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Abstract

This paper presents two simple optimization techniques based on
combining the Langevin Equation with the Hopfield Model.

Proposed models - referred as Stochastic Model (SM) and Pulsed
Noise Model (PNM) - can be viewed as straightforward stochastic
extensions of the Hopfield optimization network. Both models follow
the idea of Stochastic Neural Network [14] and Diffusion Machine [23].
They differ form the referred approaches by the nature of noises and
the way of their injection.
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Optimization with Stochastic Model, unlike in the previous works,
in which δ-correlated Gaussian noises were considered, is based on
Gaussian noises with positive autocorrelation times. This is a reason-
able assumption from a hardware implementation point of view.

In the other model - Pulsed Noise Model, Gaussian noises are in-
jected to the system only at certain time instances, as opposite to
continuously maintained δ-correlated noises used in the previous re-
lated works.

In both models (SM and PNM), intensities of noises added to the
model are independent of neurons’ potentials. Moreover, instead of
impractically long inverse logarithmic cooling schedules, the linear
cooling is tested.

With the above strong simplifications neither SM nor PNM is ex-
pected to rigorously maintain Thermal Equilibrium (TE). However,
approximate numerical tests based on the canonical Gibbs-Boltzmann
distribution show, that differences between rigorous and estimated val-
ues of the TE parameters are relatively low (within a few percent).
In this sense both models are said to perform Quasi Thermal Equilib-
rium.

Optimization performance and Quasi Thermal Equilibrium prop-
erties of both models are presented based on a small-size Travelling
Salesman Problem (TSP).

Keywords: Hopfield Model, Stochastic Optimization, Simulated Annealing,

Travelling Salesman Problem, Gibbs-Boltzmann Distribution.
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1 Introduction

In this paper two, simple optimization techniques based on combining the

Langevin Equation - based optimization with the
Hopfield Model are introduced. Proposed models - referred as Stochas-

tic Model (SM) and Pulsed Noise Model (PNM) - can, in short, be viewed
as straightforward stochastic extensions of the Hopfield optimization circuit.

Instead of classical Hopfield differential equations, which for a given starting
point deterministically describe a trajectory in the search space, new models

are defined by stochastic differential equations, obtained by adding a noise
term to the Hopfield Model. Similarly to the simulated annealing method

[13], a noise term is multiplied by the coefficient (temperature), which de-
creases in time.

Both models follow the idea of Stochastic Neural Network [14] and Dif-

fusion Machine [23].
Optimization with Stochastic Model, unlike in referred works, in which

δ-correlated Gaussian noises were considered, is based on Gaussian noises
with positive autocorrelation times. This is a reasonable assumption from

the hardware implementation point of view. Unfortunately, theoretical work
on SM performance seems to be difficult, since transitions of the stochastic

process describing the model are not Markovian.
The paper is mainly focused on comparison between experimental results

obtained for three types of Gaussian noises that were tested in computer
simulations. Distinctions between noises are based on the relation between

the length of the noise autocorrelation time τ , and the RC time constant,
which governs the relaxation time of the Hopfield electrical circuit.

In the other model - Pulsed Noise Model, Gaussian noises are injected
to the system only at certain time instances, as opposite to continuously

maintained δ-correlated noises used in the previous related approaches.

In both models (SM and PNM), intensities of noises added to the system
are independent of neurons’ potentials. Finally, instead of impractically long

inverse logarithmic cooling schedules, the linear cooling is tested.
With the above strong simplifications neither SM nor PNM is expected

to rigorously maintain Thermal Equilibrium (TE). However, approximate
numerical tests based on the canonical Gibbs-Boltzmann distribution show,

that differences between the rigorous and estimated values of the TE param-
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eters are relatively low (within a few percent). In this sense both models are

said to perform Quasi Thermal Equilibrium.
Both models were tested on the 10-city Travelling Salesman Problem

(TSP). Numerical results show that both models solve the small-size TSP
efficiently. It should be noted that no effort has been devoted neither to

selecting the suitable energy function nor to finding the optimal or sub-
optimal set of energy coefficients. Moreover, in both models, improvement is

expected with slower cooling schedules.
Results were presented in part at ICNN ([16]) - PNM and at ICCIN ([17])

- SM.
The paper is organized as follows: the next three subsections briefly intro-

duce the background of this work: Hopfield Model, the Travelling Salesman
Problem, and the Langevin (Diffusion) Equation - all of them in the context

of solving NP −Hard optimization problems. In Section 2 previous related
works are presented and their main conclusions are discussed. The next Sec-

tion describes Stochastic Model, and presents numerical results for solving
TSP and for TE tests. Section 4 covers the description and simulation results

for Pulsed Noise Model. Final remarks and conclusions are placed in the last

Section.
Notation remark: usually, the term Stochastic Model (SM in short) will

address the idea of the optimization method proposed, whereas the plural
term Stochastic Models (or SMs) will represent various realizations based on

white, moderate or quasi-static noise. The distinction will also be clearly
indicated by the context.

1.1 The Hopfield Model

In 1982 Hopfield [9] introduced a neural network model of a Content Address-

able Memory (CAM) composed of many, highly-interconnected two-state,

McCulloch-Pitts neurons [19]. The subsequent papers described the continu-
ous version of the model, which was composed of the collection of continuous

(graded) response neurons. The application domain of the continuous model
was either the construction of a CAM [10] or solving combinatorial optimiza-

tion problems [11].
Since after the classical paper of Hopfield and Tank [11] lots of theoretical

and experimental research has been published on this subject, the description
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Figure 1: Description of the Hopfield Model as an electrical circuit. For the
sake of clarity the network composed of two neurons only is presented.

of the Hopfield Model (HM) presented in this Section is confined to the

minimum indispensable for introducing the notation.

The continuous Hopfield Model composed of N neuronal units, in terms

of an electrical circuit (Fig. 1) is described by the set of differential equations
(1):

dui

dt
=

N−1∑
j=0

tijvj + Ii − ui

RC
, (1)

where, ui, vi denote input and output potentials of the i-th neuron, respec-
tively, i = 0, 1, . . . , N − 1, Ii is the external input current to the i-th neuron,

tij is a weight from output of neuron j to input of neuron i, tij = tji, and
RC is the relaxation time of the system. The relation between the input and

output potentials of the i − th neuron, vi = g(ui) is a sigmoidal amplifier’s
response function:

g(x) =
1

2
( 1 + tanh(αx) ) (2)

Solving the given optimization task with the Hopfield Model is based on
minimization of the energy function (Lyapunov function for (1)), which is of
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the following generic form:

E = −1

2

N−1∑
i=0

N−1∑
j=0

tijvivj −
N−1∑
i=0

Iivi +
1

RC

N−1∑
i=0

∫ vi

0
g−1(x)dx (3)

For sufficiently high gain α in (2) and in the regime dui

dt
−→ 0, [10, 22]

energy (3) reduces to

E = −1

2

N−1∑
i=0

N−1∑
j=0

tijvivj −
N−1∑
i=0

Iivi (4)

Therefore, while solving optimization problem with the Hopfield network

one is to choose weights tij and external inputs Ii so as (global) minima of
(4) correspond to (optimal) solutions of the given problem at hand.

Certainly, since
dui

dt
= −∂E

∂vi
(5)

that is the minimization is based on the deterministic gradient descent method,
the convergence to the global minimum is not guaranteed. Moreover, the final

stable state (the obtained solution) depend on the initial conditions of (1).
However, despite some obvious limitations, the Hopfield continuous model

(1), as well as two-state model can be successfully used for solving combi-
natorial optimization problems, especially in situations when finding a good

(not optimal) solution is sufficient or for the problems with relatively many
global minima, e.g. the N-Queens Problem [15, 18].

1.2 The Travelling Salesman Problem

The Travelling Salesman Problem is one of the standard benchmark problems

for evaluation of the optimization methods. There are two main reasons for
that: first, the existence of many local minima in the solution space makes the

problem really hard, and second: the problem has practical meaning. In case
of the HM there are two more important aspects: first, this was the problem

originally considered by Hopfield and Tank and by many others afterwards.
Secondly, the TSP is particularly bad suited for the gradient-descent method

incorporated by the HM.
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In this paper a version of the TSP with a full graph Kn on a plane for the

problem of size n and symmetric weight matrix T is considered. This means,
that there exist a direct connection between any two different cities, and that

the length of this connection is independent of the direction of traversing it.
TSP is mapped onto the Hopfield network by a square n × n matrix V

of “nearly binary” elements. Expression “nearly binary” means that gain
α in the neuron’s activation function is big enough to eventually drive the

network towards one of the corners of the [0, 1]n×n hipercube. The solution of
the problem is read out from V after binarization of its elements. The same

generic form of the energy function for the TSP as the one presented in [11]
is used, with only different coefficients: A = 5, B = 5, C = 10, D = 5, n− = n

and α = 10. The set of coefficients is chosen so as to be “reasonable” and no
effort has been spent on optimizing coefficients’ values.

Namely, the following energy function is used:

E =
A

2

n−1∑
x=0

n−1∑
i=0

n−1∑
j=0,j �=i

vxivxj +
B

2

n−1∑
i=0

n−1∑
x=0

n−1∑
y=0,y �=x

vxivyi+

C

2

(n−1∑
x=0

n−1∑
i=0

vxi − n
)2

+
D

2

n−1∑
x=0

n−1∑
y=0,y �=x

n−1∑
i=0

dxyvxi(vy,i+1 + vy,i−1), (6)

where dxy denotes the distance between city x and city y, and all indices are

taken modulo n.
A detailed explanation of the above choice of the energy function as well

as a description of a mapping of the problem to matrix V are presented in
[11].

Many results published afterwards support the following remarks:

• the choice of the energy form (6) - regardless of coefficient values - is not

optimal. More efficient energy forms can be found in [2, 3, 4, 6], to cite
only a few papers. Improvement is based on the observation that the

global inhibition term in (6), that is the term multiplied by C, tends
to average the influence of particular neurons, and in turn forces the

system back towards the center of the hipercube [0, 1]n×n. The solution
for this harmfull effect is incorporating the global inhibition term into
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the inhibition terms for rows and columns, e.g. in the following way

A

2

n−1∑
x=0

(
n−1∑
i=0

n−1∑
j=0,j �=i

vxivxj − 1) +
B

2

n−1∑
i=0

(
n−1∑
x=0

n−1∑
y=0,y �=x

vxivyi − 1) (7)

and/or adding the term that would push vxi values out from the center
of the hipercube, e.g. by adding the following term:

(A + B)

2

n−1∑
x=0

n−1∑
i=0

vxi(1 − vxi) (8)

to the energy equation,

• even for the form of energy (6) much improvement can be achieved by a

judicious choice of parameters A, B, C and D, which clearly depend on
the city-set. Especially the tradeoff between the syntactical constraints

(valid tours) and the efficiency of solutions (tour lengths), that is the
ratio C/D plays a crucial role in the overall performance of the Hopfield

Model.

The network used in our simulations was not optimized in any of the
above aspects.

1.3 The Langevin Equation

The Boltzmann Machine [1] combined with the simulated annealing technique

[13] is a well known model for stochastic optimization over binary variables.
The model can be extended to the case of optimization over continuous vari-

ables based on the Langevin (Diffusion) Equation:

dX(t) = −∇E(X(t))dt +
√

2TdW (t), (9)

where E(·) is the function being minimized, X ∈ RN , W (t) is the N - dimen-

sional standard Brownian (Wiener) process, and T is the temperature,

Under some conditions on E, X(t) converges weakly to equilibrium with
probability density πT (X) given by the Gibbs distribution:

πT (X) =
1

Z(T )
exp

(
−E(X)

T

)
(10)
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where Z(T ) is the normalizing constant. For temperatures T near zero πT

is concentrated on the global minima of E. Unfortunately, the time required
for reaching equilibrium increases exponentially with 1/T .

The advantage of the fact that steady-state probability density of (9)
is given by the Gibbs-Boltzmann distribution is taken in the optimization

algorithm proposed by Geman and Hwang [8]. In [8] it is showed that under
some restrictive conditions for E and X, when the minimization is confined

to the hypercube [0, 1]N by so-called “reflecting boundaries”, and with the
inverse logarithmic temperature annealing (cooling) schedule

T (t) =
c

ln(2 + t)
, (11)

and for “sufficently large” c, system (9), regardless of the starting point X(0),

converges weakly with the probability measure to the Gibbs distribution
(10). In other words, while maintaining the Thermal Equilibrium, system (9)

gradually (as T decreases) converges with probability to the global minimum
of E.

This result was improved in [7] to the case of minimization over RN .

2 Previous related work

Mathematical proof for the ability of the Langevin algorithm to eventually
converge to the global minimum form a strong basis for the research on prac-

tical implementation of the Langevin Equation-based minimization methods.
One of the enticing possibilities is combining circuit implementation simplic-

ity of the HM with the minimization power of the Langevin Equation - based

algorithm. However, the obstacle in a simple combining of the two methods
is that the dynamics of the i − th neuron in the HM is governed by − ∂E

∂vi
,

whereas in the Langevin Equation is governed by − ∂E
∂ui

, where vi is a non-

linear transformation of ui.
Thus, as reported in [14], in order to keep up with the Boltzmann law

(the Gibbs distribution) the noise has to be injected to the Hopfield Model
in the following way:
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dui(t)

dt
=

N−1∑
j=0

tijvj + Ii − ui

RC
+ 2

√
T

α(t)
cosh

(
α(t)ui(t)

)
γi(t), (12)

where γi(t), γj(t); i, j = 0, . . . , N − 1, i �= j are pairwise independent δ-

correlated Gaussian noises with intensity (13):

Cov[γi(t), γi(s)] =
dg−1

dvi
δ(t − s) (13)

In such a case, it can be shown that the probability of observing a configu-
ration V ∈ [0, 1]N at temperature T is given by

pV,T =
1

Z(T )
exp{−E(V )

T
}, (14)

where

Z(T ) =
∫
[0,1]N

exp{−E(V )

T
} dV (15)

The above combination of the HM and the Langevin algorithm results in,

what authors of [14] called, Stochastic Neural Network (SNN), which given
enough time converges with probability to the global minimum. The proof

of the ability of SNN to maintain TE with the inverse logarithmic cooling
(11) presented in [14] is a significant theoretical result. Unfortunately, there

are some practical limitations that prevented SNN from straightforward im-
plementation in hardware as well as in computer simulations [5]. Mainly the

two of them:

• an extremely slow, inverse logarithmic cooling schedule (11) is required,

which makes the implementation ineffective. On the other hand, one
may think of application of faster annealing schedules, however in such

a case the convergence may not be mathematically guaranteed any-
more,

• a suitable scheme for changing α in (12) in time is also required. Co-
ordination of both temperature and gain schedules makes solving (12)

a complicated and time-consuming task. This also seems to be a real
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obstacle in computer simulations [5] and in analogue implementation.

In fact, in [14] it is suggested that increase of α in (12) should be done
much slower than temperature decrease. This is a neccessary condition

since cosh function should be restricted from a rapid growth.

An idea of slow increase of α was also proposed in [11], in the context of

the classical (not stochastic) HM.
The last remark concerning SNN is about the nature of noises in (12).

Certainly, δ-correlated noises used for the mathematical proof does not exist
in practical situations. Although there is no problem with computer simu-

lations, in any hardware realization the length of the noise autocorrelation
time must be positive. This remark does not apply exclusively to SNN, but

has a more general meaning - in case of δ-correlated noises, theoretical proofs
does not fit tightly to reality. Obviously in practice, noises with less “sharp”

characteristics can be successfully used. However in that case, stochastic
processes (12) are not Markovian, since the transitions at time t are not

independent of the past.

Similar convergence results as the ones presented in [14] were indepen-

dently proved in [23] for the so-called Diffusion Machine. The difference
between the two results is that in [23] there is no requirement for changing of

gain α. This, as mentioned above, significantly simplifies the method. The
ability of Diffusion Machine to perform analog optimization was presented

in ([12]).

The model presented in [23] is described by the set of equations (16):

dui = −∂E

∂vi
dt +

√
2T

g′(ui)
dWi (16)

The particular choice of g as in (2), leads to (12).

The work presented in this paper was also inspired by ref. [21], where
an optoelectronic system performing video-rate simulated annealing is pre-

sented and accuracy of its hardware implementation versus computational
simulation results is analyzed.

Other recent developments in stochastic or chaotic optimization with the
Hopfield Model can be found [6, 20] and citations therein.
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3 Stochastic Model

Trying to avoid some implementation limitations of SNN mentioned in the

previous section and to simplify the computational model, SM is defined
based on four postulates:

• the noise used for each stochastic neuron has a positive autocorrelation
time τ ,

• amplifier’s gain α is kept constant (in a high limit),

• the annealing schedule is reasonably fast,

• the noise intensity is independent of the potential of the neuron, that
is the noise is injected in the simplest possible way.

In order to address the above postulates, SM is described by the following
set of differential equations:

dui(t)

dt
=

N−1∑
j=0

tijvj(t) + Ii − ui(t)

RC
+ γi(t)T (t), (17)

where γi(t) denotes a one-dimensional Gaussian noise, and γi(t), γj(t), i �=
j, i, j = 0, . . . , N − 1 are pairwise independent.

Temperature schedule is linear, with a fixed stepsize equal to the inverted
number of iterations (denoted by β) in the cooling process,

T (t) = T (0)(1 − t

β
), (18)

Instead of δ-correlated noises with intensity (13), Gaussian noises with a
non-zero autocorrelation time τ , are proposed. More precisely, at time t = 0

and at each time t = pτ, (p = 1, 2, . . .), for each neuron i, i = 0, . . . , N − 1 a

noise value γi(t) is generated (independently from other neurons) according
to the Gaussian N(0, 1) distribution. Intensity of the i-th noise γi(t) during

the [(p−1)τ, pτ) period (in τ
h

iterations, where h is the stepsize of a numerical
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method used for solving (17)), are set according to the linear change with a

step equal to [γi(pτ) − γi((p − 1)τ)]h
τ
, that is

γi[(p−1)τ+k] = γi[(p−1)τ ](1−kh

τ
)+γi(pτ)

kh

τ
k = 0, . . . ,

τ

h
, p = 1, 2, 3, . . .

(19)
Based on relations between time constants of the system, three cases are

considered:

• τ < RC - white noise,

• τ = RC - moderate noise,

• τ > RC - quasi-static noise,

where RC is the relaxation time of the model.

3.1 Numerical results

Numerical results are presented in two aspects: quality of tours found (Sec-
tion 3.1.1) and ability of the system to perform Thermal Equilibrium-like

behaviour (Section 3.1.2). Computer simulations of SM are presented for
the city set depicted in Fig. 2. The number of iterations β in (18) is equal

to 5 ∗ 106. Parameter β is set based on some number of preliminary tests,
however its value cannot be treated as the optimal or suboptimal choice.

Obviously, the greater β, the longer the cooling. Hence, value of β used
in simulations is set based on a compromise between the time required to

perform a test and an average quality of resulting tours.
Unless otherwise stated, in all simulations of Stochastic Model the start-

ing temperature T (0) is set to 100.

3.1.1 Minimization performance

Results of simulations performed for the Hopfield Model and Stochastic
Model with white, moderate and quasi-static noise are presented in Table 1.
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Figure 2: The shortest tour in the exemplar 10-city set. The first, the second
and the third shortest tour lengths are equal to 2.696, 2.765, 2.767, respec-
tively.

noise type parameters best mean worst %failures

no noise 2.69 3.35 3.75 64

white τ = 0.1 2.69 2.85 3.14 0

moderate τ = 1 2.69 2.92 3.27 0

quasi-static τ = 10 2.76 3.25 3.57 0

Table 1. Results of computer simulations for the city-set from Fig. 2 -
Hopfield Model (the first row) and Stochastic Models.

The main quantitative observations are as follows:

• best results are obtained for the white noise case, with the average
tour length being 6.07% greater than the shortest tour. Slightly worse

tours are obtained for the moderate noise case - 8.69%, and significantly
worse for the quasi-static noise case and Hopfield Model - 21.09% and

24.53%, respectively,

14



• all SMs again achieved 100% performance comparing to the 36% of the

HM,

• one of the first three shortest tours is found in roughly 35%, 25%, 5%, 5%

of trials for Stochastic Model with white, moderate, quasi-static noise,
and the Hopfield Model, respectively.

Certainly, the results are preliminary and are obtained for the size of data,

which is relatively small and does not permit making final conclusions. How-

ever, in our opinion, the numerical evidence supports the following general
observations:

• all three SMs significantly outperform HM in the number of successful

trials and the white and moderate models also in the quality of obtained

tours,

• among SMs, the case of white noise and moderate one are significantly

better than the quasi-static noise case,

• in both (Stochastic and Hopfield) models improvement is expected by

more suitable choice of parameters or more efficient form of the energy
function. However, due to a gradient-descent minimization scheme

incorporated in HM, its performance cannot be improved significantly,

• experimental results for the Thermal Equilibrium testing presented in

the next Section indicate the possibility of a further improvement of
SM performance, especially when slower cooling schedules are applied.

3.1.2 Quasi Thermal Equilibrium

The main objective of this work is an experimental analysis of properties of

proposed optimization models rather than solving a given TSP problem at
hand. Certainly, due to a very straightforward idea of noise injection as well

as “inadmissibly” fast cooling schedules, SM is unlikely to rigorously achieve
TE.

A theoretical analysis of TE properties of SM is extremely difficult, since
due to the positive autocorrelation time of noises, the Markov property does

not hold. Hence, the method of examination whether SM exibits TE - like
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properties is based on numerical tests. However, in the experimental ap-

proach, the huge number of potential binary configurations V , V ∈ {0, 1}N ,
makes direct observation of the Gibbs-Boltzmann distribution infeasible.

Therefore, the approximate method, based on the canonical Gibbs-Boltzmann
distribution (20) is used (cf. [21]). In the canonical Gibbs-Boltzmann distri-

bution

pT =
1

Z ′(T )
Ω(E)exp{−µE

T
}, (20)

Ω(E) denotes the number of binary configurations V with energies between

E and E + δE, µ is the scaling coefficient, and Z ′(T ) is the normalizing
constant.

For any two temperatures Ti and Tj , (Ti > Tj), the logarithm (21) of the

ratio of distributions (20) calculated at Ti and Tj,

ln
pTi

pTj

= a(Ti, Tj)µE + b(Ti, Tj), (21)

where

a(Ti, Tj) =
Ti − Tj

TiTj
(22)

does not incorporate the unknown distribution Ω(E). Hence, having distri-
butions collected for various temperature pairs, if the system rigorously holds

the canonical Gibbs-Boltzmann distribution, one will expect:

• a linear relation between ratiologarithm ln
pTi

pTj
and energy E according

to (21)

• a constant, independent of Ti and Tj , value of µ in (21)

In order to examine the above properties, for various temperatures T , distri-
butions of configurations are collected in the following way:

(A1) system (17) is cooled to T according to (18), and T is fixed,

(A2) M = 16 000 sample configurations v ∈ [0, 1]n×n are collected, one at

each pτ − 1 time, p = 1, . . . , 16 000, i.e. right before a noise injection,
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(A3) configurations are binarized (with a threshold equal to 0.5) and for

binary configurations v ∈ {0, 1}n×n energy values are calculated from
(4).

Having collected, at various temperatures, the data according to (A1)−(A3),

for several pairs of “close” temperatures (Ti, Tj), Ti > Tj ,

(B1) histograms of energy distributions in temperatures Ti and Tj are plot-

ted,

(B2) in the overlapping area of the histograms, the ratiologarithm ln
pTi

pTj

versus E is plotted.

Finally, the value of µ, for a given pair (Ti, Tj), is determined in the

following way:

(C1) a few last points in (B1), i.e. points representing the highest energy

values, are omitted in calculations. This is because of a small number of

data in these high-energy categories - only a few samples per category.
In such a case the ratio and the logarithm of the ratio are unreliable,

(C2) based on the least-square-fit method the experimental slope S(Ti, Tj)
in (B2) is calculated,

(C3) the value of µ for the pair (Ti, Tj), denoted by µ
Ti,Tj

is calculated as:

µ
Ti,Tj

=
S(Ti, Tj)

a(Ti, Tj)
(23)

Ideally, if the data were collected under the Boltzmann law, plot in (B2)
would be a straight line with a slope equal to a(Ti, Tj)µ given by (21)-(22).

Certainly, “simple” SMs does not rigorously hold TE, however in plots (B2)
a quasi-linear relation is observed for all tested temperature pairs. Examples

of such relations are presented in Figs. 3 and 4. Experimental points in the
figures are denoted by stars. The dashed lines represent the least square fit

approximations of the experimental data.
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Figure 3: Stochastic Model with moderate noise. Quasi-linear relationship
between energy intervals and ratiologarithm for temperature pair (60, 50).
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Figure 4: Stochastic Model with white noise. Quasi-linear relationship be-
tween energy intervals and ratiologarithm for temperature pair (60, 50).
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Estimated µ
Ti,Tj

values for the set from Fig. 2, in case of white and moderate

noise are presented in Table 2. Results for the quasi-static noise are not
reported, because of relatively poorer minimization performance of the model

in this case in comparison with the two other cases.

noise type (Ti, Tj) µ
Ti,Tj

(Ti, Tj) µ
Ti,Tj

(Ti, Tj) µ
Ti,Tj

(Ti, Tj) µ
Ti,Tj

white (100, 90) 4.48 (90, 80) 3.75 (80, 70) 3.97 (70, 60) 3.61
(60, 50) 4.27 (50, 40) 3.91 (40, 30) 4.15 (30, 20) 5.10

moderate (100, 90) 3.33 (90, 80) 3.62 (80, 70) 3.47 (70, 60) 3.33
(60, 50) 3.26 (50, 40) 3.29 (40, 30) 3.09 (30, 20) 3.37

Table 2 Results of testing Thermal Equilibrium properties of Stochastic
Model. Estimated µ

Ti,Tj
values for various pairs (Ti, Tj) in case of white and

moderate noise.

Again, if distributions were collected under the Boltzmann law, µ
Ti,Tj

should

have a constant value independent of temperatures of sampling Ti and Tj . Al-
though it is clear from Table 2, that µ is not constant, statistical parameters

of sets of µ
Ti,Tj

values obtained for both noises, presented in Table 3, show
that relative deviations of these values are small. In particular, for moderate

noise, the relative deviation is less than 5%. In this sense we conclude that
Stochastic Model with white or moderate noise provide the Quasi Thermal

Equilibrium.

noise type 〈µ〉 σµ σµ/〈µ〉
white 4.16 0.44 10.65%

moderate 3.34 0.14 4.19%

Table 3. Mean value 〈µ〉 and standard deviation σµ of sets of µ
Ti,Tj

presented

in Table 2.

3.1.3 Technical details

The following comments explain some aspects of the TE testing method

presented in the previous Section in more detail.
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• straight lines obtained in (C2) based on the least-square-fit method,

for all µ
Ti,Tj

for both noises fit the experimental data very closely.

The coefficient of determination from regression analysis, that is the
difference between 1 and the ratio of the residual sum of squares and

the total sum of squares, denoted by r2, has been computed for each
choice of (Ti, Tj) for both noises. By definition r2 ∈ [0, 1], and the

greater r2 the closer linear dependence of the data. In particular, r2 = 1
means perfect match between the experimental data and the estimated

straight line.

In the experiment coefficient r2, for all tested pairs (Ti, Tj), exceeds
0.97 and 0.91 for moderate and white noise, respectively (cf. Figs. 3

and 4).

• a number of points omitted in calculations of µ
Ti,Tj

in (C1) depends on

two factors: the size of a common area of the histograms calculated for
the temperatures Ti and Tj, or in some sense how close the temperatures

are to one another, and on the distribution of samples collected in the

highest energy intervals. In any case, in all tests the number of samples
left out is smaller than 3.4%, and is mainly caused by the relative shift

of the histograms,

• besides the results presented in the previous section, some experiments

have been performed on the same set of cities but with other T (0). The
general conclusion is that unless sampling temperatures are relatively

too high, results remain qualitatively the same.

For example, in moderate noise case, for T (0) = 500 and tempera-
ture pairs (500, 440), (440, 380), (380, 320), (320, 260) similar results

were obtained as with pairs (100, 90), (90, 80), . . ., (40, 30), (30, 20),
i.e. 〈µ〉 = 3.07, σµ = 0.1 and σµ/〈µ〉 = 3.26%.

In another test, sampling was performed at temperatures 100, 90, . . . , 20,

but with T (0) = 500, that is initial cooling phase was longer. Again,

results remained qualitatively the same.

In all tests β was scaled, so as the temperature decrement remained
constant (the higher T (0), the greater β).
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4 Pulsed Noise Model

The other stochastic extension of the Hopfield Model considered in this paper

is Pulsed Noise Model. PNM is defined by the same set of differential equa-
tions as SM, namely (17), where as previously T (t) is decreasing linearly ac-

cording to (18). The difference between PNM and SM is in the characteristics
of noises added to the system. In PNM, at each time t = pτ, p = 0, 1, 2, . . .,

for each neuron i, a noise value γi(t) is generated independently from other
neurons, according to Gaussian N(0, 1) distribution. In the period between

pτ and (p + 1)τ intensity of noise γi(t) is equal to zero - there is no noise
in the system. Consequently, between successive pτ, p = 0, 1, 2, . . . times,

system (17) performs a gradient descent relaxation.

The motivation behind PNM is similar to the one for SM:

• straightforward noise injection

• fast cooling

• fixed amplifier’s gain

Moreover,

• higher stability of the model, because of the lesser amount of noise
injected

• cheaper implementation, since the noise is injected only at certain time

instances, as opposite to continuously maintained noise

Certainly, pulsed noise does not exist in practice. Therefore in analogue,
hardware implementation, approximations of pulsed noise with less sharp

noise characteristics must be used.

Simulation results for PNM, for the set from Fig. 2 are presented in

Table 4. Parameter β in (18) is equal to 107. Value of β is chosen based on
some number of preliminary tests, and - as in SM case - represents a tradeoff

between the average duration of a test and the average quality of results.

Starting temperature T (0) is equal to 10 000.
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Parameters Best Mean Worst %Failures

τ = RC = 1 2.69 2.95 3.10 0

Table 4. Results of numerical simulations of Pulsed Noise Model for the
city set from Fig. 2.

Results presented in Table 4 show that even with linear cooling PNM is
efficient in solving small-size TSP. Valid salesman tours are obtained in all

tests. Average tour length is about 9.6% greater than the optimal one.
Similarly to SM case, improvement is expected with slower cooling sched-

ules, optimized energy form and/or problem-dependent tuning of energy co-
efficients.

PNM at first glance seems to not differ from a sequence of trials of HM,

in which the final state of the previuos test serves as the starting point of
the next one, and additional noise γi(t) is injected to the starting point at

each trial. The difference is that PNM, after each noise injection, performs
exactly τ

h
relaxation steps - which for high temperatures does not guarantee

reaching the local minimum.
In PNM, as temperature decreases, the “chain” of configurations v grad-

ually approaches a neighborhood of a deep minimum in the energy surface.

As temperature decreases PNM becomes stack in this “good” neighborhood.
Along with further decreasing of temperature, PNM becomes more and more

similar to the multiple-run HM, and finally reaches the minimum.

4.1 Experimental testing of Thermal Equilibrium prop-
erties

The same method as the one described in Section 3.1.2 is used to check the

ability of PNM to maintain Quasi Thermal Equilibrium.
First, distributions are collected at various temperatures according to

(A1) − (A3). Then, ratiologarithm (B1) − (B2) is plotted. Finally, experi-
mental µ values are calculated based on (C1) − (C3).

Sampling temperatures are equal to 5000, 4500, 4000, . . . , 2000 combined

into pairs (5000, 4500), (4500, 4000), . . . , (2500, 2000).
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Figure 5: Pulsed Noise Model. Quasi-linear relationship between energy
intervals and ratiologarithm for temperature pair (3000, 2500).

For all tested temperature pairs, in plots (B2) a quasi-linear relation is

observed. Actually, for all tested pairs, the estimated line in (C2) fits the
experimental data (B2) very closely. The coefficient of determination r2

described in Section 3.1.3 is greater than 0.96 for all temperature pairs.
Exemplar plots of ratiologarithm versus energy for (T1, T2) = (4000, 3500)

and (3000, 2500) are presented in Figs. 5 and 6, respectively.
Experimental µ

Ti,Tj
values calculated in the experiment are presented in

Table 5. The mean value 〈µ〉 and the standard deviation σµ are equal to

584.89 and 27.60, resp. Therefore, the relative standard deviation σµ

〈µ〉 is

equal to 4.71%.
On the same basis as for SM we conclude that PNM performs Quasi

Thermal Equilibrium.

Ti, Tj µ
Ti,Tj

Ti, Tj µ
Ti,Tj

Ti, Tj µ
Ti,Tj

5000, 4500 593.7 4500, 4000 601.0 4000, 3500 618.7
3500, 3000 588.9 3000, 2500 576.6 2500, 2000 530.1

Table 5. Estimated µ
Ti,Tj

values for various (Ti, Tj).
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Figure 6: Pulsed Noise Model. Quasi-linear relationship between energy
intervals and ratiologarithm for temperature pair (4000, 3500).

4.2 Technical details

Thermal Equilibrium tests for SM and PNM were performed in different

temperature ranges. The reason for that is the different way of adding noise
to both models. In PNM noise is not maintained continuously, and therefore

its intensity is higher than in SM case.
Certainly, temperature has the relative meaning and the choice of an

annealing schedule is more important than the actual values.
The other problem associated with a proper choice of temperature ranges

is that temperature should be neither too high nor too low. At high temper-
ature nothing interesting happens in the system. Distributions for “close”

temperatures are very similar (almost identical). On the other hand, for
very low temperatures the system is already stuck in the neighborhood of a

minimum and its further performance is irrelevant.

The crucial temperature range is somewhere in between. The choice of
temperature ranges used in simulations was guided by the two above extreme

possibilities.
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5 Final remarks

Stochastic Model and Pulsed Noise Model presented in this paper are simple

stochastic modifications of the deterministic Hopfield Model. The main ad-
vantages of these approaches are simplicity and implementation feasibility.

Unlike in the previous related works regarding Stochastic Neural Networks
[14] and Diffusion Machine [23], in SM and PNM, intensities of Gaussian

noises injected to the system are independent of neurons’ potentials.
Moreover, instead of impractically long inverse logarithmic cooling sched-

ules, the linear cooling is tested.
Additionally, Stochastic Model is based on a reasonable assumption that

the length of autocorrelation time of the noise must be positive.
Finally, the advantage of Pulsed Noise Model is that noise is injected only

at certain time instances, which makes implementation cheaper in terms of

the amount of energy required to maintain the noise.
Definitely, with the above strong simplifications neither SM nor PNM is

expected to rigorously maintain Thermal Equilibrium. However, approxi-
mate numerical test based on the canonical Gibbs-Boltzmann distribution

show, that differences between the rigorous and estimated TE parameters
are relatively low (within a few percent). In this sense both models are said

to perform Quasi Thermal Equilibrium.

Current work is focused on supporting experimental results with theoret-

ical analysis and on numerical tests for bigger-size TSP.
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