
Weight Patterns in the Networks Trained to

Solve Double Dummy Bridge Problem

Krzysztof Mossakowski
Jacek Mańdziuk

Faculty of Mathematics and Information Science,
Warsaw University of Technology,

Plac Politechniki 1, 00-661 Warsaw, Poland
E-mail: {mossakow, mandziuk}@mini.pw.edu.pl

Abstract

This paper presents analysis of connection weights of artificial neural
networks trained to solve double dummy bridge problems. The networks
were trained using only sample deals, no human knowledge and no rules
of the game of bridge were presented. However analysis of connection
weights reveals some patterns explainable based on human knowledge of
the game.

1 Introduction

The general goal of this research is to create a bridge playing program. The
main assumption is to avoid presentation of human knowledge of the game of
bridge in any form. In all experiments described here only deals and target
number of tricks to be taken by one pair of players were presented. There was
no human knowledge of the game and also no rules of the game were presented
during training.

The goal of experiments presented in this paper was to verify neural net-
works’ ability to estimate the number of tricks that can be taken by one pair of
players in a deal, in assumption of optimal play of all players, when all hands
are revealed. This is so-called double dummy problem.

2 Neural network architectures

In all experiments feed-forward networks created, trained and tested using
JNNS (Java Neural Network Simulator) [1] were used. In most cases logis-
tic (unipolar sigmoid) activation function was used for all neurons except for
the case of representation of data using negative numbers, where the hyperbolic
tangent (bipolar sigmoid) activation function was applied.

1



The number of input neurons was specified by the chosen method of deal’s
representation. The numbers of hidden layers and neurons varied. In most of
the experiments the output layer was composed of a single neuron representing
the estimated number of tricks taken by a pair NS. All networks were trained
using Rprop algorithm [2], with the following choice of method’s parameters:
initial and maximum values of an update-value factor were equal to 0.1 and
50.0, resp., and weight decay parameter was equal to 1E − 4.

3 The data

The data used in solving double dummy bridge problems was taken from GIB
Library [3], created by Ginsberg’s Intelligent Bridgeplayer [4], which is consid-
ered to be the best bridge playing program.

The GIB Library includes 717, 102 deals with all hands revealed. Addition-
ally the library provides a number of tricks taken by the pair NS for each deal
under the assumption of a perfect play of both parties. In all experiments the
attention was fixed on a number of tricks taken by a pair NS for no trump
play with player W making defender’s lead.

The set of deals used in experiments was divided into three groups. The
first 500, 000 deals were assigned to training. Deals numbered from 500, 001
to 600, 000 were assigned to validation, and the rest of deals to testing. The
training set contained 10, 000 or 100, 000 deals depending on the complexity of
the trained network.

4 Deals representation

The main approach of coding a deal for neural networks was to assign one input
neuron for each card, hence networks had 52 input neurons which denoted the
hand containing this card. The hands were coded as follows: N : 1.0, S : 0.8,
W : −1.0, E : −0.8.

In the second approach to coding a deal each card of each hand was repre-
sented by two real numbers: the value (two, three,. . ., king, ace) and the suit
(Spades, Hearts, Diamonds, Clubs). Both real numbers were calculated using a
uniform linear transformation to the range [0.1, 0.9]. Networks had 104 input
neurons (26 inputs for each hand).

Number of tricks was coded as a real value from the range [0.1, 0.9], calcu-
lated using linear transformation from integer values: 0, . . . , 13.

5 Results

Results obtained for various input codings and neural architectures are sum-
marized in Table 1. The best results were accomplished by networks in which
a deal was coded by card assignment, but results achieved for the other coding
are only slightly worse. The difference between these two approaches is evi-
dent when comparing training times - networks using the first approach (card

2



Table 1: Results obtained for various coding schemes and network architec-
tures. The results are presented as three numbers: A | B | C, representing the
fractions in percent of deals for which the network was mistaken by no more
than 2 tricks (A%), no more than 1 trick (B%) and was perfectly right (C%).

Network type Results for training deals (in %)
(26x4)-(13x4)-1 94.77 | 77.45 | 31.91

(26x4)-(13x4)-(7x4)-13-1 96.02 | 80.14 | 33.57
(26x4)-(13x4)-(13x4)-26-13-1 97.29 | 82.02 | 34.99

52-1 94.17 | 76.22 | 31.06
52-4-1 94.52 | 77.13 | 31.80
52-8-1 95.42 | 78.77 | 32.92
52-25-1 96.27 | 81.02 | 34.60
52-52-1 96.79 | 82.23 | 35.45

Network type Results for testing deals (in %)
(26x4)-(13x4)-1 94.77 | 77.50 | 32.05

(26x4)-(13x4)-(7x4)-13-1 93.87 | 75.70 | 31.04
(26x4)-(13x4)-(13x4)-26-13-1 90.09 | 69.17 | 26.87

52-1 94.15 | 76.15 | 31.29
52-4-1 94.44 | 77.05 | 32.13
52-8-1 95.24 | 78.53 | 32.88
52-25-1 95.81 | 79.95 | 34.02
52-52-1 95.66 | 79.46 | 33.64

assignment) needed only several hundred iterations while networks with the
other coding, i.e. 26x4 - a few tens of thousands.

The best neural network had 25 hidden neurons (52 − 25 − 1), networks
with bigger number of hidden neurons accomplished better results for training
set, but worse for testing deals. On the other hand networks with fewer hid-
den neurons yielded worse results, but this degradation was relatively small,
including the case of a network without hidden layer (52− 1).

For more results and their deeper analysis the reader is referred to [5].

6 Analysis of trained networks

In this section weights of connections of several trained neural networks are
discussed. All figures present the networks with 52 input neurons and one
hidden layer, with 4, 8 or 25 hidden neurons resp. All of these networks received
input values according to the first approach to coding a deal (see Section 4).
Figure 1 presents the way of visualization of neural network’s connections.
Each circle represents the weight of one connection. If the circle is placed in
the leftmost column, it represents the weight of connection from hidden to
output neuron, otherwise - from input to hidden neuron.

The radius of the circle represents the absolute value of the connection’s

3



Table 2: Weights of connections of trained network without hidden neurons
(52 − 1). Each value represents a weight of connection from the input neuron
assigned to the given card to the output neuron.

Card’s value Spades Hearts Diamonds Clubs
2 0.342 0.327 0.329 0.342
3 0.340 0.334 0.328 0.353
4 0.347 0.314 0.351 0.345
5 0.341 0.332 0.341 0.344
6 0.356 0.349 0.339 0.329
7 0.380 0.331 0.354 0.356
8 0.358 0.361 0.375 0.400
9 0.496 0.469 0.461 0.473
10 0.660 0.663 0.671 0.684
J 1.047 1.032 1.056 1.030
Q 1.676 1.688 1.675 1.656
K 2.643 2.643 2.677 2.655
A 3.975 3.971 3.966 3.989

weight and is calculated as linear transformation from the range [0, 1]. All
weights with absolute values bigger or equal 1 are represented by circles with
the same radius. The color of the circle denotes the sign of weight’s value:
black for negative and white for positive ones.

6.1 Network without hidden neurons (52− 1)

The simplest trained network had no hidden neurons, so it contained 52 con-
nections, which weights are presented in Table 2.

These weights of connections are very similar to Work point count - the
human way of estimating the strength of cards (ace - 4 points, king - 3, queen
- 2, jack - 1). This very simple network however achieved much better results
than naive estimator of the number of tricks based only on the Work point
count [5].

6.2 Networks with 4 hidden neurons (52− 4− 1)

Figure 2 presents weights of connections of 4 neural networks with 4 hidden
neurons (52 − 4 − 1). All these networks were trained independently using
the same data. The results achieved by them were of similar quality. It can
be noticed that most of weights with biggest absolute values are assigned to
connections from input neurons representing aces and kings. These feature
is quite natural - these cards are the most important in the play of bridge,
especially in no trump play.

Some “special” hidden neurons, which fix their attention only on one suit,
can also be pointed (e.g. the second one of the first network). More such

4



neurons will appear in the networks with bigger number of hidden neurons.
Another interesting phenomenon concerns big absolute values of weights of

all connections from hidden to output neuron. The absolute value of connec-
tion’s weight determines the importance of the source neuron, hence a conclu-
sion that all hidden neurons are relevant in these networks can be drawn from
this feature.

6.3 Networks with 8 hidden neurons (52− 8− 1)

Weights of connections of 2 neural networks with 8 hidden neurons (52−8−1),
trained using the same data and achieving similar results, are presented in
Fig. 3 The first conclusion which can be drawn from the figure is the presence
of many hidden neurons focused on one particular suit. Another observable
feature is increasing importance of inputs from two to ace.

There exist one hidden neuron which weights of input connections are sur-
prising (the first hidden neuron of the second network). This neuron seems
to be irrelevant for the network since the weight of its connection to output
neuron equals −0.068, whereas all other connections from hidden to output
neuron have absolute values bigger than 0.499. The number of such “useless”
neurons increases for more complicated networks.

6.4 Network with 25 hidden neurons (52− 25− 1)

Figure 3 presents the network with 25 hidden neurons (52 − 25 − 1) which
achieved the best results. More complicated networks, with more hidden neu-
rons or more hidden layers, achieved results better for the training set but worse
for testing deals, mainly due to overfitting. Rectangles drawn using long-chain
lines mark parts of input connections of hidden neurons which are specialized
in one suit. This kind of weight pattern is repeatable, i.e. such four hidden
neurons, focused on one suit only, could be found in all neural networks with
25 hidden neurons, trained using the same data

Another very interesting feature which appeared in all trained neural net-
works with 25 hidden neurons, was the presence of four hidden neurons spe-
cialized in five cards from one suit: ten, jack, queen, king and ace (in Fig. 4
marked using the dotted line). In all these groups the most important were
queens and kings, jacks were less important, but still much more relevant than
aces and tens. The hypothesis is that these hidden neurons are responsible for
very important aspect of the play of bridge - the finesses.

7 Conclusions

The most important conclusion, which can be drawn from analysis of connec-
tions of trained neural networks, is the possibility to explain some patterns
using human knowledge of the game of bridge.

5



Estimating strengths of suits, which is fundamental in human analysis of a
deal, is performed by trained neural networks by assigning one hidden neuron
for each suit. Such neurons consider values of cards - the connection from
input neuron representing an ace has weight of biggest absolute value and the
connection representing two - the smallest one.

Another four hidden neurons are specialized in a group of cards from one
suit - king, queen and jack. This is also a part of human analysis of a deal,
which allows to take into account a possibility of finesse - very important aspect
of the play.

It must be emphasized that all described networks were trained only by
presenting deals and target numbers of tricks. There was no human knowledge
of the game, actually even rules of the game were unknown. In this case results
achieved by networks and patterns visible in their connections weights should
be considered as interesting and promising.

References

[1] http://www-ra.informatik.uni-tuebingen.de/software/JavaNNS/welcome e.html

[2] Riedmiller M., Braun H. (1992), A fast adaptive learning algorithm, Tech-
nical Report, University Karslruhe, Germany.

[3] Ginsberg M.L., http://www.cirl.uoregon.edu/ginsberg/gibresearch.html

[4] Ginsberg M.L. (2001),GIB: Imperfect Information in a Computationally
Challenging Game, Journal of Artificial Intelligence Research 14, 303–358.

[5] Mossakowski K, Mańdziuk J. (2004),Artificial Neural Networks for Solv-
ing Double Dummy Bridge Problems, In: L. Rutkowski, J.H. Siekmann, R.
Tadeusiewicz and L.A. Zadeh (Eds.), Artificial Intelligence and Soft Com-
puting - ICAISC 2004, 7th International Conference, Zakopane, Poland,
Lecture Notes in Computer Science 3070, Springer-Verlag, 915–921.

6



Figure 1: Visualization of trained neural network connection weights values.

7



Figure 2: Weights of connections of 4 independently trained neural networks
with 4 hidden neurons (52− 4− 1).

8



Figure 3: Weights of connections of 2 independently trained neural networks
with 8 hidden neurons (52− 8− 1).

9



Figure 4: Weights of connections of trained neural network with 25 hidden
neurons (52− 25− 1).

10


