
TCIAIG-2012-0103 1

Self-Adaptation of Playing Strategies
in General Game Playing

Maciej Świechowski and Jacek Mańdziuk, Senior Member, IEEE

Abstract—The term General Game Playing (GGP) refers to a
subfield of Artificial Intelligence which aims at developing agents
able to effectively play many games from a particular class (finite,
deterministic). It is also the name of the annual competition
proposed by Stanford Logic Group at Stanford University, which
provides a framework for testing and evaluating GGP agents.

In this paper we present our GGP player which managed
to win 4 out of 7 games in the 2012 preliminary round and
advanced to the final phase. Our system (named MINI-Player)
relies on a pool of playing strategies and autonomously picks the
ones which seem to be best suited to a given game. The chosen
strategies are combined with one another and incorporated into
the Upper Confidence Bounds applied to Trees (UCT) algorithm.
The effectiveness of our player is evaluated on a set of games from
the 2012 GGP Competition as well as a few other, single-player
games. The paper discusses the efficacy of proposed playing
strategies and evaluates the mechanism of their switching. The
proposed idea of dynamically assigning search strategies during
play is both novel and promising.

Index Terms—Game Tree Search, General Game Playing,
Monte Carlo Methods, Statistical Learning.

I. INTRODUCTION

DESIGNING an artificial agent capable of exhibiting
intelligent behavior in a variety of environments is one of

the major goals of Artificial Intelligence (AI). General Game
Playing (GGP) [1] is a step towards the accomplishment of
this long-term goal. In short, GGP domain encompasses finite,
deterministic, synchronous, multi-player, perfect-information
games, which are defined in the so-called Game Description
Language (GDL) [2] - a subset of Prolog. Since it is generally
assumed in the paper that the reader is familiar with the
GGP challenge, we will only briefly recall its basic principles.
Readers who are less experienced with GDL-based game
descriptions may consult one of the Internet repositories of
sample games [3], [4].

Although official GGP tournaments started in 2005, it is
worth recalling, that the history of game-independent play-
ing agents dates back to more than 50 years ago with the
introduction of Jacques Pitrat’s work [5]. Modern research
includes SAL [6], Hoyle [7] and METAGAMER [8], the last
one having been a direct conceptual predecessor of (modern)
GGP agents. The idea of METAGAMER brought together
researchers interested in developing intelligent agents capable
of playing a predefined class of chess-like games without

MS is a PhD Student at Systems Research Institute, Polish
Academy of Sciences, Newelska 6, 01-447 Warsaw, Poland.
e-mail:m.swiechowski@ibspan.waw.pl

JM is a professor at the Faculty of Mathematics and Information Science,
Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland.
e-mail:mandziuk@mini.pw.edu.pl

human intervention. This multi-game environment consisted
of the definition of a class of allowed games, a communication
protocol, a game generator and resource limitations. In some
sense, the goal denoted in [8] was to shift computer game-
playing from an engineering back to a research discipline.
GGP is currently the main application to multi-game playing.

On a general note, a program able to successfully participate
in the GGP contest is a complex piece of software. In
addition to the underlying AI methods and concepts, there
are several “technical” issues having a great impact on the
overall performance. All of them are worth research attention.
In this paper, we present a player built on top of the so-
called Upper Confidence Bounds Applied to Trees (UCT)
method [9]. In GGP framework, UCT is currently a state-
of-the-art approach to searching the game tree. It is aimed
at providing balance between exploration and exploitation.
The player uses strategies (implementing the concept of an
informed search) instead of a blind Monte-Carlo Tree Search
(MCTS) method [10]. The novelty of the proposed method is
twofold. Most of the MCTS state-of-the-art agents use random
playouts (see section IV-A for details) which are comple-
mented with light-weighted playing policies. They are based
on some statistical properties rather than elements related to
games. Such elements, in turn, are common parts of heuristic
evaluation functions in classical methods [11], [12], [13],
[14]. Our idea was to consider selected methods of game-
state estimation and adapt them to GGP in such a way that
they can be used as strategies to guide the subsequently quasi-
random Monte Carlo simulations. Secondly, these strategies
are dynamically evaluated in terms of being adequate for a
given game. Consequently, the tree search is performed in such
a way that the highest-evaluated strategies start to dominate
and are chosen for most of the simulations. At the same time,
worse strategies have a marginalized impact on the search
process. Such an adaptation of strategies enables the avoidance
of performing inadequate or wasted simulations.

We have tested several strategies and eventually chosen six
of them including a purely random search. History Heuris-
tic [15] and Mobility [14] are nowadays a standard in game AI,
so we only did a light tuning to adapt them to our approach.
The Approximate Goal Evaluation is a concept introduced in
GGP in [18], however our realization of this idea is different
(more details are presented in section VIII-B). Statistical
Symbols Counting was proposed in our earlier work [16]. The
Exploration Strategy is designed from scratch for the purpose
of our GGP program.

The other novel part, albeit of somewhat lesser importance
than the strategy mixing mechanism, is a modified formula

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TCIAIG.2013.2275163

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

TCIAIG-2012-0103 2

applied to choosing a move to make. The aim of this formula
is to perform a shallow min-max-type search around the root
of the tree. Nevertheless, the experiments performed on games
used in the GGP 2012 Competition proved that adaptive
strategies have a major impact on the overall strength of our
player.

The underlying idea of our GGP agent is to enhance
simulation-based playing by speeding it up, lowering the
amount of randomness and introducing mechanisms for dy-
namic discovery of strong lines of play. These improvements
offer significant advantage over vanilla UCT approach. The
improved player not only achieved a 28% better score against
the test opponent but, most importantly, improved the record
of wins from 1/9 to 5/9.

In the following sections the major components of MINI-
Player are introduced and discussed. These are: game rules
interpreter (section III), background concepts (section IV),
a set of strategies used to guide simulations (section V),
and a mechanism for real-time switching and evaluation of
individual strategies (section VI). Experimental results are
presented in section VII. In section VIII, the main differences
to previous related works are outlined. Finally, section IX
concludes the paper and discusses future research directions.

II. SUMMARY OF EARLIER WORK

The General Game Playing Competition has been played
eight times since 2005. However, there has only been five
unique champions: ClunePlayer [17] (2005), FluxPlayer [18]
(2006), Cadia-Player [20] (2007, 2008, 2012), Ary [21] (2009,
2010) and TurboTurtle (2011). The first winner, Cluneplayer,
employed a state evaluation function along with a min-max
tree search method in a way similar to the common approach
for two-player zero-sum games. The function operated on a
weighted linear combination of predefined features: payoff,
control and mobility. Each feature was tested against its
stability and correlation with the game score. One of the
problems encountered in this approach was a complete lack
of stable features detected for some types of games. The
following year’s competition winner was FluxPlayer, whose
underlying concept was based on the observation that games
often possess common elements like boards, order relations,
pieces and their quantities. Hence, Fluxplayer’s state eval-
uation procedure took into account the existence of certain
predefined structures. Furthermore, FluxPlayer applied fuzzy
logic in order to detect a degree of truthfulness of terminal
state conditions. The system used a variant of an iterative
deepening depth-first search method to explore the game
space. A similar idea was presented in [22], but instead of
semantic structures the authors chose to identify the syntactic
ones. In particular, they demonstrated the way of detecting
successor relation, boards, counters, markers, pieces and their
quantities directly from GDL description. The three most
recent winners used an MCTS method which had also been
successful in Go playing programs [23], [24], [9]. Instead of
using any domain knowledge, these agents play random games
until a terminal state is reached and fetch the game results. A
game tree is gradually built with the average historical payoff

for each action-state pair stored in the respective nodes. The
search plays particularly well when combined with the UCT
algorithm. Hence many enhancements and extensions to the
method were proposed such as RAVE, MAST, TO-MAST,
PAST [25], Transposition Tables [26], History Heuristic [15],
and other [27]. Most of them, however, do not work for every
type of game. In some cases, they offer no improvement
or even cause a slight performance decrease, because of
computational overhead. All of the proposed improvements
are based on some statistical optimizations without using
explicitly any game features. Game playing is approached
through a K-armed bandit stochastic simulation, an approach
based on the detection of some game features is presented
in [28]. The authors analyze differences between the near end-
of-game states in the form of GDL fluents. The fluents then
become offensive or defensive features depending on whether
they lead to a win state or prevent the player from reaching a
loss state. This is an attempt at dynamic extraction of domain
knowledge, however computationally quite expensive and with
limited generalization capabilities, since features correspond to
particular (fully grounded) GDL fluents.

III. RULES INTERPRETER

The interpretation of game rules is indispensable for com-
puting legal moves, state transitions, terminal states, and goal
conditions, which are all defined in GDL. The mechanism
for rules interpretation is included in any GGP program and
its effectiveness is vital for the agent’s playing performance.
Contrary to single-game programs which often use highly opti-
mized game representation, GGP has a compact in declaration
but computationally-heavy game definition format. This is an
unavoidable burden to attain generality.

Most GGP programs use Prolog to deal with game rules
interpretation since GDL is semantically a subset of Prolog
(with some differences in notation). The rules are provided
by the Gamemaster. It is a host with which players exchange
messages during a game. The Gamemaster, apart from being
a communication hub, serves as a kind of referee and checks
player responses for legality. When a player responds with
an illegal action in the current state, a random move is
chosen instead. The Gamemaster also informs players about
all performed actions, so they may update their internal game
state representation.

In GGP tournament scenario [1] there are two clocks which
govern the process of playing a game:
START CLOCK defines a period of time which starts when
the Gamemaster sends the first message containing game rules
to participants and lasts until the actual start of the game. This
time period is devoted to the initial setup of a player and their
preparation for playing the game.
PLAY CLOCK is a time period available for making a move.
When a player fails to answer in time, the move is considered
illegal.

The GDL-based game description needs to be interpreted
in a suitable way. One of the options is a direct translation of
GDL into Prolog. Playing programs typically perform such
a translation upon receiving the rules. YAP (Yet Another

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TCIAIG.2013.2275163

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

TCIAIG-2012-0103 3

Prolog) [29] used by CadiaPlayer and EclipseProlog distribu-
tion [30] used by Centurio [31] are two of the favorites among
GGP programs developers.

Other approaches are FluxPlayer using the so-called fluent
calculus implemented in Prolog and Toss [32] with its own
reasoning language of the same name. Details of our custom
GDL interpreter will not be covered in this paper. Despite its
rather technical nature it is a complicated and challenging issue
presented in a separate publication [33]. Please note, that an
in-house interpreter allowed us to implement all the strategies
in as computationally-efficient way as possible.

IV. BACKGROUND

This section covers some preliminary concepts needed to
understand the rest of the paper.

A. Monte Carlo Tree Search
The MCTS method became highly popular in the game

community after becoming the first successful approach to
Go [23]. In the GGP competition it has been used since
2007. The basic idea of the MCTS simulation is to play a
game acting randomly in order to reach the terminal state.
In this state a goal value (a game result) for a particular
player is computed and back-propagated to all states belonging
to the respective path of play. This way a value of each
state is estimated by the average result of all simulations
which visited this state. Simulations are used to build a game
tree whose nodes represent game states and edges represent
players’ actions.

Typically MCTS consists of four phases: selection, expan-
sion, simulation and back propagation (of results).
Selection: Starting from the root, in each node, choose the
successor (child) node with the highest average score, until a
leaf node is reached. Certainly, in this phase there is room for
introducing additional heuristics to enhance selection.
Expansion: If a state associated with the leaf is not terminal,
allocate N > 0 new child nodes.
Simulation: Perform simulation starting from the state stored
in the leaf node until the end of a game.
Back propagation: Update all nodes on the path of simulation
up to the root according to obtained simulation results.

B. UCT
The UCT stands for Upper Confidence Bounds Applied

For Trees [9]. It is the most successful and widely used
algorithm aimed at enhancing the selection process in MCTS.
It provides a balance between exploration and exploitation.
In this approach an action a∗ is selected according to the
following formula:

a∗ = arg max
a∈A(s)

{
Q(s, a) + C

√
ln [N(s)]

N(s, a)

}
(1)

where a - is an action; s - is the current state; A(s) - is a
set of actions available in state s; Q(s,a) - is an assessment of
performing action a in state s; N(s) - is a number of previous
visits of state s; N(s,a) - is a number of times an action a has
been sampled in state s; C - is a coefficient defining a degree
to which the second component (exploration) is considered.

C. History Heuristic

The history heuristic has been widely applied as a tree-
search enhancement since 1989 [15].

The general idea is to transfer information about past actions
taken in other states into the current state when the same action
is available. In GGP, the history heuristic is typically used to
affect the probability of choosing an unexplored action during
simulations. For each action, the average score of simulations
in which the action was played (regardless of the particular
state in which it was performed) is stored. The better historical
score an action has, the more likely it will be chosen again
when available. The history heuristic is used by several top
GGP players to guide the simulations. To the best of our
knowledge, it was first applied to GGP by FluxPlayer [18].

Our implementation of this concept is based on the one
proposed by [27]. This is a very recent research contribution
in which the authors prove the superiority of this simple variant
over more sophisticated implementations.

D. Mobility

Mobility in games stands for the number of legal actions
available for the agent (usually in comparison to other play-
ers). Generally speaking, a drastic change in mobility often
corresponds to performing strong offensive or strong defensive
actions (for many board games capturing pieces is a good
example). Having a greater number of actions available to
the player is usually considered beneficial. In GGP, mobility
was implemented as part of the evaluation function in the first
winning program [17].

V. STRATEGY-GUIDED SIMULATIONS

The first two phases of MCTS, as well as the last one,
are implemented in MINI-Player in a generally standard
way (with slight modifications only). The main difference
compared to other GGP approaches is attributed to the simu-
lation mechanism. Hence, in the remainder of this section,
we focus on the simulation phase, namely we introduce
several search strategies developed for the purpose of the
GGP search improvement. In the following section a procedure
for picking and switching these strategies is presented and
assessed. Certainly, using completely random simulations to
reason about the game has both its advantages and drawbacks.
On the one hand, the approach is very general and can be
applied to any type of game. No specific assumptions are
required, the idea is clear and easy to implement. In addition
it scales well in a multi-core environment. On the other
hand, however, for many games, no visible improvement can
be observed until thousands or millions of simulations are
made. The effectiveness of the method depends on the game’s
complexity, its branching factor, the average length, as well
as its “convergent nature”. By “convergent nature”, we mean
that every action taken by a player leads the game towards its
terminal state (which is the case of connect-four, for instance).
In contrast, a game in which players can move freely without
decreasing their mobility or can repeat their positions are
examples of non-convergent games.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TCIAIG.2013.2275163

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

TCIAIG-2012-0103 4

Moreover, as stated in [20], simulation-based approaches
sometimes lead to over-optimistic playing which relies on
possible opponents’ mistakes. Another issue is the non-
deterministic nature of the MCTS approach. Generally speak-
ing, some amount of randomness is advantageous in order not
to omit potentially good moves. Contrary to a static heuristic
function, which, when inadequate for a certain game, would
constantly favor weak moves, the MCTS approach, given
enough time, would sample all available actions. Too much
randomness, however, hampers the use of domain knowledge
gained from rules analysis or past simulations.

The valid question then is whether it would not be
beneficial to trade some simulation time for game learning
process. The state-of-the-art players incorporate some (though
limited) modifications to MCTS to guide simulations, mainly
the history heuristic mentioned in section IV-C.

Our agent uses several enhancements (strategies) to drive
simulations. Each strategy takes a game state as an input
and yields an ordered set of possible actions based on a
specific ordering mechanism. Only one strategy per simulation
is active. However, during a single match many simulations are
performed and therefore more than one strategy (potentially all
of them) may be used. Below, we present an overview of these
strategies. Their fundamental idea is to use simple, rather than
complex, rules, which is motivated by a low computational
cost, as well as, simplicity and generality of the rules.

A. Random (R)

Strategy R is the least complex one. The player simply
chooses actions at random as in the original MC simulations.
This strategy acts as a natural fallback strategy when other
ones fail. Even though random search is slow, it guarantees
uniform convergence to the best move in conjunction with
the UCT algorithm. Moreover, random selection does not
require costly computations so it is better suited for very
simple games which can be searched thoroughly. This strategy
attains the highest number of simulations per second ratio
among all strategies used in our system. Since the selection of
games is not known in advance, introducing a certain amount
of indeterminism hinders premature convergence (similar to
the case of genetic algorithms or many other approximate
optimization methods).

Based on the test results we can say that the best scenario
is when a player merges one dominating strategy, well-suited
to a given game with a number of random searches.

B. Approximate Goal Evaluation (AGE)

In GGP a set of goal rules determines the possible outcomes
of the game for each of the players. If we filter out the rule
with the highest value for a role assigned to MINI-Player, we
can treat this rule as our ultimate, driving goal in a game.
Usually, there is only a single rule that defines the highest
score, but it may have a complex form, composed of multiple
rule definitions (implications) connected by OR operators. In
GDL the world is described by facts which are true in the
current state. Anything that cannot be proved to be true is
false. Hence, given that a GDL rule is an implication and that

facts not implied by any rule are presumed false, it is sufficient
to put together the results from the rule’s implications in order
to obtain a (compound) equivalence.

For instance, given:

R1 ⇒ A ∧B ∧ C

R1 ⇒ D

R1 ⇒ E ∧ F

we can assume:

R1⇔ (A ∧B ∧ C) ∨D ∨ (E ∧ F)

The aim of AGE strategy is to focus on the rule with the
highest goal value and consider moves which maximize the
degree of its satisfiability. Therefore, in some sense, the AGE-
using agent acts like a greedy player. Unfortunately, there
is no built-in mechanism for computing a degree of rule’s
satisfaction in GDL/Prolog. This must be computed manually
and there are several ways to do it. We decided to use fuzzy
logic algebra with a logical resolution tree. The resolution tree
is composed of two types of nodes which occur alternately:
AND nodes, each of which represents a set of conditions for
a particular rule’s instance in the form of a single implication
with AND being a default logical connective between condi-
tions.
OR nodes, each of which represents all implications existing
in a rule’s description (e.g. all implications of R1 in the
example above). OR is a default logical operator here, since
the final result is a sum of results of individual implications.
For the sake of generality, an OR node is created even if the
rule is defined based on one implication only. OR nodes are
also created for state facts and constant facts. Let us briefly
describe the reasoning behind this decision. The purpose of an
OR node is to gather the complete set of (true) results for a
particular rule. State and constant facts can be regarded as rules
which are already calculated, with the results immediately
available. The above interpretation allows the usage in our
implementation model of the same object - an OR node - for
both dynamic rules and facts. State facts are the only facts
affected by the keywords init and next.

The first one specifies the initial set of state facts whereas
the latter defines state transitions during state updates (after
all moves have been performed). State facts are meant to be
the basic elements that form a dynamic game state. Constant
facts are directly defined in the rules of the game and (as the
name suggests) do not change.

There are two values which are propagated bottom-up in the
AND-OR tree in the recurrent process: a degree of approxi-
mate goal satisfaction (AgVal) and a tie-breaker (TbVal).
In leaf OR nodes:
• AgVal = 1 if the rule is satisfied, 0 otherwise. A rule

is satisfied if there exists at least one grounding for the
current query.

• TbVal = AgVal
In AND nodes:
•

AgV al =
1

N

N∑
i=1

AgV ali

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TCIAIG.2013.2275163

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

TCIAIG-2012-0103 5

•

TbV al =
1

N

N∑
i=1

TbV ali

where i denotes the i-th child (OR) node.
In non-leaf OR nodes:
•

AgV al = max
i=1,...,N

AgV ali

•

TbV al =
1

N

N∑
i=1

TbV ali

where i denotes the i-th child (AND) node.
The algorithm for computing both propagated values is

similar to the regular logic proving scheme used by the
interpreter. However, instead of just deriving true facts, we
also apply the above formulas for calculating AgVal and TbVal.
There are two differences though: in a regular case, while
iterating the conditions in AND node, the first unsatisfied
condition immediately proves the current rule false. There is
no need to check the conditions further because we already
know that the rule is not satisfied and will not produce any
facts. In AGE case, we continue to check the conditions even
if a failure is encountered, because we are interested in how
many conditions actually hold true.

Recurrent rules, however, are treated differently. A failure
of a condition inside a recurrent call acts as a termination con-
dition for the recurrence. In such a case, the proving procedure
is terminated, likewise in a regular non-AGE scenario, which
prevents the system from entering an infinite loop.

A simulation that uses AGE strategy orders moves according
to their next state’s AgVal and then, in the case of even results,
according to their TbVal values. This strategy, if active in a
given simulation, is applied with probability P = 0.75 in each
node. Otherwise, a random choice is made. Justification of this
choice is presented in section V-G

C. Statistical Symbols Counting (SSC)

This strategy implements a simplified version of our for-
mer approach previously used as a stand-alone GGP agent’s
engine [16]. In the following description we assume that the
reader possesses a basic knowledge of GDL. We recommend
the GDL specification [2] in case of any questions in this
matter. The SSC policy of play requires some learning period
before it can be effectively applied. The learning phase re-
lies on performing random simulations with some additional
computations made in each encountered state.

First of all, the number of realizations of each state fact
is counted. A state fact, like all GDL/Prolog terms, starts
with a name followed by arguments, so state facts with a
common name are grouped and counted together. For example,
in the initial state of checkers (see [3] for a GDL checkers
description), we observe:
Count(“cell”) = 64; there are 8× 8 cells.
Count(“control”) = 1; there is one player having a turn.
Count(“step”) = 1; the step counter has only one value in
each state.

TABLE I
STATE FACTS VERTICAL ARRANGEMENT. THE 0-TH COLUMN SYMBOLS

ARE EMPHASIZED.

cell 1 1 b

cell 1 2 b

cell 1 3 b

cell 2 1 x

cell 2 2 b

cell 2 3 o

cell 3 1 b

cell 3 2 b

cell 3 3 x

Count(“piece count”) = 2; there are two scores, one for
each of the players.
The other type of elements which are identified and counted
are symbols, which are present on state facts argument lists
with the same index (in the same position). In other words, if
these facts were placed in vertical order, one below the other,
these symbols would be placed in the same column (see Table I
as an example).

We filter out symbols whose quantities do not change or
change in a fixed manner. In order to detect them we com-
pare the respective quantities in states occurring in different
simulations paused at the same time steps (see Figure 1).

Fig. 1. Selection of dynamic features.

We label simulations as won or lost depending on whether
or not the result is above the average defined in the GDL
game description. For each symbol its average (AVG) quantity
is computed for won (AV GW) and lost (AV GL) games,
respectively, as well as, its maximum value (MaxValue). The
weight assigned to a given symbol is calculated according to
the following formula:

weight =
AV GW −AV GL

MaxV alue
(2)

These weights, linearly combined with the corresponding

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TCIAIG.2013.2275163

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

TCIAIG-2012-0103 6

numbers of symbol occurrences, form the evaluation function.
Schematically the learning phase can be described as follows:
• identify elements, i.e. the numbers of state facts (con-

tained within each fact), the numbers of symbols in
columns (for each triple (fact, symbol, column))

• count the quantities of presence of these elements in each
state during simulations

• distinguish the symbols whose quantities are affected by
actions taken by the players (i.e. their changes are not
predefined in a game and vary between matches)

• compute correlations between these quantities and a game
score

• define the heuristic evaluation function as a weighted
linear combination of these symbols quantities. Weights
reflect the importance of the respective symbols and their
positive/negative contribution to the player’s position
assessment

All the above-mentioned steps required to construct the eval-
uation function are performed by other strategies by means of
simulations during the 95% of a START clock time, at which
point the strategy is ready for the agent’s use.

D. Mobility (M)

In the case of single-player games the strategy maximizes
the number of actions available to our agent. In the case of
N-player games (N > 1) it aims at the maximization of the
following formula:

N∑
i=1

(M0 −Mi)

where Mi denotes the number of legal moves of the i-th player
and i = 0 represents the role assigned to MINI-Player.

Mobility-based strategy is computationally intensive since
prior to move evaluation, the next state and all legal actions
in that state must be computed. This is why it is only applied
to the first 6 actions in a given simulation. If the simulation
lasts longer, it becomes random from the 7th step on. The limit
for the strategy’s maximum length (6) was defined based on
preliminary tests made during the preparations for the 2012
GGP Competition.

E. Exploration (E)

The idea underpinning this strategy is to explore as many
unknown states as possible. Let us define a difference between
states B and A as the number of facts (GDL/Prolog terms)
which are present in B but not in A:

diff(B,A) = B −A (3)

The action-selection rule is defined as follows:
• previ(S) denotes the i-th previous state to S traversed in

the current simulation
• For each legal action a check its resulting state S =

next(a) and compute N differences between this state
and N previous states:
di = diff(S, previ(S)), i = 1...N

• Choose i which minimizes di to find the most similar
state to S among the N last states

• Choose action a which satisfies: a = argmaxi(mini di)

The action selection formula could be interpreted as follows:
for each possible action a and its resulting state find the most
similar state among the N last ones (the middle part of the
algorithm) and assign this state to that action. Choose an action
that maximizes the difference between the assigned state and
the current state (the last part of the algorithm).

Basically, we look for the highest difference between a
potential new state S and the set of last N states (PREV). A
difference between state S and set PREV is defined as the
difference between S and the most similar to S member of
PREV .

Using the set of chosen games, we experimentally measured
the exploration performance of the algorithm defined as the
number of distinct state facts visited per second, or equiv-
alently, the number of distinct states visited so far. In both
cases, the proposed method explores statistically more states
than both the simple maximization of the difference between
S and the last state or difference between S and the union of
the last N states (i.e. a union of all facts which hold true in
these states).

We have tested values of N from 1 to 8 and found N = 3 to
be the best trade-off between depth and performance. N = 4
is also a viable, but visibly slower, choice. Values less than 3
result in playing in a similar way to random play.

Note that instead of using (3) we could have defined the
state difference in a symmetrical way, i.e.:

diff(B,A) = (B −A) ∪ (A−B) (4)

We prefer the asymmetric definition mainly because it favors
the existence of new facts in child states. We had tested this
strategy in all single-player games available to us, as well as,
in checkers, and found that the approach based on (3) yielded
better results. Moreover, the wins occurred faster than in the
case of using definition (4) .

F. History Heuristic (HH)
During a simulation MINI-Player maintains a global dictio-

nary of actions taken (regardless of the state), e.g. (mark 3 3
x), and their average scores. Moves performed by each role are
tracked separately and once a terminal state is reached their
average scores are updated by the current simulation result.
An estimated historical strength of a move is then defined
as the sum of obtained goal values in all simulations which
included that move, divided by the number of such simulations
- duplicates occurring during a single match are ignored.

In the case the HH strategy is chosen to be active dur-
ing a given simulation, the player checks if there are any
matches between currently available moves and those histor-
ically stored. If at least one such a match is found, the best
scored move is selected. Otherwise, the action is performed
at random. A similar approach is used by Cadia-Player in e-
Greedy algorithm [27]. Contrary to our approach, however, the
performance of HH is not monitored on-line and the heuristic
is applied stand-alone, i.e. is not mixed with other play-out
policies.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TCIAIG.2013.2275163

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

TCIAIG-2012-0103 7

G. Tuning Parameters

Each non-random strategy includes, an individually tuned,
parameter PR denoting the probability of choosing a move
according to this strategy in a given node (state). For example,
if a simulation guided by AGE lasts 100 steps, there are 100
decisions whether to take an action according to the AGE
formula (with probability PR) or choose a random move
(with probability 1 − PR). Parameter PR should be high
enough to allow the exploitation of a particular strategy, but at
the same time low enough to avoid repeating the same lines
of play. To derive a suitable value of PR, first we roughly
identified games in which particular strategies give best results
using default parameters, then we performed experiments with
various PR values for each pair consisting of a strategy and
the game for which the strategy is well-suited further to our
observations. A player using that strategy mixed with a random
one was tested against a basic UCT-player with a random
search in 300 matches. The results are presented in Table II.
For each strategy the respective value of PR lies in the row
containing the bolded value (e.g. 0.70 for HH or 0.80 for E).
The 95% confidence intervals are in a relatively close range
within a game, so only the average value per game is included.
It is easy to notice that results do not differ much in the
proximity of the optimum. In addition, for four strategies the
optimum for PR was found within a range of 0.7 and 0.85.

TABLE II
THE RESULTS OF TESTS AIMED AT TUNING THE PARAMETER PR
(PROBABILITY OF USING A GIVEN STRATEGY IN THE CURRENTLY
SIMULATED/VISITED NODE). SEE SECTION V-G FOR A DETAILED

DESCRIPTION.

P AGE SSC M E HH
Checkers Chess Othello Farming Connect-4

Quandries
0.20 59.17 50.00 54.33 54.83 54.67
0.40 66.00 51.00 55.50 56.50 55.83
0.50 65.67 51.33 68.17 58.17 59.33
0.60 70.67 51.00 73.83 59.50 59.00
0.65 79.17 50.83 73.67 60.67 57.33
0.70 76.33 51.33 81.33 61.17 66.67
0.75 79.33 49.50 83.67 61.67 62.92
0.80 75.83 53.17 81.17 62.17 59.17
0.85 72.67 54.17 85.17 58.33 54.83
0.90 69.33 54.64 79.17 42.50 50.67
1.00 55.67 55.00 68.17 34.83 44.17

95% Conf. ±4.46 ±9.07 ±3.90 ±5.10 ±5.13

H. Modeling the Opponents

In simulations performed by MINI-Player, opponents are
modeled using the MCTS method enhanced with HH. This
choice is, to some extent, justified by the popularity of the
history heuristic - many players actually implement some
version of this concept. Other strategies are not used for
opponent modeling for multiple reasons, mainly the following
ones:
• To maintain high simulation speed
• There are no premises that other approaches would model

the opponents better than HH (most probably opponents
do not use our strategies)

• To keep the evaluation of our strategies fair and compa-
rable, i.e. our player is always simulated against players
of the same type (random ones equipped with the history
heuristic)

The effective inclusion of other than HH playing strategies
in the task of modeling the opponents is one of our future
research goals.

VI. STRATEGY SWITCHING MECHANISM

Using all strategies uniformly during a match would not be
a good idea. First of all, if we are playing a game for which
there is an optimal strategy in our repository (this is only a
hypothetical assumption), then the best choice would be to
use this optimal strategy in all simulations, not only in some
percentage of them. Secondly, if some of the strategies are
weak for a particular game, we would waste time on ineffective
simulations.

To overcome this problem we use a dynamic strategy
evaluation mechanism. The higher the evaluation of a strategy,
the more simulations it is used in. Moreover, at some point, the
worst performing strategies are discarded from the selection
pool. After a number of experiments, we ended up with three
methods of strategy evaluation. One of them (described in
section VI-C) works well only under certain conditions and,
due to not being general enough, was finally abandoned in
our tests. The remaining two solutions are quite similar, though
there are some practical differences between them. So far none
of them appeared to be superior to the other. We present them
in the following three subsections.

A. Upper Confidence Bounds (UCB)

Upper Confidence Bounds [10] is a well-known algorithm
for maintaining a trade-off between exploration and exploita-
tion. The method is also called a K-armed bandit algorithm
because of its origin related to multi-armed bandit machines
(in casinos). In the problem, there are k arms, each leading
to a random reward. Probabilistic distributions of the arms
are pairwise independent and unknown, but fixed for a given
problem instance. An agent, at each step, can choose one
arm to play with. The goal is to maximize the total reward.
The UCB comes with a formula on how to balance the
exploitation of the most lucrative arms recognized so far and
exploration of other possibilities. A simple solution might be,
for example, to play the currently best arm with the probability
0.5 and a randomly selected other one in the remaining cases.
Such an approach, however, is not optimal. UCB offers a
statistically justified solution which is optimal in the sense
of the maximization of the expected value.

In the GGP framework the UCB method selects strategy s*
according to the following formula:

s∗(n+ 1) = argmax
s∈S

{
Q(s, n) + b

√
ln (n)

T (s, n)

}
(5)

where s* is a chosen strategy, n is the number of simulations
performed so far, Q(s,n) - is the average payoff of strategy s
in n simulations (this is the total result of s-driven simulations

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TCIAIG.2013.2275163

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

TCIAIG-2012-0103 8

divided by T(s,n), T(s,n) is the number of simulations that used
strategy s in n performed simulations, b is a weight assigned
to the exploration part. After some tuning its value was set
to 5. The algorithm is, to some extent, similar to the UCT
method used for a node selection in the MCTS algorithm (cf.
eq. 1), however, the assessments of nodes and strategies are
performed independently.

B. Static Allocation

We also tried to order the strategies by their average results
and assign to them predefined numbers of simulations based
on their ranks. The distribution of the numbers of assigned
simulations was optimized manually based on observations
made in games we know how to play. In these games we have
observed MINI-Player’s performance and the quality of its
move-selection mechanism in the case of various distributions
of the strategies used in simulations. Based on the above-
mentioned observations we decided on the following scheme:
we allocated 22 simulations for the best strategy (ranked first),
11 for the second one, and then 7, 4, 2 and 1, respectively for
strategies ranked from third to sixth.

If, for instance, the mean pay-off values of the strategies
were the following: S1 = 0.61, S2 = 0.59, S3 = 0.27,
S4 = 0.49, S5 = 0.70, S6 = 0.48, then the strategies were
ordered S5 > S1 > S2 > S4 > S6 > S3 and allocated
[22, 11, 7, 4, 2, 1] simulation runs, respectively.

The order of execution was “close to uniform”, with respect
to the ranks of strategies, i.e., for example,

S5, S1, S5, S2, S5, S1, S5, S4, S5, S1, S5, S2, . . . , S5.

In the above order S5, having 22 simulations to perform,
appears twice more frequently than S1 with 11 simulations and
approximately three times more frequently than S2 which is
assigned to 7 simulations, etc. After a round of 47 simulations
the evaluation process was repeated.

It is worth underlining that in this allocation scheme 70%
of all simulations have one of the two best strategies assigned.

C. Square average result proportional

In this method strategies are assigned quantities of simula-
tions to perform proportionally to their square average results.

First, we compute the average result of strategy i,
AV Gi, i = 1, . . . , 6 as a sum of results accomplished by this
strategy, divided by the number of simulations that used this
strategy, so far. In order to avoid the problem of dividing by
zero, we forced the assignment of each strategy to at least one
simulation in the first 10 simulations, and only then calculated
the values of AV Gi for the first time.

Next, we normalize the averages:

AV Gi :=
AV Gi

mini AV Gi

Then we add the overflow OFi, i.e. a fractional part from
the previous evaluation (see below). In the first evaluation all
OFi are equal to zero. After OFi is added, the average value
is squared:

Ri = (AV Gi +OFi)
2

Next, the allocation of simulations and new overflows are
computed:

Si = bRic
OFi = Ri − bRic

where Si, i = 1, . . . , 6 is the number of times strategy i will
be pursued in the current sequence. After a round of

∑
i Si

simulations the strategy assignment process is repeated. The
AV Gi values typically fall into the range of (1,2). Value of
2 means that there exists a strategy with the average outcome
two times greater than the worst-evaluated strategy. This
proportion depends on how a game is defined, but in a classical
two-player zero -sum games the variance is usually lower (see
Table IX which shows average outcomes of strategies). Let’s
consider a very probable example: AV G = (1.1, 1.2, 1.4) and
therefore R = (1.21, 1.44, 1.96). Since we assign a number of
simulations equal to the floor of R, we would not be able to
distinguish between a better outcome and a worse one because
all of them would become 1. The OF is used to add the
fractional part, which is lost in the floor operation, to the next
iteration of the allocation process. This enables maintaining
appropriate proportions.

This method of allocation works well when there are only
two strategies. When there are more of them, the distribution
is too narrow, i.e. the quantities of simulations assigned to
strategies are too close to each other. At first we decided to test
just the linearly proportional allocations, without the square
component applied to the average scores, but in that case the
numbers obtained were even closer. That is why we eventually
excluded this method from our tests and focused on those
described in sections VI-A and VI-B.

D. Comparison of the switching mechanisms

Figure 2 presents the quantities of simulations which are
assigned to the best evaluated strategy by the three methods
discussed. The same data, in the case of the worst evaluated
strategy, is presented in Figure 3.

Methods A (section VI-A) and B (section VI-B) yield
similar performance during the first 20000 runs, when the
number of simulations allocated to the best strategy equals ap-
proximately half of the total number of simulations performed.
At the same time, the number of simulations allocated to the
worst performing strategy is about 10 times smaller (c.a. 5%
of the total number of simulations). The above comparison
(50% vs. 5%) indicates that strategy allocation mechanisms in
methods A and B are plausible and consistent. After 22500
simulations method A starts to favor the best performing
strategy more than method B.

Method C (section VI-C), in the same time period of 20000
simulations, allocated approximately 25% of the simulations
to the best performing strategy and around 15% to the worst
one. Clearly, method C does not ensure adequate distinction
between strategies.

Method A is the most complex in terms of required com-
putations and, at the same time, has strong mathematical
background. The algorithm must be recalculated before each
simulation. For comparison, the two other methods need to

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TCIAIG.2013.2275163

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

TCIAIG-2012-0103 9

Fig. 2. The numbers of simulations allocated to the best evaluated strategy in
a sample checkers game. The x-axis presents the total number of simulations.

Fig. 3. The numbers of simulations allocated to the worst evaluated strategy
in the same game as the one presented in Figure 2. The x-axis presents the
total number of simulations.

be recalculated much less frequently, only when there are no
more simulations assigned.

Method B is the simplest and the fastest one, which is a huge
advantage. Since the allocation grain is static (pre-defined), the
method cannot be optimal in all cases. This is, however, a safe
and robust approach, with no risk of reaching a situation in
which one strategy would receive all (or zero) simulations, for
example.

Whether the first or the second method is better depends
on the game. During the 2012 GGP Competition, method A
was implemented by our agent. Most probably the optimal
solution would consist of applying the UCB method with
some, statically defined, lower and upper bounds, i.e. a kind
of “the best of both-worlds” solution. An investigation into
this issue is one of our current research goals.

VII. EMPIRICAL RESULTS

A. Experimental setup

In addition to taking part in the 2012 GGP Competition,
MINI-Player has been tested in a series of matches against

two reference opponents. The first one was CadiaPlayer [20],
a three times winner of the GGP Competition (2007, 2008
and 2012). The version we played against is from June 2011,
available open source at the project’s website [34]. We used
the original authors’ implementation. Although the program
has most probably been optimized since then, the authors do
not claim to have introduced any major changes to their agent.
CadiaPlayer is undoubtedly regarded as a state-of-the-art GGP
player and is the most renowned prize-winning tournament
participant.

The second opponent was a clone of our system which did
not use any simulation strategies other than a random one,
enhanced by the history heuristic, and employed the classical
move-selection method based on the nodes’ average scores.
We call this player MINI-Player-C (“C” stands for “classic”).

In order to ensure sufficient complexity and diversity of
games, we used the same set of games which our agent
played during the 2012 GGP Competition plus a few single-
player ones (games of this kind were not present during the
competition).

Each game was played 270 times (rounds) with the roles
swapped after each game. Role switching is important since
in some games there exist favorable starting positions. Inspired
by [20] we used a mechanism of aggregating the results similar
to CadiaPlayer’s. The game is considered won by a player if its
score is greater than that of the opponent. The actual difference
does not matter. An equal outcome results in a draw. The
final formula for a player’s aggregated score is the following
(normalized to [0,100] interval):

Score = (|WINS|+ |DRAWS|
2

) ∗ 10
27

(6)

B. Move decision

A final decision which action to play during a match is
taken on higher level than inner-simulation choices. Each
strategy is too straightforward and not universal enough to
be used as a unique, stand-alone tool. The root node in a
game tree represents the current state. The selection of a
move is technically equivalent to the selection of a direct child
node of the root. Even though the whole UCT formula could,
in principle, be applied to this task, it is better to use the
exploitation part of equation 1 only, i.e. the average action
value Q. During a match an agent should answer with the
best possible move. Hence, most, if not all, UCT-based players
choose an action either according to the Q value or select the
most simulated node. The exploration part of equation 1 is
usually reserved for tree building simulations.

Our action selection scheme is a bit more complex, based
on - what we call - an Effective Quality (EQ). In a given
decision context, let us define by Our - the number of moves
available to our role and by Total - the total number of joint
(tuple) moves available.

In order to calculate EQ value we distinguish four types of
nodes among the next move candidates (see Table III).

For each child node of the root node (i.e. each candidate
move) we calculate its EQ with respect to Table III. A node
with the highest EQ value is chosen. If more than one node

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TCIAIG.2013.2275163

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

TCIAIG-2012-0103 10

TABLE III
EQ VALUE BASED ON THE ROOT CHILDREN node PROPERTIES.

Condition in a node EQ formula

node.Terminal = True EQ = node.Q

Our = 1 EQ = mini=1...N (node.Child[i].Q)

1 < Our < Total EQ =
mini=1...N (node.Child[i].Q)+node.Q

2

Our = Total EQ = maxi=1...N (node.Child[i].Q)

is tied with this value we extract our role action and choose
one with the highest HH value. Since all strategies record
their history, HH provides an additional mechanism for the
final move recommendation. If some nodes are still tied, one
of them is selected at random. When applying the above
procedure, contrary to other Monte Carlo and UCT players,
our agent analyzes not only the root children nodes but also
their child nodes (root grandchildren), so, effectively, the tree
is searched one level deeper.

An example of the EQ-based selection procedure is pre-
sented in Figure 4. In the root node there are four possible
actions leading to four child nodes. In the leftmost one, the
condition 1 < Our < Total holds, which leads to calculation
of EQ according to the third case presented in Table III. The
second node on the left is a terminal one with the game
outcome (as well as EQ value) equal to zero. In the next one
the condition Our = 1 is true, so the formula of the second
case from Table III is applied. Finally, in the fourth child node
the condition Our = Total holds, and therefore, the last case
of Table III is considered. The rightmost node is selected as
the next agent’s move with EQ = 0.7.

The main motivation behind the above-described method
compared to typical UCT-based players is the common weak-
ness detected in their play - they tend to play too opti-
mistically, often relying on opponents’ faults. Introduction of
min function into the formula partly alleviates this problem.
Furthermore, if a game features double moves, or two con-
secutive moves are strongly correlated, the modified approach
has higher chances to select a locally optimal pair.

C. The results

As previously mentioned, among our two players, MINI-
Player uses six previously introduced strategies with a switch-
ing mechanism A and the above-described EQ-based move
selection, while MINI-Player-C uses plain UCT enhanced by
HH and a standard (best Q) move decision scheme.

In the first experiment MINI-Player was pitted against
CadiaPlayer. The results are presented in Table IV. Generally,
our agent confirmed its potential in some games (roughly
those which it had won during the contest), but at the same
time lost in a few others (again, mainly those it had lost
in during the competition). The positive exception from the
above rule is Farming Quandries (won against Cadia, lost in
the tournament). All in all, MINI-Player was the winner in
five games and lost the remaining four.

In the second experiment we compared MINI-Player and
CadiaPlayer with the basic MCTS agent (MINI-Player-C). The

TABLE IV
EVALUATION OF MINI-PLAYER’S STRENGTH VERSUS CADIAPLAYER.

OUR PLAYER SUFFERED FROM A TECHNICAL ERROR IN THE FIRST GAME
DURING THE COMPETITION WHICH WAS IMMEDIATELY CORRECTED.

VALUES IN COLUMN Clock REPRESENT START CLOCK TIME (THE LEFT
VALUE) AND PLAY (MOVE) CLOCK TIME (THE RIGHT VALUE). THE

RESULTS ABOVE 50 ARE IN FAVOR OF MINI-PLAYER AND THOSE BELOW
50 FAVOR CADIAPLAYER. THERE ARE 95% CONFIDENCE INTERVALS PUT

IN SQUARE BRACKETS (THE LOWER THE VALUE THE HIGHER THE
CONFIDENCE)

Game Clock MINI vs. GGP
[s] Cadia 2012

Result
Connect4 40 15 41.67 [5.35] Loss (error)

Cephalopod Micro 60 20 40.00 [5.84] Loss
Free for all 2P 45 15 63.33 [5.14] Win

Pentago 45 15 29.33 [5.43] Loss
9 Board

Tic-Tac-Toe 45 15 70.67 [5.16] Win
Connect4 Suicide 45 15 53.33 [5.26] Win

Checkers 60 20 54.33 [5.88] Win
Farming Quandries 90 30 68.33 [4.21] Loss

Piligrimage 90 30 42.67 [4.32] Loss
Average 51.40 [5.18]

results are presented in Table V. MINI-Player outperformed
MINI-Player-C in seven games and was inferior in the remain-
ing two. Likewise CadiaPlayer won seven games, tied one and
lost one, however, the sets of games in favor of MINI-Player
and CadiaPlayer, respectively were not exactly the same.

TABLE V
RESULTS OF MINI-PLAYER VS. MINI-PLAYER-C AND CADIAPLAYER VS.

MINI-PLAYER-C. SEE DESCRIPTION OF TABLE IV FOR CLOCK VALUES
AND INTERPRETATION OF RESULTS.

Game MINI vs. MINI-C Cadia vs. MINI-C

Connect4 61.33 [5.69] 59.67 [5.54]

Cephalopod Micro 59.33 [5.86] 73.33 [5.27]

Free for all 2P 75.33 [4.86] 65.67 [5.11]

Pentago 40.00 [5.84] 55.33 [5.93]

9 Board
Tic-Tac-Toe 66.30 [5.42] 50.00 [5.76]

Connect4 Suicide 51.33 [5.72] 43.33 [5.50]

Checkers 79.33 [4.83] 69.33 [5.32]

Farming Quandries 66.67 [5.36] 59.67 [4.90]

Piligrimage 39.33 [5.40] 62.83 [5.39]

Average 59.88 [5.44] 59.91 [5.42]

The next experiment was devoted to the separation of the
impact of adaptive-strategies from the modified move selection
formula (EQ). In a small tournament two versions of MINI-
Player using the respective mechanisms were tested against
CadiaPlayer. The results are presented in Table VI.

Furthermore, in order to make the results easier to interpret,
we computed the relative factors, i.e. the strength of both
modifications separately and in a combined version divided
by the baseline MINI-Player-C’s score (see Table VII). A
factor of 1.00 means that the player is performing at the
level of a basic MCTS player with no enhancements. The
usage of the EQ formula increases the overall strength by
7% whereas applying the adaptive selection of strategies by
24%. A combination of both enhancements results in a 28%

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TCIAIG.2013.2275163

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

TCIAIG-2012-0103 11

Fig. 4. An example showing the move selection procedure based on Effective Quality value. For the sake of completeness of the figure all four cases
considered in Table III are presented, even though, in practice, such a situation is relatively unlikely to happen. The upper and lower values in the first-level
nodes represent the EQ and Q values, respectively.

higher score, on average. In addition to the competition-

TABLE VI
RESULTS OF MINI-PLAYER USING ONLY ONE OF TWO FEATURES:

MINI-EQ USES A MODIFIED MOVE DECISION; MINI-STR USES A MIX OF
STRATEGIES WITH STANDARD MOVE DECISION VS. CADIAPLAYER. SEE
DESCRIPTION OF TABLE IV FOR CLOCK VALUES AND INTERPRETATION

OF RESULTS.

Game MINI-EQ vs. Cadia MINI-STR vs. Cadia

Connect4 54.84 [5.85] 40.00 [5.42]

Cephalopod Micro 36.67 [5.75] 40.00 [5.84]

Free for all 2P 39.81 [5.31] 59.56 [5.39]

Pentago 45.93 [5.94] 31.33 [5.53]

9 Board
Tic-Tac-Toe 49.33 [5.72] 66.67 [5.41]

Connect4 Suicide 60.67 [5.40] 51.33 [5.33]

Checkers 24.00 [5.05] 53.67 [5.93]

Farming Quandries 39.33 [4.60] 64.67 [4.54]

Piligrimage 35.67 [4.09] 40.33 [4.55]

Average 42.91 [5.30] 49.73 [5.33]

based games, the test set included five single-player games, the
results for which are shown in Table VIII. Contrary to multi-
player games, which are generally of a competitive nature,
in all single-player games the players were to find a solution
for the game rather than compete with one another. For each
game, the tests were repeated 270 times and the results were
averaged. The comparison was even (2 wins of Cadia, 2 wins
of our player, and a draw in one game), although our player
achieved a better average score across all games.

In order to have an insight into the internal decision-making
process related to the strategy selection we compared the
scores assigned to each strategy at the end of the START clock
phase, i.e. just before making the first move in a game for
all nine tested two-player games. The results are presented in
Table IX.

The average values are relatively low because in two games:
Farming Quandries and Pilgrimage it was very difficult to
reach higher payoffs. Many games ended with 0−0 or 10−0

TABLE VII
RESULTS ACHIEVED BY FOUR VERSIONS OF MINI-PLAYER AGAINST

CADIAPLAYER RELATIVE TO THE BASE MINI-PLAYER-C’S
PERFORMANCE.

Game MINI-C MINI-EQ MINI-STR MINI
Connect4 1.00 1.36 0.99 1.03

Cephalopod Micro 1.00 1.38 1.50 1.50
Free for all 2P 1.00 1.16 1.73 1.84

Pentago 1.00 1.03 0.70 0.66
9 Board

Tic-Tac-Toe 1.00 0.99 1.33 1.41
Connect4 Suicide 1.00 1.07 0.91 0.92

Checkers 1.00 0.78 1.75 1.77
Farming Quandries 1.00 0.98 1.60 1.69

Piligrimage 1.00 0.96 1.09 1.15
Average 1.00 1.07 1.24 1.28

TABLE VIII
RESULTS OF MINI-PLAYER AND CADIAPLAYER IN SINGLE-PLAYER

GAMES.

Game Clock MINI-Player CadiaPlayer
[s]

Hanoi 30 20 80.70 [0.55] 99.00 [0.52]

Knight Tour 30 20 100.00 [0.00] 100.00 [0.00]

8-Puzzle 30 20 64.80 [4.82] 3.60 [2.10]

Lights Out 30 20 18.50 [4.63] 0.00 [0.00]

Rubik’s Cube 30 20 0.00 [0.00] 13.25 [1.17]

Average 52.80 [2.00] 43.17 [0.76]

scores (where 100 is the maximum). Interestingly, the results
obtained using Exploration strategy in Farming Quandries are
exceptionally high in comparison to the others.

In general, each strategy, except for Mobility and Random,
was superior in at least one of the games. On the other hand,
strategy R, though never being the strongest one attained sec-
ond place in four games. The most successful were strategies
HH and E, each appeared to be the best choice in three games.
A close follower was AGE with two wins and three second

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TCIAIG.2013.2275163

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

TCIAIG-2012-0103 12

TABLE IX
THE ASSESSMENT OF STRATEGIES JUST BEFORE THE FIRST MOVE WAS

PLAYED IN A GAME. THE HIGHEST SCORES FOR EACH GAME ARE BOLDED.

Game R AGE M HH E SSC
Connect4 54.6 78.1 55.00 80.6 58.3 54.0

Cephalopod Micro 49.1 34.9 44.3 57.9 34.8 42.6
Free for all 2P 52.4 68.0 58.5 76.2 94.5 84.5

Pentago 48.9 75.7 43.1 47.0 45.4 45.7
9 Board

Tic-Tac-Toe 51.3 71.8 49.7 32.0 48.5 46.6
Connect4 Suicide 54.1 51.4 49.0 59.2 45.0 49.6

Checkers 48.8 77.7 64.1 54.7 75.0 78.5
Farming Quandries 1.0 2.5 0.9 1.0 37.2 1.5

Piligrimage 0.1 0.2 0.3 0.4 0.9 0.2
Average 40.0 51.1 40.5 45.4 48.8 44.8

places. M was clearly the weakest choice - out of nine games
it both failed to win and be a runner up.

The final experiment was aimed at testing synergistic behav-
ior of strategies. In order to address this issue we developed an
agent named MINI-1-S which was committed to the highest
estimated strategy for a particular game. The question was
whether MINI-1-S would be better than a regular version of
MINI-Player. In the START clock, MINI-1-S uses all strategies
in uniform proportions, and afterwards the strategy with the
highest score is selected. The motivation is to test if there is
emerging knowledge in alternating between strategies that is
not captured by any one of the strategies on their own. The
results of this experiment are presented in Table X.

TABLE X
RESULTS OF MINI-1-S PLAYER, WHICH USES ONLY THE BEST STRATEGY

VERSUS MINI-PLAYER.

Game MINI-1-S vs. MINI-Player

Connect4 52.41 [5.90]

Cephalopod Micro 45.92 [5.94]

Free for all 2P 48.33 [5.56]

Pentago 50.00 [5.96]

9 Board Tic-Tac-Toe 52.96 [5.75]

Connect4 Suicide 40.30 [5.60]

Checkers 57.78 [5.78]

Farming Quandries 58.89 [5.33]

Piligrimage 35.63 [5.33]

Average 49.14 [5.68]

In four games, a mixture of strategies yielded better results
than using only the major strategy. In four other games,
the player provided with the (presumably) best strategy won
against the MINI-Player. The ninth game ended with a draw.
Several results are within a very close range, however, the
strategy switching mechanism seems to be a safer option
in general. The “best strategy” can change with respect to
the game phase or game situation. A player using only a
single strategy would not be able to react to such a change.
Furthermore, the more strategies are considered, the shorter
time for testing each of them in the START is allotted. Hence,
the confidence in a final selection decreases.

VIII. RELATED WORK

In this section we present a detailed discussion on the
differences between our method and the concepts previously
introduced in the related literature.

A. Statistical Symbol Counting

In the SSC strategy introduced in section V-C we construct
a simple evaluation function based on two types of elements:
a number of state facts for each fact type and symbols
counted in their respective columns. The way the two elements
are defined, weighted and used in the evaluation function
in the current approach is taken directly from our earlier
work [16]. One significant difference is that, in the previous
approach we included a third type of function component,
called DynamicSymbols, of a far more complex definition.
Roughly speaking, the idea was to detect symbols which to
the highest degree change other symbols they appear with
in fact realizations. Such symbols are naturally suspected of
being pieces moving over the board or other dynamic game
features. However, the major difference between SSC Strategy
and our earlier work is that previously we used the evaluation
function together with the iterative-deepening DFS as a stand-
alone playing method. In the present approach we not only use
a simplified version of this heuristic, but also the function itself
is embedded in one of the six strategies. It is therefore used (if
active) to guide the MC simulations and not to approximate the
nodes’ scores in the game tree. Scores in the tree are collected
from the results of previously completed simulations.

B. Approximate Goal Evaluation

The idea of computing a degree of truthfulness of a goal
formula was introduced in [18] and further analyzed in [19].
It was also implemented in FluxPlayer - the GGP Competition
winner in 2006. Even though both FluxPlayer and MINI-
Player take advantage of the estimated degree of a goal
fulfillment there are two main differences between these
two approaches. First of all, in FluxPlayer, the degree of a
goal satisfaction is a part of the knowledge-based evaluation
function used together with non-uniform iterative-deepening
tree search. In our approach, the goal approximation is a part
of the lightweight play-out strategy and (if active) is used to
guide the simulation. One of the consequences is that in [18]
the aim is to cut-off the DFS at some point and return a valid
approximated score of a state. Likewise in the previous section
on SSC strategy, we use AGE only to choose an action to be
taken during a simulation and nodes’ scores are exclusively
based on the results of simulations. Hence, our approach to
goal assessment is simpler than in [18], [19]. AGE is computed
much more often and, to some extent, is prone to mistakes,
since quasi-random simulations are repeated many times.

The second key difference between the two works is how
the goal evaluation is actually computed. The authors of
FluxPlayer use fuzzy logic to assign 0 and 1 values to facts
which hold in the current state Z:

eval =

{
p, if a holds in Z
1− p, otherwise

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TCIAIG.2013.2275163

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

TCIAIG-2012-0103 13

Complex expressions, i.e. rules are computed using formally
defined fuzzy logic t-norms and complementary s-norms:

eval(f ∧ g, Z) = T (eval(f, Z), eval(g, Z))
eval(f ∨ g, Z) = S(eval(f, Z), eval(g, Z))

Yager norms family was chosen however the authors conclude
that there is a degree of freedom in the choosing of a norm.
The goal and terminal rules are unrolled, so they contain either
facts or basic operations on facts: conjunction, disjunction and
negation.

There is a serious problem with the above approach detailed
in both [18] and [19], if using a natural candidate for p
parameter (in eval definitions), the state evaluation returns 0 if
at least one subgoal is not fulfilled. To overcome this problem,
the authors decided to choose an arbitrary 0.5 <= p < 1.0.
As long as only one goal rule is taken into consideration, the
formula can correctly order states with respect to the degree
of goal fulfillment. However, the computed value does not
represent the absolute percentage extent to which the goal
holds. This makes it difficult to compare goal rules of different
definition, e.g. having a different number of conditions. We
overcame both of the above-mentioned problems by using the
approach presented in section V-B. Technically, we count the
number of conditions which hold true in relation to the total
number of conditions in AND tree nodes and apply the max
norm in OR nodes.

C. Mobility

One of the strategies relies on a concept of mobility which is
commonly used in a variety of standard game AI algorithms.
In fact, no researcher claims to be the inventor of mobility,
because the measure of available moves seems to be very intu-
itive and native in game domain. In GGP, the first competitive
program which used mobility was ClunePlayer [17]. It was
defined for two-player games in the following way:

Mred −Mblack

normalizationFactor

where Mred denotes the number of our legal moves and
Mblack the number of opponent’s legal actions. The normal-
ization was performed by dividing by the maximum value
of mobility over the sampled game states. We can expect
that the formula had a serious impact on execution speed as
once a greater value had been found, all previous computa-
tions had to be repeated. The author introduced a so-called
MobilityStability to test whether this heuristic is useful. If
the variance of mobility i.e. the changes between consecutive
states, was high, the heuristic had proportionally less impact
on the overall evaluation function.

The difference compared to our approach is mainly twofold.
Unlike in [17], we use the mobility to guide the simulation
or more precisely to select an action which leads to a state
with the highest mobility (consequently, we do not need to
normalize this value and therefore avoid a lot of computation).
Furthermore, we do not use a stability of mobility, since it is
up to the strategy evaluation procedure to detect if this method
is useful for a particular game.

IX. CONCLUSIONS

The paper describes a General Game Playing agent named
MINI-Player, which combines various playing strategies in
order to optimize the Monte Carlo Tree-Search process. The
system evaluates the strategies and adapts their usage in real-
time: the better the strategy is suited for a game (i.e. the higher
it is evaluated), the more simulations use it as their playing
policy.

MINI-Player took part in the official 2012 General Game
Playing Competition. Despite some inefficiencies in play it
managed to reach the final round, winning some games against
former champions. Furthermore, the results of experiments
evidently show an advantage of the MINI-Player’s playing
skills over the plain UCT-based player (MINI-Player-C). Since
both players use the same code framework the comparison is
straightforward and there are no external factors which might
have come into play during the experiment.

Moreover, in a series of 2430 multi-player matches (9
games, each played 270 times) and 1350 single-player matches
(5 games, 270 repetitions), MINI-Player appeared to be com-
parable to last year’s version of CadiaPlayer, the current world
champion and the most successful player ever. Performance
in single-player games of both agents is also at a similar
level. The results against CadiaPlayer proved that the proposed
approach has potential and is worth further investigation and
development. Certainly, the exact match-up is hard to judge
since the pool of games available in GGP is practically
unlimited and the decisive factors for gaining advantage in
particular games are generally unknown.

Although our assessment of MINI-Player’s play is generally
very enthusiastic and favorable, the agent is definitely far from
being a perfect player and suffers from several weaknesses.
First of all, the efficiency of strategies measured during MC
simulations does not always translate into a better play. This
can be concluded from MINI-Player vs. MINI-Player-C direct
tests, where in three games MINI-Player-C managed to score
higher results.

We also observed that sometimes, for instance in Checkers,
it would be better not to use statistical averaging of node
scores, which are stored in the game-tree, but instead choose a
move suggested by a certain strategy (e.g. AGE). We tried to
include some confidence heuristic to deal with this problem,
but have not yet come up with any robust solution.

Another issue is the tendency of MINI-Player to play too
optimistically, in some sense relying on an opponents’ faults.
As observed in [20], this is a general problem with MC-based
players. We managed to slightly alleviate this inefficiency by
modifying an action selection formula.

General Game Playing is a rapidly growing subfield of game
playing within AI/CI. Current GGP players are quite weak
when faced against humans who know the rules of a game
and possess a basic understanding of its mechanics. There
are many possibilities into how such artificial players can be
improved. Currently we are working on several enhancements
to MINI-Player, notably adding new strategies, implementing
more effective opponent modeling methods and including
static rules’ analysis in the strategy selection process. We also

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TCIAIG.2013.2275163

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

TCIAIG-2012-0103 14

plan to experiment more with single-player games. In such a
class of games there is usually one path (or a small number
of them) which leads to a victory and the goal is to find that
path. The Exploration strategy seems to be best suited for such
a task. However, for the moment we have decided to leave all
the strategies to allow a higher variety in play. In general,
we plan to incorporate the number of players in the strategy
selection mechanism.

ACKNOWLEDGMENT

M. Świechowski was supported by the Foundation for
Polish Science under International Projects in Intelligent
Computing (MPD) and The European Union within the
Innovative Economy Operational Programme and European
Regional Development Fund.

This research was financed by the National Science Centre
in Poland, based on the decision DEC-2012/07/B/ST6/01527.

REFERENCES

[1] M. Genesereth and N. Love, General Game Playing: Overview of the
AAAI competition, AI Magazine, vol. 26, pp. 62-72, 2005.

[2] N. Love, T. Hinrichs, D. Haley, E. Schkufza, M. Genesereth, General
GamePlaying: Game Description Language Specification, Technical
Report LG-2006-01, 2006. Available at:
http://games.stanford.edu/

[3] Dresden GGP Server site. Available at:
http://euklid.inf.tu-dresden.de:8180/
ggpserver/public/show_games.jsp

[4] GGP.org games repository. Available at:
http://www.ggp.org/view/tiltyard/games

[5] J. Pitrat, Realization of a general game-playing program, IFIP Congress,
pp. 1570-1574, 1968.

[6] M. Gherrity, A Game Learning Machine, Ph.D. Thesis, University of
California, San Diego, 1993.

[7] S.L. Epstein, Toward an ideal trainer, Machine Learning, vol. 15, no.
3, pp. 251-277, 1994.

[8] B. Pell, Metagame: A New Challenge for Games and Learning, Heuris-
tic Programming in Artificial Intelligence 3 - The Third Computer
Olympiad. Ellis Horwood, pp. 237-251, 1992.

[9] Y. Wang and S. Gelly, Modifications of UCT and sequence-like simula-
tions for Monte-Carlo Go, in Proceedings of the IEEE Symposium on
Computational Intelligence and Games, pp. 175-182, 2007.

[10] L. Kocsis and C. Szepesvari, Bandit based Monte-Carlo planning, In
Proceedings of the European Conference on Machine Learning (ECML),
LCNS, Springer-Verlag, pp. 282-293, 2007.

[11] C. Shannon, Programming a Computer for Playing Chess, Philosophical
Magazine, vol. 41, no. 314, 1950.

[12] T.A. Marsland Evaluation-Function Factors, Journal of the International
Computer Chess Association, vol. 8, no. 2, pp. 47-57, 1985.

[13] H. Nguyen, K. Ikeda and B. Le, Extracting Important Patterns for Build-
ing State-Action Evaluation Function in Othello, Conference on Tech-
nologies and Applications of Artificial Intelligence (TAAI), pp.278,283,
2012.

[14] U. Lorenz and T.Tscheuschner, Player modeling, search algorithms and
strategies in multi-player games, In Proceedings of the 11th international
conference on Advances in Computer Games, pp. 210-224, 2005.

[15] J. Schaeffer, The history heuristic and alphabeta search enhancements
in practice, IEEE Transactions on Pattern Analysis and Machine Intel-
ligence PAMI-11, vol. 11, pp. 1203-1212, 1989.

[16] J. Mańdziuk and M. Świechowski, Generic Heuristic Approach to
General Game Playing, In SOFSEM 2012 Proceedings, Lecture Notes
in Computer Science 7147, pp. 649-660, 2012.

[17] J. Clune, Heuristic evaluation functions for general game playing, In
Proceedings of the 22nd AAAI Conference on Artificial Intelligence,
The AAAI Press, pp. 994-999, 2007.

[18] S. Schiffel and M. Thielscher, Fluxplayer: A successful general game
player, In Proceedings of the 22nd AAAI Conference on Artificial
Intelligence, The AAAI Press, pp. 1191-1196, 2007.

[19] S. Shiffel, Knowledge-Based General Game Playing, PhD Thesis, Tech-
nische Universitt Dresden, 2011.

[20] H. Finnsson and Y. Björnsson, CadiaPlayer: A Simulation-Based Gen-
eral Game Player, IEEE Transactions on Computational Intelligence and
AI in Games, vol. 1, no. 1, pp. 4-15, 2009.

[21] J. Mhat and T. Cazenave, A Parallel General Game Player, Künstliche
Intelligenz, vol. 25, no. 1, pp. 43-47, 2010.

[22] G. Kuhlmann, K. Dresner and P. Stone, Automatic Heuristic Construc-
tion in a Complete General Game Player, In Proceedings of the Twenty-
First National Conference on Artificial Intelligence, pp. 1457-1462,
2006.

[23] B. Brügmann, Monte Carlo Go, Masters Thesis, Max-Planck-Institute
of Physics, 1993.

[24] C-S. Lee, M-H. Wang, G. Chaslot, J-B. Hoock, A. Rimmel, O. Teytaud,
S-R. Tsai, S-C. Hsu, T-P. Hong, The Computational Intelligence of
MoGo Revealed in Taiwan’s Computer Go Tournaments, IEEE Trans-
actions on Computational Intelligence and AI in games, vol. 1, no. 1,
pp. 73-89, 2009.

[25] H. Finnsson and Y. Björnsson, Simulation Control in General Game
Playing Agents, In Proceedings of the IJCAI-09 Workshop on General
Game Playing (GIGA’09), 2009.

[26] A.L. Zobrist, A New Hashing Method with Applications for Game
Playing, Tech. Rep. 88, Computer Sciences Dept., Univ. of Wisconsin,
Madison, April, 1970. Also in Int. Computer Chess Assoc. Journal 13(2),
pp. 169-173, 1990.

[27] M.J.W. Tak, M.H.M. Winands, Y. Björnsson, N-Grams and the Last-
Good-Reply Policy Applied in General Game Playing, IEEE Transac-
tions on Computational Intelligence and AI in games, vol. 4, no. 2, pp.
73-83, 2012.

[28] M. Kirci, J. Schaeffer and N.Sturtevant, Feature Learning Using State
Differences, Proceedings of the IJCAI-09 Workshop on General Game
Playing (GIGA’09), 2009.

[29] Yet Another Prolog (YAP) Web site. Available at:
http://www.dcc.fc.up.pt/˜vsc/Yap/

[30] ECLiPSe Constraint Programming System Web site. Available at:
http://eclipseclp.org/

[31] M. Mller, M.T. Schneider, M. Wegner, T. Shaub, Centurio, a General
Game Player: Parallel, Java- and ASP-based, Künstliche Intelligenz,
vol. 25, no. 1, pp. 17-24, 2011.

[32] Ł. Kaiser and Ł. Stafiniak, Translating the Game Description Langauge
to Toss, In Proceedings of the 2nd International General Game Playing
Workshop, GIGA’11, pp. 9198, 2011.

[33] M. Świechowski and J. Mańdziuk, Fast Logical Reasoning in General
Game Playing, (submitted)

[34] Cadia-Player project website. Available at:
http://cadia.ru.is/wiki/public:cadiaplayer:main/

Maciej Świechowski received the B.Sc. and the
M.Sc. in computer science from the Warsaw Uni-
versity of Technology, Warsaw, Poland, in 2009.
He is currently pursuing the Ph.D. in the Systems
Research Institute, Polish Academy of Sciences,
Warsaw, Poland under the International Projects in
Intelligent Computing Programme.

His research interests include artificial intelligence
in games, general game playing, graph theory, com-
putational intelligence, and computer graphics. He
has participated in the 2012 International General

Game Playing Competition. He has also acquired practical programming
experience in the mobile video games industry.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TCIAIG.2013.2275163

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

TCIAIG-2012-0103 15

Jacek Mańdziuk (M’05, SM’10) is a Professor
of Computer Science at the Warsaw University of
Technology, Warsaw, Poland. He received the M.Sc.
(Honors) and Ph.D. degrees in Applied Mathematics
from the Warsaw University of Technology, Poland,
in 1989 and 1993, respectively and the D.Sc. degree
in Computer Science from the Polish Academy of
Sciences, in 2000. In 2011 he was awarded the title
of Full Professor (Professor Titular) by the President
of the Republic of Poland. His current research
interests include application of Computational In-

telligence methods to game playing, bioinformatics, financial modeling and
development of meta-heuristic general-purpose human-like learning methods.

He is the author of two books (including Knowledge-free and Learning-
based Methods in Intelligent Game Playing, Springer 2010) and co-author of
one textbook and over 90 refereed papers. Recently he has been twice a Chair
of the IEEE SSCI Symposium on Computational Intelligence for Human-
like Intelligence (Singapore 2013, Orlando 2014), a Program Co-Chair of the
International Workshop on Adaptive Systems in Soft Computing and Life
Sciences, and a panelist in Computational Intelligence and Games panel at
the IEEE WCCI 2008.

Prof. Mańdziuk is an Associate Editor of the IEEE Transactions on
Computational Intelligence and AI in Games, an Editorial Board Member
of the International Journal On Advances in Intelligent Systems, a member
of the Games Technical Committee of the IEEE CIS and a member of the
Intelligent Systems Applications Committee of the IEEE CIS. He has been a
founding chair of the IEEE CIG Task Force on Neural Networks for Games
(since 2008) and a founding chair of the IEEE CIS Emergent Technology
Technical Committee Task Force on Towards Human-like Intelligence (since
2011). He is a recipient of the Fulbright Senior Advanced Research Award.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TCIAIG.2013.2275163

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

