A Memetic Approach to Vehicle Routing Problem with Dynamic Requests

Jacek Mańdziuka,b,*, Adam Żychowskia

aFaculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
bSchool of Computer Engineering, Nanyang Technological University, Block N4, Nanyang Avenue, Singapore 639798

Abstract

The paper presents an effective algorithm for solving Vehicle Routing Problem with Dynamic Requests based on memetic algorithms. The proposed method is applied to a widely-used set of 21 benchmark problems yielding 14 new best-know results when using the same numbers of fitness function evaluations as the comparative methods. Apart from encouraging numerical outcomes, the main contribution of the paper is investigation into the importance of the so-called starting delay parameter, whose appropriate selection has a crucial impact on the quality of results. Another key factor in accomplishing high quality results is attributed to the proposed effective mechanism of knowledge transfer between partial solutions developed in consecutive time slices. While particular problem encoding and memetic local optimization scheme were already presented in the literature, the novelty of this work lies in their innovative combination into one synergetic system as well as their application to a different problem than in the original works.

Keywords: vehicle routing, memetic algorithm, optimization under uncertainty, scheduling, dynamic optimization

*Corresponding author
Email address: mandziuk@mini.pw.edu.pl (Jacek Mańdziuk)
1. Introduction

Vehicle Routing Problem (VRP), first introduced by Dantzig and Ramser in [1], is an NP-hard combinatorial optimization problem with many practical applications. In its classical formulation a set of customers must be served by a fleet of homogenous vehicles (with some pre-defined capacity) with routes beginning and ending at a specified depot. The optimization goal is to minimize the total routes’ length/cost of all vehicles. Due to the VRP’s combinatorial complexity the exact solution methods proved inefficient, except for simple problems. Therefore most of the research effort was devoted to application of metaheuristic algorithms, for instance Ant Colony Optimization (ACO) [2], Tabu Search (TS) [3], Genetic Algorithms (GA) [4], Simulated Annealing (SA) [5] or Upper Confidence Bounds Applied to Trees (UCT) [6], with promising results.

In majority of practical applications, however, another dimension related to stochastic nature of the real-life problems is added to the problem’s formulation. In particular, the information available at the beginning may change during the solution execution, for instance due to the arrival of new customers’ orders [7] [8] or because of the changes in their requested demands [9] or because of unplanned events, e.g. traffic jams/road congestion [10] [11] or, more generally, due to stochastic travel times [12]. This intrinsic stochasticity of the practical VRP realizations led to the extension of the static VRP to a class of Dynamic Vehicle Routing Problems (DVRP), solving which requires adequate on-line routes’ adjustment in response to the arrival of new problem-related information.

Furthermore, in the literature there are many variants of the VRP which are formulated so as to serve specific practical needs, e.g. its multi-trip [13] or multi-compartment [14] versions, variants with specific time-windows for delivery [15], formulations which combine delivery with picking up goods from the clients [16], and many others (see the recent special issue [17] for an overview of the current developments and challenges in this domain and [18] for the VRP taxonomy).

This paper considers a version of DVRP in which some of the customers’
locations (and their associated requests) are unknown at the start of the solving
method and arrive gradually as time passes, i.e. during the algorithm execution.
In the literature, this version of DVRP is known as Vehicle Routing Problem
with Dynamic Requests (VRPDR). The intrinsic partial information uncertainty
of VRPDR is usually handled in the way proposed by Kilby et al. [8], which
consists in executing the route optimization procedure only at the end of pre-
defined fixed time intervals - called time slices.

In general, the algorithms applied to solving VRPDR are similar to those
used for VRP. In particular, Computational Intelligence methods, e.g. ACO [19],
TS [20], GA [20] or PSO [21, 22], have been applied to the problem with some
success. Specifically, the PSO based approaches [23, 24, 22, 25], seem to be very
well suited to the type of dynamic changes introduced to requests’ distribution
observed in VRPDR. This issue is further discussed in Section 5 devoted to
presentation of experimental results.

The approach proposed in this paper is based on Memetic Computing (MC) [26]
[27], which is currently one of the fastest growing subfields of Evolutionary
Computing research. In short, MC enhances population-based Evolutionary
Algorithms (EA) by means of adding a distinctive local optimization phase.
The underpinning idea of MC is to use domain knowledge or local optimiza-
tion techniques to improve potential solutions (represented by individuals in a
population) between consecutive EA generations. A synergetic combination of
simple local improvement schemes called memes with evolutionary operators
leads to complex and powerful solving paradigm, applicable to a wide range of
problems [28].

MC has been applied to several variants of transportation problems, in par-
ticular the static VRP version [29, 30] or the Vehicle Routing Problem with
Stochastic Demands (VRPSD) [9]. However, to the best of our knowledge, this
paper presents the first attempt to solving VRPDR with MC. On the other
hand our approach, to some extent, follows the above-cited work of Chen et al.,
even though the problems considered in these two papers are quite different. In
VRPSD, unlike in VRPDR, all customers’ locations are known in advance (at
the start of the method) but customers’ demands are stochastic, i.e. the size of
demand is known only after the vehicle’s arrival. Hence, the main focus of the
solution method is to ensure that a planned route would not exceed vehicle’s
capacity.

Another paper that inspired our work is [20] where simple but powerful chro-
mosome representation and genetic operators were proposed. While a unique
combination of the MC scheme adopted from [9] with solution representation
proposed in [20] proved to be superior over each of the two components alone,
the respective results were, anyway, not better than those accomplished with
the 2MPSO (Two-Phase Multiswarm PSO) method [22, 25]. Only after the
proposed method was enhanced by a suitable starting delay mechanism and
the effective way of knowledge transfer between consecutive time slices, the final
results yielded by the system excelled those of 2MPSO in terms of the average
performance and the best minima found.

The main contribution of this paper, except for finding new best-literature
results for popular benchmarks is investigation into the saliency of the starting
delay parameter. Another key issues are introduction of a new effective way of
knowledge transfer between consecutive time slices by means of a specific pop-
ulation generation scheme, as well as, introduction of a new mutation operator
in the memetic optimization procedure. The novelty of this work also lies in
the innovative synergetic combination of (already known in the literature) prob-
lem encoding and memetic optimization and their application to a new problem
from VRP domain.

The remainder of this paper is arranged as follows. Section 2 presents the
VRPDR definition and discusses its practical relevance. In Section 3 general
overview of the system’s construction, its main principles, as well as basic com-
ponents (each in a dedicated subsection) are presented. Section 4 provides
benchmarks description, discussion on experimental methodology and param-
eters’ selection. In Section 5 experimental results are presented and discussed
in the context of the best literature solutions, in particular those accomplished
with the 2MPSO algorithm [21, 22, 25]. Performance analysis of the proposed
system and discussion on its suitability for particular types of benchmark sets are also placed in this section. The next section elaborates on the pertinence of the local memetic optimization component and the saliency of the method’s steering parameters. The last section is devoted to conclusions and directions for future research.

2. Definition of VRPDR

VRPDR is a generalization of the Traveling Salesman Problem. In this problem a fleet of m homogenous vehicles, each with identical capacity c, and the set of n customers $\{v_1, v_2, \ldots, v_n\}$ are considered. VRPDR can be modeled using an undirected graph $G = (V, E)$, where $V = \{v_0, v_1, \ldots, v_n\}$ is the vertex set and $E = \{(v_i, v_j) : v_i, v_j \in V, i < j\}$ is the edge set. Each vertex $v_i, i = 1, \ldots, n$ represents the respective (i-th) customer and v_0 denotes a depot. Each edge $e_{ij} = (v_i, v_j), i, j = 0, \ldots, n$ has an associated weight which represents the cost or, alternatively, a distance between v_i and v_j being either two customers or a customer and the depot. Furthermore, for each customer v_i the demand d_i, the unload time ut_i (which is the time required to unload cargo at customer’s v_i) and t_{vi} - the time of arrival of the order from customer v_i, are defined. Depot v_0 has the opening time t_o and closing time $t_c, (0 \leq t_o < t_c)$ specified. The speed of each vehicle is defined as one distance unit per one time unit.

The goal of VRPDR is to minimize the total routes’ length of all vehicles according to the following constraints:

- each vehicle has to start from a depot after time t_o and end its route in a depot before time t_c,
- every customer has to be served exactly once and by one vehicle,
- time of a vehicle’s arrival to customer v_i has to be greater than t_{vi} for all i,
- the sum of customers’ demands assigned to each vehicle must not exceed vehicle’s capacity c.

5
VRPDR combines two NP-Complete problems: Bin Packing Problem (to assign requests to vehicles) and Traveling Salesman Problem (to minimize the tour length of each vehicle). The problem is widely applicable to real-life tasks, such as taxi services, courier companies or other pickup and delivery businesses. The Global Positioning System and the widespread use of mobile phones create opportunity for companies to track and manage their fleet in real time, thus making the VRPDR a highly relevant problem of practical importance.

3. Components of the system

Our system designed to solving the VRPDR is composed of two main components. The first module is responsible for receiving new orders, dividing working day into some pre-defined number of time slices and creating static instances of the VRP for each of them. The second component is responsible for optimizing the routes by means of solving a (static) VRP instance in each time slice. To this end a GA implementation following Ombuki-Berman et al. paper [20], enhanced with the local memetic optimization [9] is proposed.

3.1. Time slices

Following [8] and many other subsequent papers, a working day is split into \(n_{ts} \) equal-length time slices and in each time slice a static version the problem (VRP) is solved for the set of currently known customers (requests). New requests arriving during the current time slice are postponed to its end and optimized in the next algorithm’s run (in the next time slice).

Once the calculations allotted for a given time slice are completed the best-fitted chromosome is selected, decoded and the vehicle routes it represents are examined. Roughly speaking, if the time-span of a planned route allows for a “safe time reserve” the vehicle is not moving as it is generally beneficial to wait for another time slice and include newly-arrived requests in the planned solution. Certainly, waiting for too long poses the risk of not being able to extend the route in future time slices by adding new customers as completing the route before the required time \(t_c \) would not be possible.
Efficient addressing of the above trade-off is one of the most salient issues in the proposed solution method. To this end the so-called starting delay \(Sd, 0 \leq Sd \leq 1 \) is defined as the fraction of a working day time \((t_c - t_o)\) in which the planned route must be completed. The remaining time, i.e. \((1 - Sd)(t_c - t_o)\), serves as a time reserve for the future route modifications which may possibly be required. Hence if, for a given vehicle, a planned return time to the depot is greater than \(Sd(t_c - t_o) \) the vehicle is moving to the first unserved customer on the assigned route. The customers already visited and the ones to whom the vehicle is already dispatched are removed from the chromosome and called committed. If the currently planned route’s time does not exceed \(Sd(t_c - t_o) \) the vehicle is waiting at its current location (either in the depot or at the last customer’s) and no customers assigned to it are removed from that chromosome.

The new population (in the next time slice) consists of the copies of the best chromosome from the previous time slice extended by adding the newly-arrived demands (customers). Each new customer (that appeared during the previous time slice) is placed at the end of a route of a randomly chosen vehicle, independently for each chromosome.

Figure 1 outlines the schematic workflow of the algorithm within each time slice.

3.2. Chromosome representation and initial population

We use chromosome representation proposed in [20] in which chromosomes are integer vectors of variable length. Positive genes represent clients’ identifiers and negative ones correspond to vehicles. Each chromosome contains all and only those identifiers of customers’ requests which had already been received (are known to the system) but have not yet been served or committed to any vehicle.

A solution is decoded from a chromosome by scanning it from left to right. Each customer is assigned to a vehicle represented by the last negative number located before that customer’s id. In other words, all customers between the two negative identifiers are allocated to the vehicle represented by the first of
for all time slices do
 {for the chromosome S_{ts} representing the current best solution}
 dispatch vehicles whose planned return time exceed $Sd(t_c - t_o)$ [sec. 3.1]
 remove committed customers from S_{ts} [sec. 3.1]
 add new customers that appeared during the previous time slice to S_{ts} [sec. 3.1]
 create new population based on S_{ts} [sec. 3.1]
for all number of generations do
 perform evolutionary operators to solutions:
 genetic crossover [sec. 3.3]
 genetic mutation [sec. 3.4]
 memetic optimization [sec. 3.5]
 selection [sec. 3.1]
end for
choose the best chromosome S_{ts} as the base solution for the next time slice [sec. 3.1]
end for

Figure 1: Actions performed during each time slice.

If a given vehicle does not have enough capacity to accommodate all assigned customers or the time required for completion of a planned route with assigned customers is too long (the vehicle would not be able to return to the depot before the closing time t_c), a new vehicle is inserted to a chromosome just before the customer that breaks either the capacity of time constraints. Similarly, if a chromosome begins with a positive number (customer’s id) the new vehicle is added as the first element in the chromosome.

Thanks to this automatic repairing procedure (which is applied before each evaluation or potential modification of a chromosome) there is no possibility that a chromosome would represent incorrect solution in any phase of the algorithm.

An example of chromosome representation and its decoding is presented in Figure 2. A chromosome is encoding 8 customers’ demands (positive identifiers from 1 to 8) and 4 vehicles (negative identifiers from -1 to -4). Since the
first element of a chromosome is positive, a new vehicle (with id. -5) is added immediately before this element. Orders for customers 4 and 8 are assigned to a planned route for this vehicle, assuming that these requests do not violate capacity constraint. Next we move to another vehicle’s id., i.e. -1 and the requests assigned to it. Suppose that the first two customers (2 and 5) do not violate the capacity constraint, but adding the third one (3) would have caused exceeding this limit. In such a case a new vehicle (with id. -6) is inserted just before the customer 3, so as to serve this customer as (at the moment) the sole element of its route. The remaining part of a chromosome is decoded in a similar way based on the above mentioned principles. It should be noted that there is a possibility that a vehicle may have no orders assigned, as vehicle -3 in our example.

The initial population is composed of chromosomes that represent all demands known at the beginning of a day, i.e. those which arrived after the cut-off time of the previous day (see benchmark sets’ description in sec. 4.1 for a detailed explanation of this parameter’s meaning). Each chromosome is defined as a random permutation of these requests. Hence, at the start of the
algorithm all chromosomes have the same length and contain the same numbers (customers' identifiers). Please recall that before the first GA operation (the crossover) all chromosomes will be verified against fulfilling the capacity and feasibility rules described above, and “fixed” (if necessary) by adding an appropriate number of vehicles.

3.3. Crossover

Our first attempt was to apply crossover operators proposed by Chen et al. [30], but the results were not satisfactory. Therefore, after some limited number of trials we decided to implement the Best-Cost Route Crossover scheme proposed in [20], which yielded much more competitive solutions.

In the Best-Cost Route Crossover two parents \(p_1 \) and \(p_2 \) are selected from the population and fixed by applying the repairing procedure. Then two routes \(r_1 \) and \(r_2 \) are randomly selected from \(p_1 \) and \(p_2 \), respectively and the customers assigned to \(r_1 \) are deleted in \(p_2 \) likewise those belonging to route \(r_2 \) are extracted from \(p_1 \). Next, the customers that have been removed are reinserted, one after the other, to their parent chromosomes at the locally optimal positions, i.e. in a way that locally minimizes the overall length of the entire set of routes of all vehicles. Please note that even though this type of crossover is quite expensive since it requires examining every position in a chromosome as a potential destination for the reinserted customer, the running time of the algorithm on a single PC does not exceed 10 minutes (24 seconds per time slice, in average). An example of crossover is presented in Figure 3.

3.4. Mutation

Mutation is applied with some probability and mutation operator, for a given chromosome, can take one of the three following forms:

- inversion - two points in a chromosome are randomly selected and all elements between these points are reversed (see Figure 1),
- insertion - a randomly chosen element is removed from a chromosome and then inserted in a randomly selected position,
First the initial chromosomes are “fixed” based on capacity and feasibility rules. Then the routes of vehicles -4 and -1 are selected in p_1 and p_2, respectively and afterwards the respective customers ($3, 4$ in p_1 and $7, 1$ in p_2) are reinserted in a greedy manner.

A particular form of mutation is selected at random with equal probability of occurrence ($= \frac{1}{3}$) of each of the above-listed three versions. It is important to note that in all cases there is no distinction between genes representing vehicles and customers.

3.5. Memetic optimization

Memetic optimization is a kind of a local enhancement process which uses problem-related knowledge to improve the solution. Our implementation of memetic optimization adapts the idea of Self-Adaptive Memeplex Individual Learning proposed in [9]. The local improvement algorithm is controlled by memes. Each meme serves as a single instruction for local optimization and is
composed of three elements:

- move operator $T_i, i = 1, \ldots, 6,$
- acceptance strategy A,
- search depth D.

A move operator implements one of the following schemes:

- T_1: a randomly selected customer is removed from a vehicle and reinserted into a newly-added vehicle;
- T_2: two randomly selected customers from two different vehicles are swapped;
- T_3: two randomly selected sub-routes from two different vehicles are swapped;
- T_4: routes of two randomly selected vehicles are merged into one route / vehicle;
- T_5: a randomly selected customer is removed from a vehicle and reinserted into another vehicle at a random position;
- T_6: two customers in the same vehicle are randomly selected and the order of all elements located between these customers is reversed.

Each meme uses one of the following two acceptance strategies A:

- first improvement - memetic optimization is stopped after the first improvement is obtained;
- best improvement - memetic move operator is called D times and the best improvement found in these D trials is chosen and applied.

In both above strategies, if D trials of applying meme’s move operator did not lead to finding any improvement to the current solution, the chromosome would remain unchanged.

Each chromosome maintains a separate set of n_m memes. For each chromosome and for each meme in that chromosome one of the six move operators T_i and one of the two acceptance strategies A are randomly and independently chosen with uniform probability (equal to $\frac{1}{6}$ and $\frac{1}{2}$, respectively). Search depth D is common for all memes in all chromosomes.
The order of memes’ application in the memetic improvement phase depends on a synergy matrix W. W is $n_m \times n_m$ matrix unique for each chromosome. Its elements w_{ij} represent the connectivity from meme m_i to meme m_j. During memetic optimization phase, after applying meme m_i the next meme m_j is chosen according to the following probability $P_a(m_i, m_j)$:

\[
P_a(m_i, m_j) = \begin{cases}
\frac{w_{jj}}{\sum_{\mu=1}^{n_m} w_{\mu\mu}} & m_i = \emptyset \\
\frac{w_{ij}}{\sum_{\mu=1}^{n_m} w_{i\mu}} & \text{otherwise}
\end{cases}
\]

Initially matrix W is composed of all ones. After each application of m_i followed by application of m_j the element w_{ij} is updated according to the following rule:

\[
w_{ij} = \gamma w_{ij} + \frac{c_j}{t_j}
\]

where c_j is the solution improvement caused by application of meme m_j, t_j is a computational cost of applying meme m_j, γ, $0 < \gamma < 1$ is a discount factor, which specifies the influence of a meme’s recent performance over the past. Consequently, the higher the improvement c_j and the lower the cost t_j of applying meme m_j immediately after meme m_i, the higher the probability of selection of m_j as the subsequent meme right after m_i.

A pseudocode of memetic optimization procedure is shown in Figure 5. The selection and application of meme m_j, as well as updating matrix W are repeated until the recently applied meme did not provide any solution improvement ($c_j = 0$) and the exponential ratio between the cumulative improvement and computational cost (of all applied memes) is relatively high ($\text{rand}(0, 1) > \exp\left(-\frac{1}{t_c}\right)$). Please observe, that application of meme m_j in line 5 denotes repetitive, multiple-time use of its move operator T until the first improvement occurs or the number of trials exceeds D, depending on the particular acceptance strategy A associated with meme m_j. Whenever chromosomes undergo mutation / crossover operation the respective matrix / matrices are also

1For the sake of clarity of the formulas the connection between matrix W and a chromosome it is assigned to will be omitted. Unless otherwise stated, in all contexts matrix W will refer to the currently considered chromosome.
\(c = t = 0\)
\(m_{prev} = \emptyset\)

\textbf{while} true \textbf{do}

\begin{itemize}
\item select next meme \(m_j\) with probability \(P_a(m_{prev}, m_j)\)
\item apply \(m_j\) and get feedback information \(c_j\) and \(t_j\)
\item update \(w_{ij}\) based on \(c_j\) and \(t_j\)
\item \(c += c_j\)
\item \(t += t_j\)
\item if \(c_j == 0\) then
 \begin{itemize}
 \item if \(\text{rand}(0,1) > \exp\left(-\frac{t}{c}\right)\) then
 break
 \end{itemize}
\item \(m_{prev} = m_j\)
\end{itemize}

\textbf{end while}

Figure 5: Memetic optimization scheme.

modified. More precisely, during the crossover of chromosomes \(a\) and \(b\) new matrices \(W_a\) and \(W_b\) are created by random exchange of corresponding elements between parents matrices. For each pair of indices \((i,j)\) the element \(W_a[i,j]\) is swapped with the element \(W_b[i,j]\) with probability \(\frac{1}{2}\).

Mutation of a synergy matrix \(W_a\) is realized by adding to each element \(W_a[i,j]\) a small perturbation generated from Gaussian distribution \(N(0, (\alpha(a) / 100)^2)\), where \(\alpha(a)\) is the average value of all elements in \(W_a\).

In summary, the role of synergy matrix \(W_a\) associated with chromosome \(a\) is to maintain probability values \(w_{ij}\) of applying meme \((m_j)\) immediately after meme \((m_i)\) based on historical gain (high \(c_j\) and low \(t_j\)) of such application. Mutation and crossover of synergy matrices are applied for the same reasons as in the case of operations on chromosomes, i.e. to avoid stagnation in a local minimum and to maintain diversity.
4. Experimental setup

In this section a set of benchmark problems used to evaluate the quality of the proposed method is introduced, followed by a discussion on method's parametrization. In the last subsection the methods used for experimental comparison are presented and their selection is justified.

4.1. Benchmark sets

The method was tested on the set of benchmark problems proposed by Kilby et al. \cite{8} and subsequently extended by Montemanni et al. \cite{19}. All of them were derived from Christofides’ \cite{31}, Fisher’s \cite{32} and Taillard’s \cite{33} VRP benchmarks. The set consists of 21 problems with different characteristics of customers locations’ distribution and incoming orders’ schedule. Furthermore, for each benchmark the so-called cut-off time parameter, which defines a fraction of orders that are known at the beginning of the working day, must be set. All requests that arrive after the cut-off time are treated as being known at the beginning of the working day (as if they were left unserved from the previous day). The idea of using a cut-off time is derived from practical implementations when the solving system works during several consecutive days. In that case the “late requests” (after the cut-off time) are postponed for the next working day.

In our case, as well as in all known to us research papers, one-day solutions are considered and therefore these “late requests” are treated as being left from the previous day (hence, are available from the beginning of the day). In majority of attempts to solving the VRPDR reported in the literature, and also in our tests, the cut-off time was set to 0.5, i.e. all requests from the second-half of a day are known for the scheduling system since its starting time and those scheduled in the first half of a day will become known to the solving system in due time.

Two example solutions for the benchmarks c50D and c100bD are show in Figures 6 and 7, respectively. Please observe very distinct requests distributions and consequently topologies of the routes in these two data sets. This issue is further discussed in Section 5.
Figure 6: Route networks for instance c50D.

Figure 7: Route networks for instance c100bD.
4.2. Parameters’ selection

The parameter which turned out to be the most influential on the solution quality was starting delay S_d. The following values for this parameter were tested: 0.0, 0.6, 0.75, 0.9, 0.95 and based on the average results from 10 runs $S_d = 0.9$ was selected for the final experiments. This value yielded, on average, 0.7% better results than $S_d = 0.95$, 3.7% better results than $S_d = 0.75$, 8% than $S_d = 0.6$ and over 15% than $S_d = 0.0$. In terms of fitting S_d to particular benchmarks, the value of 0.9 was the best one in 14 cases, followed by 0.95 with 5 wins. For the remaining two sets $S_d = 0.6$ appeared to be the best choice. The above results indicate that appropriate delay in dispatching the vehicles has a strong impact on results. Generally speaking, the longer the delay the better (as the routes can be better optimized), however, increasing S_d beyond a certain threshold leads to deterioration of results (since vehicle routes become too “tight” or less flexible in a sense that an attempt to add new customer to a vehicle ends up in violating the time constraint).

Another tested parameter was crossover rate with the potential values of 0.6, 0.7, 0.8 and 0.9, among which 0.8 was selected as the generally best choice. This parameter appeared to be much less significant than S_d as the differences between the average results across all benchmarks were within 0.26% margin for all tested values.

Next, the initial tests were performed for various numbers of time slices, namely 12, 25 and 50. The differences among the resulting routes’ lengths, as in the case of the crossover rate, were insignificant. In average, 25 time slices yielded 0.67% worse results than 50 of them and 3.69% better than 12 time slices. Due to diminutive differences, this parameter was set to 25 as originally proposed in [8].

The last two examined parameters were population size and the number of generations, which were tested together in order to keep the number of fitness function evaluations constant. In other words, if the population size was increased a relative decrease in the number of generations was imposed. The following pairs of $(population, generation)$ values were tested: (15, 20 000), (30, 10 000)
and (60, 5 000). The best results were accomplished by a combination (15, 20 000) - the winner in 13 cases, followed by (30, 10 000) - which won in 6 cases and by (60, 5 000) which was the winning selection for two benchmarks. Similarly to crossover rates, the differences among the tested pairs were insignificant, below 2%. The final choice of the main algorithm’s parameters is presented in Table 1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>cut-off time</td>
<td>0.5</td>
</tr>
<tr>
<td>population size</td>
<td>15</td>
</tr>
<tr>
<td>generation span</td>
<td>20 000</td>
</tr>
<tr>
<td>number of time slices</td>
<td>25</td>
</tr>
<tr>
<td>starting delay (Sd)</td>
<td>0.9</td>
</tr>
<tr>
<td>crossover rate</td>
<td>0.7</td>
</tr>
<tr>
<td>mutation rate</td>
<td>0.5</td>
</tr>
<tr>
<td>selection type</td>
<td>binary tournament</td>
</tr>
<tr>
<td>selection pressure</td>
<td>0.8</td>
</tr>
<tr>
<td>number of elite</td>
<td>2</td>
</tr>
<tr>
<td>meme search depth (D)</td>
<td>100</td>
</tr>
<tr>
<td>number of memes for each chromosome (n_m)</td>
<td>15</td>
</tr>
<tr>
<td>discount factor (γ)</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Table 1: Values of the main steering parameters of the algorithm.

4.3. Comparative approaches

In our previous works [21, 22, 25] a new approach to solving VRPDR which utilizes the Two-Phase Multi-Swarm Particle Swarm Optimization method (2MPSO) was proposed. Since the detailed description of the method can be found in the above-cited sources, let us here only briefly describe the underpinning concepts of the 2MPSO algorithm.

In short, in 2MPSO method, similarly to other approaches reported in the
literature, the working day is divided into some number of time slices and in each of them a currently available instance of the (static) VRP is solved. What accounts for the main difference between 2MPSO and majority of the CI-based approaches described in the literature is that in each time slice the solving process of 2MPSO is split into two separate phases: a clustering phase (i.e. assignment of requests to vehicles) and optimization phase (i.e. route construction for each of the vehicles). Each of these two above-mentioned subproblems is solved by a separate multi-swarm PSO system. One of the key features of the 2MPSO is effective knowledge transfer between multiple swarms (in-phase) and between swarms used in consecutive time slices.

In the first phase each particle is represented as a real number vector whose elements denote centers of clusters of requests assigned to vehicles. The area of clients’ requests is divided among vehicles on the basis of the Euclidean distances from the client’s location to the clusters’ centers (i.e. a request is assigned to a vehicle which serves the nearest cluster).

In the second phase each particle represents the order of requests assigned to a given vehicle (each cluster/vehicle is solved by a separate PSO instance). The order is obtained by sorting particles’ coordinates in the ascending order. The solution assessment in the second phase (in each of the PSO instances) is equal to the length of a route (of a given vehicle) defined by the proposed ordering. The final cost value is equal to the sum of the assessments of the best solutions found by each of the PSO instances.

In [22] the 2MPSO algorithm was extensively compared with several population-based methods, namely the Ant Colony Optimization [19], evolutionary approach [20], Tabu Search [20] and another, well-established in the literature, PSO-based approach: MEMSO/MAPSO [24, 23, 34] by Khouadija et al. The tests were performed on the same set of benchmarks as those used in this work, described in section 4.1.

On a general note, the extensive experimental comparison proved an upper hand of the 2MPSO approach, which for comparable (≈ 10^7) number of fitness function evaluations was capable of finding new best literature solutions in 11
out of 21 test instances. In terms of the average results the 2MPSO outperformed the competitive methods by at least 1.5%. For the sake of clarity of the presentation the experimental results and conclusions drawn in [22] are not repeated in detail here. Due to the superiority of 2MPSO over all the above-listed metaheuristic approaches we will use this method as a reference point to our memetic VRPDR algorithm (M-VRPDR).

5. Experimental results

One of the most universal complexity measures of population-based methods is the number of fitness function evaluations (FFE) of the candidate solutions. This measure allows for making (rough) comparisons between various GA/EA approaches as well as Particle Swarm Optimization or Tabu Search methods. In our method the fitness evaluation is performed in three parts of the algorithm: in crossover operation (in order to find the best position in a chromosome for insertion of removed customer), in selection (so as to choose better-fitted chromosomes for the next generation) and in memetic optimization (to check how the meme operation affects the cumulative length of the vehicle routes). In all baseline numerical results presented in this section the number of FFE in a single algorithm’s run is close to (but never exceeds) 10^7, which is the value used to calculate the main results obtained in [22] for other methods.

Results of experiments with steering parameters set according to Table 1 are presented in Tables 2, 3 and 5. The first table shows the best result and the average result out of 50 independent trials for each of the 21 benchmark sets of our M-VRPDR approach and the 2MPSO method (in both cases with a budget of 10^7 FFE). In terms of the ability to find the best possible solution (Min category comparison) M-VRPDR outperforms 2MPSO by a large margin - winning in 17 benchmarks and losing in 4 cases. In particular, M-VRPDR proved to be better suited for all Taillard’s benchmarks.

When comparing the average performance, which in practice is usually more desirable, as it addresses the issue of repeatability and stability of results the
advantage of M-VRPDR is not so prevailing, though the method yielded better averages in 14 test sets, losing in the remaining 7. The memetic approach again showed its upper-hand in the case of Taillard’s instances. The difference in average results between the two methods is statistically significant for $p - value = 0.007$ for 1-tailed t-test for averages and $p - value = 0.015$ for 2-tailed t-test.

Table 3 compares the best results of M-VRPDR with those found in the literature (including the results of 2MPSO). Both results are attained with the same number of FFE. Our method found the new best literature results in 14 cases.

A more detailed results, including the worst outcomes and standard deviations of the 50 tests with M-VRPDR for each of the benchmarks, as well as the exemplar convergence graphs for the sets c100bd and tai150aD are presented in Appendix A.

5.1. Hard cases for the M-VRPDR

Based on the average results presented in Table 2, it can be noticed that the algorithm does not manage equally well for all benchmarks. The worst average results compared to 2MPSO were achieved for instances c100bD and c120D. In these two problems distributions of clients’ locations have the form of highly-spatial clusters composed of uniformly distributed request sizes. Figures 8 and 9 show the routes proposed by our algorithm for c100bD and c120D benchmarks. In both presented solutions there exist routes which include requests from two different clustered groups of clients which elongate the overall solution (if these clusters were served by different vehicles the solutions might be shorter). According to our intuition such a behavior can be attributed to the vehicles’ starting delay. The imposed condition that a vehicle can move to a customer only if a planned return time to the depot exceeds 90% of the working day’s span causes the planned routes to be relatively long so as to extend routing time beyond the assumed part of the working day. In the case of clustered clients it might potentially be more efficient to serve only one cluster
Figure 8: Route networks for instance c100bD.

Figure 9: Route networks for instance c120D.
Table 2: The best and the average results of M-VRPDR (10^7) and 2MPSO (10^7) for the considered benchmarks. The better of the two results in each category (Min, Avg) is bolded.

<table>
<thead>
<tr>
<th></th>
<th>M-VRPDR (10^7)</th>
<th></th>
<th>2MPSO (10^7)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Avg</td>
<td>Min</td>
<td>Avg</td>
</tr>
<tr>
<td>c50D</td>
<td>524.61</td>
<td>548.10</td>
<td>552.47</td>
<td>591.29</td>
</tr>
<tr>
<td>c75D</td>
<td>852.95</td>
<td>885.00</td>
<td>878.93</td>
<td>904.12</td>
</tr>
<tr>
<td>c100D</td>
<td>860.56</td>
<td>913.81</td>
<td>874.20</td>
<td>920.84</td>
</tr>
<tr>
<td>c100bD</td>
<td>820.92</td>
<td>864.03</td>
<td>819.56</td>
<td>839.01</td>
</tr>
<tr>
<td>c120D</td>
<td>1189.06</td>
<td>1295.31</td>
<td>1056.28</td>
<td>1131.30</td>
</tr>
<tr>
<td>c150D</td>
<td>1083.79</td>
<td>1142.24</td>
<td>1096.53</td>
<td>1131.78</td>
</tr>
<tr>
<td>c199D</td>
<td>1377.26</td>
<td>1466.30</td>
<td>1362.84</td>
<td>1415.58</td>
</tr>
<tr>
<td>f71D</td>
<td>260.17</td>
<td>297.61</td>
<td>282.69</td>
<td>291.61</td>
</tr>
<tr>
<td>f134D</td>
<td>11815.95</td>
<td>12299.59</td>
<td>11755.58</td>
<td>12038.28</td>
</tr>
<tr>
<td>tai75aD</td>
<td>1656.12</td>
<td>1705.76</td>
<td>1682.90</td>
<td>1766.68</td>
</tr>
<tr>
<td>tai75bD</td>
<td>1350.28</td>
<td>1378.47</td>
<td>1404.29</td>
<td>1447.30</td>
</tr>
<tr>
<td>tai75cD</td>
<td>1355.41</td>
<td>1427.74</td>
<td>1406.59</td>
<td>1498.18</td>
</tr>
<tr>
<td>tai75dD</td>
<td>1376.42</td>
<td>1414.93</td>
<td>1415.79</td>
<td>1439.78</td>
</tr>
<tr>
<td>tai100aD</td>
<td>2093.63</td>
<td>2168.87</td>
<td>2155.42</td>
<td>2215.44</td>
</tr>
<tr>
<td>tai100bD</td>
<td>1990.99</td>
<td>2097.86</td>
<td>2022.13</td>
<td>2102.15</td>
</tr>
<tr>
<td>tai100cD</td>
<td>1421.50</td>
<td>1460.72</td>
<td>1446.10</td>
<td>1493.59</td>
</tr>
<tr>
<td>tai100dD</td>
<td>1631.63</td>
<td>1710.44</td>
<td>1690.32</td>
<td>1753.17</td>
</tr>
<tr>
<td>tai150aD</td>
<td>3226.51</td>
<td>3354.09</td>
<td>3298.91</td>
<td>3394.92</td>
</tr>
<tr>
<td>tai150bD</td>
<td>2847.08</td>
<td>2980.33</td>
<td>2887.88</td>
<td>2992.81</td>
</tr>
<tr>
<td>tai150cD</td>
<td>2427.53</td>
<td>2558.99</td>
<td>2462.96</td>
<td>2551.58</td>
</tr>
<tr>
<td>tai150dD</td>
<td>2737.37</td>
<td>2903.68</td>
<td>2886.12</td>
<td>2941.66</td>
</tr>
</tbody>
</table>

of clients per vehicle and return to the depot immediately after, regardless of the time of a day and available capacity left. In order to verify this hypothesis, 50 tests were performed for these two benchmarks with Sd times set to
<table>
<thead>
<tr>
<th></th>
<th>M-VRPDR</th>
<th>Best other</th>
<th>Algorithm</th>
<th>#FFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>c50D</td>
<td>524.61</td>
<td>552.47</td>
<td>2MPSO3</td>
<td>10^7</td>
</tr>
<tr>
<td>c75D</td>
<td>866.45</td>
<td>877.30</td>
<td>2MPSO2</td>
<td>$2 \cdot 10^6$</td>
</tr>
<tr>
<td>c100D</td>
<td>873.10</td>
<td>874.20</td>
<td>2MPSO3</td>
<td>10^8</td>
</tr>
<tr>
<td>c100bD</td>
<td>820.92</td>
<td>819.56</td>
<td>2MPSO3</td>
<td>10^8</td>
</tr>
<tr>
<td>c120D</td>
<td>1199.64</td>
<td>1056.28</td>
<td>2MPSO3</td>
<td>10^8</td>
</tr>
<tr>
<td>c150D</td>
<td>1083.79</td>
<td>1096.53</td>
<td>2MPSO3</td>
<td>10^7</td>
</tr>
<tr>
<td>c199D</td>
<td>1376.26</td>
<td>1362.84</td>
<td>2MPSO3</td>
<td>10^8</td>
</tr>
<tr>
<td>f71D</td>
<td>275.51</td>
<td>278.65</td>
<td>2MPSO3</td>
<td>10^5</td>
</tr>
<tr>
<td>f134D</td>
<td>11817.66</td>
<td>11755.58</td>
<td>2MPSO3</td>
<td>10^8</td>
</tr>
<tr>
<td>tai75aD</td>
<td>1658.13</td>
<td>1682.90</td>
<td>2MPSO3</td>
<td>10^8</td>
</tr>
<tr>
<td>tai75bD</td>
<td>1351.06</td>
<td>1391.74</td>
<td>2MPSO3</td>
<td>$2.2 \cdot 10^7$</td>
</tr>
<tr>
<td>tai75cD</td>
<td>1388.13</td>
<td>1406.27</td>
<td>TabuSearch</td>
<td>25-30 sec</td>
</tr>
<tr>
<td>tai75dD</td>
<td>1395.30</td>
<td>1342.26</td>
<td>MEMSO</td>
<td>10^6</td>
</tr>
<tr>
<td>tai100aD</td>
<td>2122.92</td>
<td>2146.53</td>
<td>2MPSO2</td>
<td>$2.2 \cdot 10^7$</td>
</tr>
<tr>
<td>tai100bD</td>
<td>1990.99</td>
<td>2022.13</td>
<td>2MPSO3</td>
<td>10^7</td>
</tr>
<tr>
<td>tai100cD</td>
<td>1419.89</td>
<td>1446.10</td>
<td>2MPSO3</td>
<td>10^8</td>
</tr>
<tr>
<td>tai100dD</td>
<td>1651.28</td>
<td>1685.53</td>
<td>2MPSO2</td>
<td>$2.2 \cdot 10^7$</td>
</tr>
<tr>
<td>tai150aD</td>
<td>3343.54</td>
<td>3253.77</td>
<td>MEMSO</td>
<td>10^6</td>
</tr>
<tr>
<td>tai150bD</td>
<td>2957.16</td>
<td>2861.91</td>
<td>MAPSO</td>
<td>10^6</td>
</tr>
<tr>
<td>tai150cD</td>
<td>2430.91</td>
<td>2462.96</td>
<td>2MPSO3</td>
<td>10^8</td>
</tr>
<tr>
<td>tai150dD</td>
<td>2742.35</td>
<td>2844.70</td>
<td>2MPSO2</td>
<td>$2.2 \cdot 10^7$</td>
</tr>
</tbody>
</table>

Table 3: Comparison of the best M-VRPDR results (2nd column) with the hitherto best-known literature solutions (3rd column) accomplished by the algorithm presented in the 4th column. Both results are attained with the same number of FFE (5th column) - defined in the cited papers. In one case (tai75cD), following [20], instead of the number of FFE, the time measure is used for methods’ comparison. For each benchmark the better outcome is bolded.
0.0, 0.05, 0.1, 0.15, . . . , 0.85 hoping that the possibility to start the route earlier would alleviate the problem of ineffective (packed close to the capacity limit) routes. Unfortunately, all these values appeared to be weaker choices than 0.9 - the setting used in the main experiment. The main reason for that is a large number of trucks which are at the algorithm’s disposal (in all tested benchmarks this limit is set to 50, which is well beyond the practical needs). Having sufficient number of spare vehicles there is no real need for any truck to optimize its route in a way which would allow the vehicle to make two tours within a day. Consequently, the trucks were leaving depot earlier than in the main experiment but at the same time were much more “careless” about the route optimization, having enough time and capacity to extend the solution in different ways. It seems that the case of densely clustered customers’ distributions requires special attention and we have put this issue on the top of our priority list.

Furthermore, visibly worse results were also obtained for benchmarks c150D and c199D. While we could not trace any specific attributes of these sets other than their size, we hypothesized that the number of iterations might have been too small to allow the convergence to a good solution due to the higher (than in other cases) number of customers. In order to verify this claim, we performed additional tests for all four “resistant” benchmarks: c100bD, c120D, c150D, c199D with doubled number of iterations. The results are presented in Table 4. In the case of bigger benchmark sets (c150D and c199D) the results improved by about 2.5% which seems to confirm our presumption. For the densely clustered problems, however, the improvement is meaningless, about 1%.

6. Saliency of the memetic component

While encouraging experimental results, in particular the ability to find new best literature results for a bunch of popular and widely-recognizable benchmarks, give prospects for possible applicability and further development of the M-VRPDR, from the research point of view the most pertinent question is related to the reasons of such a promising behavior.
Based on some number of preliminary tests it turned out that in the parametrization layer the crucial variable is the starting delay parameter, whose proper setting is indispensable for efficient solving of VRPDR. In order to deeper investigate this issue additional tests were performed aiming at comparison of the “pure” genetic approach (i.e. without memetic optimization) without considering the starting delay parameter, the pure genetic approach with starting delay value set to 0.9 (as in the main experiment) and the M-VRPDR. The lack of memetic optimization phase in both purely genetic implementations was compensated by the increased number of iterations, so as to maintain approximately the same number of FFE.

Table 4 presents comparison of results obtained by M-VRPDR and the two genetic approaches (with and without considering the Sd parameter) based on 50 independent runs in each case. The importance of both tested factors (starting delay parameter and memetic optimization) is clearly supported by the results. The purely GA approach, without taking into account Sd factor, was not a competitive approach for any of the considered benchmarks. In average it yielded the solution 11.18% longer than those of the same GA implementation which relied on the starting delay. This enhanced GA approach incidentally appeared to be stronger than M-VRPDR in terms of best-found solution, but in a more systematic measure, by means of the average solution length, it lost

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>M-VRPDR with doubled iterations Min</th>
<th>M-VRPDR with doubled iterations Avg</th>
<th>M-VRPDR Min</th>
<th>M-VRPDR Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>c100bD</td>
<td>819.56</td>
<td>855.74</td>
<td>820.92</td>
<td>864.03</td>
</tr>
<tr>
<td>c120D</td>
<td>1192.35</td>
<td>1282.27</td>
<td>1189.06</td>
<td>1295.31</td>
</tr>
<tr>
<td>c150D</td>
<td>1071.78</td>
<td>1112.12</td>
<td>1083.79</td>
<td>1142.24</td>
</tr>
<tr>
<td>c199D</td>
<td>1365.26</td>
<td>1430.52</td>
<td>1377.26</td>
<td>1466.30</td>
</tr>
<tr>
<td></td>
<td>GA-Sd Min</td>
<td>GA-Sd Avg</td>
<td>GA+Sd Min</td>
<td>GA+Sd Avg</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>c50D</td>
<td>598.86</td>
<td>634.86</td>
<td>527.17</td>
<td>566.25</td>
</tr>
<tr>
<td>c75D</td>
<td>984.83</td>
<td>1059.16</td>
<td>865.70</td>
<td>898.40</td>
</tr>
<tr>
<td>c100D</td>
<td>1004.36</td>
<td>1061.87</td>
<td>868.94</td>
<td>940.20</td>
</tr>
<tr>
<td>c100bD</td>
<td>880.19</td>
<td>996.82</td>
<td>824.94</td>
<td>884.56</td>
</tr>
<tr>
<td>c120D</td>
<td>1282.32</td>
<td>1474.45</td>
<td>1222.00</td>
<td>1421.14</td>
</tr>
<tr>
<td>c150D</td>
<td>1377.09</td>
<td>1480.56</td>
<td>1089.41</td>
<td>1176.25</td>
</tr>
<tr>
<td>c199D</td>
<td>1762.94</td>
<td>1888.07</td>
<td>1436.00</td>
<td>1506.24</td>
</tr>
<tr>
<td>f71D</td>
<td>279.02</td>
<td>304.48</td>
<td>274.02</td>
<td>304.24</td>
</tr>
<tr>
<td>f134D</td>
<td>15480.35</td>
<td>16309.51</td>
<td>11795.55</td>
<td>12711.37</td>
</tr>
<tr>
<td>tai75aD</td>
<td>1758.56</td>
<td>1866.33</td>
<td>1668.75</td>
<td>1735.95</td>
</tr>
<tr>
<td>tai75bD</td>
<td>1480.91</td>
<td>1603.10</td>
<td>1352.04</td>
<td>1382.08</td>
</tr>
<tr>
<td>tai75cD</td>
<td>1516.50</td>
<td>1604.15</td>
<td>1372.42</td>
<td>1456.85</td>
</tr>
<tr>
<td>tai75dD</td>
<td>1456.45</td>
<td>1561.61</td>
<td>1393.19</td>
<td>1424.66</td>
</tr>
<tr>
<td>tai100aD</td>
<td>2185.52</td>
<td>2377.83</td>
<td>2103.70</td>
<td>2193.21</td>
</tr>
<tr>
<td>tai100bD</td>
<td>2136.29</td>
<td>2321.65</td>
<td>2049.49</td>
<td>2141.61</td>
</tr>
<tr>
<td>tai100cD</td>
<td>1564.66</td>
<td>1670.13</td>
<td>1425.17</td>
<td>1475.23</td>
</tr>
<tr>
<td>tai100dD</td>
<td>1801.75</td>
<td>1943.67</td>
<td>1661.63</td>
<td>1742.45</td>
</tr>
<tr>
<td>tai150aD</td>
<td>3541.84</td>
<td>3858.63</td>
<td>3241.59</td>
<td>3409.37</td>
</tr>
<tr>
<td>tai150bD</td>
<td>3109.13</td>
<td>3469.71</td>
<td>2845.46</td>
<td>3076.60</td>
</tr>
<tr>
<td>tai150cD</td>
<td>2738.08</td>
<td>2989.05</td>
<td>2442.11</td>
<td>2643.10</td>
</tr>
<tr>
<td>tai150dD</td>
<td>3055.80</td>
<td>3238.90</td>
<td>2810.29</td>
<td>2958.12</td>
</tr>
</tbody>
</table>

Table 5: Comparison of results obtained by M-VRPDR and the two genetic approaches (with and without considering the S_d parameter, denoted by GA+S_d and GA-S_d, respectively) based on 50 independent runs with a budget of 10^7 FFE in each case. Best results are bolded.

to M-VRPDR in all cases, with the average margin of 2.47%.
7. Summary and conclusions

This paper presents a memetic approach to solving the Vehicle Routing Problem with Dynamic Requests. The algorithm was tested on a well-established set of benchmarks and proved to be an effective and reliable method, capable of finding 13 new best-known results out of 21 tested problems, using the same numbers of fitness function evaluations. It is worth underlying that, except for some parameter tuning, the method was not optimized for solving this particular set of benchmarks. Furthermore, the proposed algorithm can, in principle, be applied to solving other VRPDR benchmarks with no specific adjustments as the selected parameters seem to be universally useful (though certainly not optimal in strict sense).

Our algorithm relies on problem encoding previously introduced in [20] and adopts memetic optimization scheme proposed in [9], however, both these factors are combined in a novel manner as parts of the newly-designed system and applied to the problem other that those considered in the source papers. Furthermore, while memetic optimization is definitely an important part of the overall solution method, the paramount feature is the starting delay parameter which heuristically administers the dispatching times of the vehicles.

Additionally, a new way of knowledge transfer between consecutive partial solutions defined during the day (in subsequent time-slices) is introduced in this study and proved to be effective when combined with the proposed extensive mutation operator which prevents the system from premature convergence or stagnation.

Our current research focus is on development of a meta-heuristic procedure, which - based on the analysis of particular data set (spatial and volume distributions of requests, their skewness and approximate number of clusters) - would autonomously adjust the parameters of the method so as to increase its efficacy in solving a given benchmark set. Such a meta-heuristic system can, for instance, be implemented as a one-layer feed-forward network and trained on an ensemble of benchmarks, taking the statistical parameters of the data set as in-
puts. Special focus will be put on the case of densely clustered data sets, which appeared to be the most demanding for the current system implementation. We hope that due to intrinsic nonlinearity of neural networks’ approximation the proposed meta-approach will further strengthen the system’s performance.

Acknowledgment

The research was financed by the National Science Centre in Poland, grant number DEC-2012/07/B/ST6/01527. The authors would like to thank Michał Okulewicz for his helpful comments.

Appendix A

The appendix presents statistical characteristics of the baseline M-VRPDR (10^7) results (Table 6) and two exemplar convergence graphs (Figures 10 and 11), respectively for c100bD and tai150aD benchmark sets.

The results presented in Table 6 show that the method is reliable (repeatable), as for all benchmarks the standard deviation is kept within reasonable limits compared to the average solution. The greatest spread of outcomes (in per cent points) can be observed for f71D (4.79%) and tai150cD (4.09%), while the most consistent results are obtained in the case of f134D (only 1.46%) and tai75bD (1.51%). Overall, the worst solutions (column Max) are within the 11.21% margin (achieved for tai150aD) from the average results across all benchmarks, but can be as low as 3.01% for f134D or 3.43% for tai75bD.

References

Figure 10: The convergence graphs for 12 independent algorithm’s runs for the c100bD benchmark set. The x-axis represents time (time slices) and the y-axis - the length of the currently committed tour. It can be seen from the figure that the experiments are fairly repeatable. After the cut-off time (time slice #13) only local route optimization takes place.

Figure 11: The convergence graphs for 12 independent algorithm’s runs for the tai150aD benchmark set. The x-axis represents time (time slices) and the y-axis - the length of the currently committed tour. It can be seen from the figure that the experiments are fairly repeatable. After the cut-off time (time slice #13) only local route optimization takes place.
<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Avg</th>
<th>Max</th>
<th>St_dev</th>
<th>St_dev/Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>c50D</td>
<td>524.61</td>
<td>548.10</td>
<td>582.09</td>
<td>17.49</td>
<td>3.19%</td>
</tr>
<tr>
<td>c75D</td>
<td>852.95</td>
<td>885.00</td>
<td>944.83</td>
<td>22.14</td>
<td>2.50%</td>
</tr>
<tr>
<td>c100D</td>
<td>860.56</td>
<td>913.81</td>
<td>999.41</td>
<td>29.98</td>
<td>3.28%</td>
</tr>
<tr>
<td>c100bD</td>
<td>820.92</td>
<td>864.03</td>
<td>927.51</td>
<td>25.93</td>
<td>3.00%</td>
</tr>
<tr>
<td>c120D</td>
<td>1189.06</td>
<td>1295.31</td>
<td>1407.31</td>
<td>49.67</td>
<td>3.83%</td>
</tr>
<tr>
<td>c150D</td>
<td>1083.79</td>
<td>1142.24</td>
<td>1234.75</td>
<td>38.18</td>
<td>3.34%</td>
</tr>
<tr>
<td>c199D</td>
<td>1377.26</td>
<td>1466.30</td>
<td>1596.62</td>
<td>45.08</td>
<td>3.07%</td>
</tr>
<tr>
<td>f71D</td>
<td>260.17</td>
<td>297.61</td>
<td>324.61</td>
<td>14.25</td>
<td>4.79%</td>
</tr>
<tr>
<td>f134D</td>
<td>11815.95</td>
<td>12299.59</td>
<td>12669.69</td>
<td>180.06</td>
<td>1.46%</td>
</tr>
<tr>
<td>tai75aD</td>
<td>1656.12</td>
<td>1705.76</td>
<td>1797.22</td>
<td>34.22</td>
<td>2.01%</td>
</tr>
<tr>
<td>tai75bD</td>
<td>1350.28</td>
<td>1378.47</td>
<td>1425.69</td>
<td>20.88</td>
<td>1.51%</td>
</tr>
<tr>
<td>tai75cD</td>
<td>1355.41</td>
<td>1427.74</td>
<td>1538.73</td>
<td>37.90</td>
<td>2.65%</td>
</tr>
<tr>
<td>tai75dD</td>
<td>1376.42</td>
<td>1414.93</td>
<td>1481.04</td>
<td>24.23</td>
<td>1.71%</td>
</tr>
<tr>
<td>tai100aD</td>
<td>2093.63</td>
<td>2168.87</td>
<td>2357.59</td>
<td>53.48</td>
<td>2.47%</td>
</tr>
<tr>
<td>tai100bD</td>
<td>1990.99</td>
<td>2097.86</td>
<td>2195.63</td>
<td>55.92</td>
<td>2.67%</td>
</tr>
<tr>
<td>tai100cD</td>
<td>1421.50</td>
<td>1460.72</td>
<td>1564.04</td>
<td>31.02</td>
<td>2.12%</td>
</tr>
<tr>
<td>tai100dD</td>
<td>1631.63</td>
<td>1710.44</td>
<td>1820.74</td>
<td>49.64</td>
<td>2.90%</td>
</tr>
<tr>
<td>tai150aD</td>
<td>3226.51</td>
<td>3354.09</td>
<td>3730.07</td>
<td>106.00</td>
<td>3.16%</td>
</tr>
<tr>
<td>tai150bD</td>
<td>2847.08</td>
<td>2980.33</td>
<td>3134.90</td>
<td>74.73</td>
<td>2.51%</td>
</tr>
<tr>
<td>tai150cD</td>
<td>2427.53</td>
<td>2558.99</td>
<td>2828.03</td>
<td>104.55</td>
<td>4.09%</td>
</tr>
<tr>
<td>tai150dD</td>
<td>2737.37</td>
<td>2903.68</td>
<td>3063.57</td>
<td>67.63</td>
<td>2.33%</td>
</tr>
</tbody>
</table>

Table 6: Detailed results of the M-VRPDR method for all 21 benchmarks with a budget of 10^7 FFE in each test.

URL http://www.cs.strath.ac.uk/~apes/apereports.html

URL http://www.mini.pw.edu.pl/~mandziuk/WORK/UCT-DVRP.pdf

33
URL http://www.mini.pw.edu.pl/~mandziuk/WORK/2MPSO.pdf

URL http://www.mini.pw.edu.pl/~mandziuk/dynamic/

Vitae

Jacek Mańdziuk PhD, DSc. is Associate Professor at Faculty of Mathematics and Information Science, Warsaw University of Technology, Head of Division of Artificial Intelligence and Computational Methods and Head of Doctoral Programme in Computer Science. In 2011 he was awarded the title of Professor Titular.

He is the author of 3 books and 100+ research papers, an Associate Editor of several journals including IEEE Transactions on Computational Intelligence and AI in Games. He is a recipient of the Senior Fulbright Advanced Research Award.

His research interests include application of CI to games, dynamic optimization, human-machine cooperation, financial modeling, and development of general-purpose human-like learning and problem-solving methods which involve intuition, creativity and multitasking.

Adam Żychowski received his B.Sc. and M.Sc. degrees in Computer Science from the Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland in 2014 and 2015, respectively.

His research interests include Computational Intelligence methods and their application to solving complex, real-life problems.