each sequence of moves, the probability
that this node belongs to that sequence is equal to the sum of the respective
probabilities for all its child nodes. Such a formulation is generally more
effective than DOBSS. Please consult (Bosanský and Cermak, 2015) for a
detailed description.

4.3. Game instances

We developed a game generator that creates graphs on a rectangular
grid of n × m vertices which mimic the layout of a warehouse building.
Each generated graph consists of several corridors, one entrance, and storage
rooms, a few of which are targets. A game generation procedure is geared
by a number of parameters, which are summarized in Table 3.

Once a warehouse building structure is designed, positions of valuable
assets and the defender’s units base are placed in random vertices within
the storage space. The evader’s entry point is always located at the vertex
representing the building entrance. An example generated game is presented
in Fig. 3. Please note that a distinction between corridors and storage rooms
is not relevant for the game rules and is added only to present the warehouse
generation algorithm.
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(a) Structural sketch of the game.
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D(1)

15: A(-1)
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(b) Graph representation of the game setting pre-
sented in the left figure.

Figure 3: Left: An example of a warehouse-like game generated with the parameter set
presented in Table 3. Nodes in a 4×4 grid are numbered from 0 to 15. Narrow spaces with
black outline (e.g. 6, 8, 10, 15) represent corridors. Squares with gray outlines denote
storage rooms. A gap in line placed between any two vertices denotes the fact that these
nodes are connected. Octagonal blue node (14) depicts a corridor crossing. A red shaded
corridor space (12) denotes the evader’s entry point (the building entrance), green shaded
storage spaces (1 and 2) denote targets and are additionally labeled with the payoff values.
Defender’s units starting base (0) is denoted by a circle around the vertex number. Right:
A graph representation of the above-described game setting. Target vertices (1 and 2)
have additional payoff values assigned, related to the case of a successful attack.

4.3.1. Payoff structure

The model structure of the payoffs in considered SGs was presented
in section 2.1 and included the reward UD+

i and the penalty UE−i for the
defender and the evader, respectively, in the case of catching the evader in
vertex vi. In our benchmark games one modification has been introduced,
namely, the evader’s penalty and the defender’s reward in the case the evader
is caught do not depend on a particular vertex in which this interception
took place, but only on a type of this vertex, i.e. whether or not it is a
target vertex. In other words catching the evader in any non-target vertex
results in the same reward (penalty) for the defender (evader), regardless of a
particular vertex. Likewise, a similar rule applies in the case of catching the
evader in any of the target vertices. This assumption seems to be reasonable
from both psychological and practical points of view. Additionally, the
reward (penalty) for the defender (evader) is slightly higher in the target
vertices.

A utility for the evader for successfully reaching the target located in
vertex vi (UE+

i ) is chosen uniformly from the range [0, Emax], independently
for each target. Similarly, a penalty for the defender in case of successful
evader’s attack in a given target (UD−i ) is chosen uniformly from the range

22



Table 3: Summary of warehouse-like game generator parameters

parameter value meaning

n 4 Width of the building
m 4 Length of the building
c 1 Number of corridor crossings
pd 0.4 Probability of placing a door from a corridor to a room
ps 0.5 Probability of a connection between the neighboring

storage rooms

UE−i
-1 Evader’s penalty in a non-target vertex i
-3 Evader’s penalty in a target vertex i

Emax 20 Upper limit on the evader’s reward

UD+
i

1 Defender’s reward in a non-target vertex i
2 Defender’s reward in a target vertex i

Dmax 20 Upper limit on the defender’s penalty
Un 0 The neutral payoff (when the limit T is reached)

[−Dmax, 0], independently for each target.

4.3.2. smallbuilding data set

Since the game complexity grows exponentially with T , exact MILP
solutions could be calculated only for games with T ≤ 6. Therefore, a
set of test games of size 4 × 4 with one defender’s unit (which still offer
vast possibility for non-trivial interactions between players within a 6-round
game span) was randomly generated in the following way. First, 100 random
games were generated. Next, trivial instances were removed from this set,
i.e. games for which an obvious solution existed: the evader was not able to
reach any target in a 6-round limit, or the evader’s entry point was too close
to one of the targets and the defender in no way was able to intercept them.
The remaining 23 instances were used in tests. For space savings we do not
present the layouts of these finally selected games. They are all available at
the project website (Mańdziuk, 2018).

4.4. Mixed-UCT parameters

Steering parameters of Mixed-UCT are presented in Table 4. Their val-
ues were set based on some number of preliminary tests conducted on an-
other set of games, mentioned in (Karwowski and Mańdziuk, 2016). Even
though the currently used benchmark set differs significantly from that
of (Karwowski and Mańdziuk, 2016), parameters were no further tuned in
any way. The maximum number of iterations and the maximum number of
iterations without improvement serve as stopping conditions for the method.
They were selected high enough to ensure that no more improvement should
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Table 4: Parameter set used in the experiments

Value Parameter

40 UCT expansion coefficient (C) in UCB1 formula (3)
500 Number of UCT simulations per each tree level

in one iteration (simCount in I2-UCT)
45 000 Maximum number of iterations
10 000 Maximum number of iterations without improvement

0.05 Filtering probability threshold (α)
500 Number of averaged previous evader’s strategies (m)

Table 5: Running times of the Mixed-UCT method averaged over all test games with
a given number of rounds T = 3, . . . , 9, and the respective MILP results (DOBSS and
BC2015) within the MILP solver feasible range of T .

num. of rounds (T ) 3 4 5 6 7 8 9

Mixed-UCT time [s] 453 955 2240 2908 5233 10360 20827
DOBSS time [s] 0.03 7.33 994 n/a n/a n/a n/a
BC2015 time [s] 0.20 2.20 80 9654 n/a n/a n/a

be expected in a given run. The filtering threshold (α) and coefficient C were
selected by limited trial-and-error approach. The chosen number of simu-
lations performed at each tree level in I2-UCT algorithm is a compromise
between recalculating the evader’s strategy frequently (and choosing suf-
ficiently large number of historical evader’s strategies) and an overfitting
caused by training too long against the same evader.

4.5. Experimental setup and results

All Mixed-UCT experiments were run on a PC with Intel Core i7 CPU
@3.40GHz and 8GB RAM running Debian Linux. The method was im-
plemented in Java 8 technology. Experiments employing MILP approaches
were run on the same machine, to allow a direct time comparison. Both
MILPs were solved by Gurobi (Gurobi Optimization, Inc., 2018).

4.5.1. Quality of results

The results of Mixed-UCT are presented in reference to exact solutions
of MILP and those of a uniform strategy. Using these two strategies as
upper and lower bounds for Mixed-UCT outcomes, the following relative
score measure was defined:

Score = (UDMixed-UCT − UDUniform)/(UDMILP − UDUniform) (8)

where UDMixed-UCT and UDUniform denote the best defender’s payoffs (out of 15
repetitions) obtained by Mixed-UCT and the uniform strategy, respectively,
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Figure 4: Running times of the Mixed-UCT method averaged over all test games (as
a function of the number of rounds T = 3, . . . , 9) with the approximate fitting curve,
compared with the time required for calculation of the DOBSS solution (for T = 3, 4, 5)
and BC2015 (T = 3, . . . , 6). See Table 5 for exact numerical values.

and UDMILP represents the optimal defender’s payoff calculated by MILP.
Score in (8) represents the relative (standardized) quality of a Mixed-UCT
result and allows making comparisons among various game settings on a
common ground.

Table 6 presents the average outcomes of Mixed-UCT for T = 5. Results
for T = 6 for BC2015 and Mixed-UCT are presented in Table 7. DOBSS
results are not listed as their computation demands exceeded capacity of
the designated hardware. None of the exact methods were able to calculate
solutions beyond T = 6. Outcomes for T = 3, 4 are omitted since Mixed-
UCT solved all these games perfectly.

4.5.2. Computational times

For each game, experiments for all values of T ∈ {3, 4, 5, 6, 7, 8, 9} were
performed, and their running times are presented in Table 5. For each T ,
the results are averaged over 15 repetitions per game (345 runs in total).
In subsequent rows, the respective running times required for calculation
of DOBSS solution (for T = 3, 4, 5) and BC2015 (for T = 3, 4, 5, 6) are
presented. The same data is visualized in Fig. 4, fitted with the approxi-
mation curves. Due to extensive computational requirements, the exact so-
lutions could not be calculated respectively for T ≥ 6 (DOBSS) and T ≥ 7
(BC2015).

4.6. Discussion

The quality of results was assessed using Score measure, shown in Ta-
ble 6, which places the Mixed-UCT solution on a [0, 1] scale between uniform
defender’s performance (value 0) and theoretically optimal solution (value
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Table 6: Numerical results for all tested games, for T = 5. Columns from left to right
present: a game number, then the average payoff, the best payoff, standard deviation, and
the average running time of Mixed-UCT, then the expected payoff of a uniform defender
(with uniform strategy), then theoretically best result (calculated by any of the MILP
methods), the running times of DOBSS and BC2015, and the Score of Mixed-UCT in
reference to uniform and MILP solutions, calculated according to eq. (8).

Mixed-UCT Uniform Exact DOBSS BC2015
Game mean UD best UD sd t [s] UD UD t [s] t [s] Score

17 0.26 0.33 0.02 1705 -7.95 0.37 409 64 0.99
2 0 0 0 5259 -15.08 0 594 95 1
20 1.28 1.29 0.01 2200 -1.28 1.29 2705 63 1
24 1.13 1.52 0.17 2431 0.08 1.55 693 16 0.98
3 0.46 0.5 0.05 2111 -8.55 0.5 1684 69 1
35 0.47 0.5 0.03 1117 -0.89 0.5 35 25 1
39 0.04 0.06 0.01 1376 -17.06 0.09 204 32 1
41 -2.89 -2.88 0.01 1661 -5.07 -2.85 3213 35 0.99
42 0 0 0 2149 -16.53 0 1861 425 1
43 0 0 0 1236 -17.4 0 362 29 1
56 1.13 1.37 0.06 4410 0.52 1.6 1107 37 0.79
59 0.55 0.57 0.01 1632 -7.39 0.62 631 110 0.99
64 0.08 0.11 0.01 1793 -11.81 0.16 542 30 1
7 -0.79 -0.77 0.05 1744 -9.7 -0.76 2465 163 1
74 1.39 1.46 0.02 3379 -0.09 1.47 88 2 0.99
78 0.34 0.47 0.07 1380 -9.28 0.5 2464 88 1
82 0 0 0 1820 -10.66 0 899 197 1
85 -0.98 -0.9 0.02 3833 -1.79 -0.89 1532 138 0.99
87 0.77 0.78 0 3396 -1.66 0.8 9 7 0.99
89 0.02 0.21 0.05 1151 -13.78 0.21 173 14 1
91 -5.65 -5.62 0.09 2096 -5.97 -5.62 118 101 1
96 0 0 0 1409 -10.15 0.19 83 14 0.98

mean -0.11 -0.05 0.04 2240 -7.8 -0.01 994 80 0.99

1). This relative measure allows for a direct comparison of results between
games with different utility structures.

In majority of 5-step games (22 of 23) the Score measure exceeded 0.95
which means that the expected payoff was equal to or was very close to the
optimal value. The only exception was game 56 with Score = 0.79. In case
of T = 6 the results are still very promising with only two games scored
below 0.95 (number 24 and 56).

Besides high quality solutions, the main asset of Mixed-UCT is its time
scalability with respect to T . In terms of time complexity the two main con-
tributing factors in Mixed-UCT are UCT simulation phase and calculation
of an optimal evader’s response. Mixed-UCT iteration cost grows quadrati-
cally with the number of rounds, since in each simulation the whole game is
played and the total number of simulations grows linearly with the number
of rounds (the loop in line 5 of Algorithm 2). The cost of finding the opti-
mal evader is proportional to the number of possible evader’s strategies and
therefore exponential with respect to the number of game rounds. Based on
this analysis, parameters a, b of the function f(x) = ax+bx2 were calculated
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Table 7: Results for MixedUCT and BC2015 for 6-step games. See caption of Table 6 for
columns’ description.

Mixed-UCT Uniform Exact BC2015
Game mean UD best UD sd t [s] UD UD t [s] Score

17 0.3 0.31 0.01 2238 -7.64 0.4 4134 0.99
2 0 0 0 5761 -15.05 0 7109 1
20 1.29 1.29 0 3722 -1.37 1.29 2287 1
24 1.07 1.41 0.25 4087 -0.03 1.55 28944 0.91
3 -2.18 -2.12 0.11 3304 -8.55 -2.12 7018 1
31 0 0 0 3299 -6.98 0 632 1
35 0.45 0.48 0.04 1972 -0.88 0.5 3734 0.99
39 0 0.01 0 2019 -16.99 0.14 1941 0.99
41 -2.91 -2.9 0 2846 -5.09 -2.85 1938 0.98
42 -1.6 0 0.02 1736 -16.55 0.05 71573 1
43 0 0 0 1906 -17.33 0.08 4118 1
56 0.96 1.11 0.08 4357 0.49 1.6 3821 0.56
59 0.51 0.53 0.02 1954 -8.27 0.63 11738 0.99
64 0.02 0.05 0.02 2433 -6.26 0.18 2436 0.98
7 -0.77 -0.77 0 3631 -9.72 -0.75 6590 1
74 1.47 1.47 0 2396 -0.09 1.47 1018 1
78 0.13 0.5 0.3 2791 -9.31 0.5 5779 1
82 0.58 0.6 0.01 3142 -2.58 0.62 31122 1
85 -0.97 -0.89 0.07 2169 -1.82 -0.89 11217 1
87 0.69 0.8 0.07 4943 -1.61 0.8 479 1
89 0.04 0.19 0.09 2078 -13.75 0.25 1417 1
91 -5.62 -5.62 0 1741 -5.97 -5.62 12149 1
96 0.17 0.19 0.01 2360 -9.89 0.19 849 1

mean -0.29 -0.23 0.05 2908 -7.18 -0.09 9654 0.97

using nonlinear least-squares Levenberg-Marquardt algorithm (Levenberg,
1944), leading to a = 2.92 and b = 68.929.

In terms of computation times, Mixed-UCT was inferior to MILP meth-
ods for small games (T ≤ 5). In case of T = 6, running times of Mixed-UCT
are approximately 3 times shorter than those of BC2015 and significantly
shorter than the estimated DOBSS results. Projection of BC2015 running
times presented in Figure 4 shows that Mixed-UCT is orders of magnitude
faster for T = 7, 8, 9 than both MILP approaches.

5. Conclusions and Future Work

This paper introduces a new model of patrolling game which is played on
a graph representing spatial arrangement of an area under protection and
assumes information asymmetry between the evader and the defender. The
existence of IA is attributed to the fact that, in practice, the evader can
usually observe the defender’s units patrolling schedules prior to performing
an attack. To model the game we employ Stackelberg Game principles
and present a novel approach to approximation of Stackelberg Equilibrium,
called Mixed-UCT, which relies on Monte Carlo Tree Search. The quality
of Mixed-UCT solutions is experimentally assessed on a set of randomly
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generated non-trivial games which are played in warehouse-like, industrial
environment.

Experimental results show that Mixed-UCT is able to efficiently ap-
proximate Stackelberg Equilibrium for moderate size games. The results
presented in Tables 6 and 7 prove that solutions obtained for games of 5
or 6 steps are optimal or close to optimal in vast majority of the cases.
Out of 23 non-trivial test games only two received a weaker Score value,
below 0.95. A deeper analysis of these games (24 and 56) revealed that in
both of them a set of defender’s strategies contains at least one strategy
that has the following three properties: (1) there exist an evader’s strategy,
paying against which leads to high defender’s payoff; (2) playing against
the evader’s optimal response strategy results in low defender’s payoff; (3)
the equilibrium strategy profile yields moderate defender’s payoffs against
all possible evader’s strategies. Since Mixed-UCT tends to prefer strategies
that yield high utility against at least some evader’s strategies rather than
those with moderate payoffs against all evader’s strategies, strategy (1) will
be preferred over equilibrium strategy (3). Resilience of Mixed-UCT to such
structures is one of our research goals for the near future.

In terms of running time requirements the method is orders of magnitude
faster than the exact MILP-based approaches for games of length beyond 6
steps. In fact, for such games the computation time requirements of DOBSS
and BC2015 are unacceptable from the practical application viewpoint.

Currently we work on extension of the model and adequate modification
of Mixed-UCT in the two main directions. The first one refers to observ-
ability of the opponent. In the current model players cannot see each other
unless they meet in the same vertex. In many practical settings it would
be desirable to assume that players can see each other from some distance,
without immediate capturing, e.g. through windows or fences, and adjust
their decision strategies accordingly based on these observations. Besides
extending our model and gradually improving Mixed-UCT, another inter-
esting research avenue is to design a family of UCT-based methods or a
unified generic framework that will be applicable to settings typical for net-
work interdiction problems.

The other direction is related to bounded rationality of the evader’s de-
cisions. In real-life situations players (people), due to limited observability
of the opponent’s strategies, stress or other distractive factors, often do not
make perfectly rational decisions. In this context we plan to employ two real-
izations of bounded rationality: quantal response equilibrium model (McK-
elvey and Palfrey, 1995), in which the resultant strategy of the evader is
defined as a certain distortion of their optimal strategy, and limited observ-
ability of the defender’s strategy, where the evader calculates the optimal
response strategy but against distorted (not optimal) defender’s strategy.
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Bosanský, B., Kiekintveld, C., Lisý, V., and Pechoucek, M. (2014). An exact
double-oracle algorithm for zero-sum extensive-form games with imperfect
information. JAIR, 51:829–866.

Brown, G., Carlyle, M., Salmerón, J., and Wood, K. (2006). Defending
critical infrastructure. Interfaces, 36(6):530–544.

29



Brown, G. G., Carlyle, W. M., Harney, R. C., Skroch, E. M., and Wood,
R. K. (2009). Interdicting a nuclear-weapons project. Operations Re-
search, 57(4):866—-877.

Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowling, P., Rohlfsha-
gen, P., Tavener, S., Perez, D., Samothrakis, S., and Colton, S. (2012). A
Survey of Monte Carlo Tree Search Methods. Computational Intelligence
and AI in Games, IEEE Transactions on, 4(1):1–43.

Cazenave, T., Balbo, F., and Pinson, S. (2009). Using a Monte-Carlo ap-
proach for bus regulation. Procedings of International IEEE Conference
on Intelligent Transportation Systems, pages 340–345.

Conitzer, V. and Sandholm, T. (2006). Computing the optimal strategy
to commit to. In Proceedings of the 7th ACM conference on Electronic
commerce, pages 82–90. ACM.

Cowling, P. I., Powley, E. J., and Whitehouse, D. (2012). Information Set
Monte Carlo Tree Search. IEEE Transactions on Computational Intelli-
gence and AI in Games, 4(2):120–143.

Fang, F., Jiang, A. X., and Tambe, M. (2013). Optimal patrol strategy for
protecting moving targets with multiple mobile resources. In Proceedings
of AAMAS, pages 957–964.

Feldman, Z. and Domshlak, C. (2014). On Monte-Carlo Tree Search: To
MC or to DP? In Proceedings of ECAI, pages 321–326.

Finnsson, H. and Björnsson, Y. (2008). Simulation-based approach to Gen-
eral Game Playing. In Proceedings of AAAI, pages 259–264.

Gan, J., An, B., and Vorobeychik, Y. (2015). Security games with protection
externalities. In Proceedings of AAAI, pages 914–920.

Gelly, S. and Silver, D. (2011). Monte-Carlo Tree Search and Rapid Action
Value Estimation in Computer Go. Artificial Intelligence, 175(11):1856–
1875.

Ginsberg, M. L. (2001). GIB: Imperfect information in a computationally
challenging game. JAIR, 14:303–358.

Gurobi Optimization, Inc. (2018). Gurobi optimizer reference manual. http:
//www.gurobi.com/documentation/8.0/.

Haveman, J. D., Shatz, H. J., and Vilchis, E. A. (2005). U.S. port security
policy after 9/11: Overview and evaluation. Journal of Homeland Security
and Emergency Management, 2(4).

30



Hohzaki, R. and Maehara, H. (2010). A single-shot game of multi-period
inspection. European Journal of Operational Research, 207(3):1410 – 1418.

Ishii, S., Yoshida, W., and Yoshimoto, J. (2002). Control of exploita-
tion–exploration meta-parameter in reinforcement learning. Neural Net-
works, 15(4-6):665—-687.

Jain, M., Kardes, E., Kiekintveld, C., Ordónez, F., and Tambe, M. (2010a).
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(2009). Computing optimal randomized resource allocations for massive
Security Games. In Proceedings of AAMAS, pages 689–696.
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Walȩdzik, K. and Mańdziuk, J. (2018). Applying hybrid Monte Carlo Tree
Search methods to risk-aware project scheduling problem. Information
Sciences, 460–461:450–468.

Wang, X., An, B., Strobel, M., and Kong, F. (2018). Catching Captain
Jack: Efficient time and space dependent patrols to combat oil-siphoning
in international waters. In Proceedings of AAAI, pages 208–215.

Wang, Y. and Gelly, S. (2007). Modifications of UCT and sequence-like
simulations for Monte-Carlo Go. CIG, 7:175–182.
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