
TD-GAC: Machine Learning Experiment with

Give-Away Checkers

Daniel Osman and Jacek Mańdziuk

Faculty of Mathematics and Information Science,
Warsaw University of Technology,

Plac Politechniki 1, 00-661 Warsaw, Poland
E-mail: dosman@prioris.mini.pw.edu.pl,

mandziuk@mini.pw.edu.pl

Abstract

This paper presents results of applying the temporal difference learning
methods in the game of give-away checkers. Each of the following: the
TD(λ), TDLeaf(λ) and a pseudo evolutionary algorithm was used in order
to modify weights of a linear state value function in a self-play mode.
Empirical results show the success of Temporal Difference methods in
improving the quality of computer player’s policy. The most promising
results were achieved while learning on non-positive game outcomes and
on strong opponents using the TD(λ) algorithm.

1 Introduction

The temporal difference algorithm TD(λ) [1] was successfully used in learning
computer playing policy in games like backgammon [2, 3], checkers [4, 5], chess
[6], go [7], othello [8] and other [9, 10]. The algorithm was first used by A.L.
Samuel in 1959 [4] but received its name after the work of R. Sutton [1].

In this paper we present the results of applying the TD(λ) [1], TDLeaf(λ)
[11] and a pseudo evolutionary algorithm EVO [10] in the US variant of give-
away checkers (GAC). Our goal was to compare the efficacy of several imple-
mentations of TD and TDLeaf, i.e. learning on random opponents vs. learning
on strong ones and learning on all games’ outcomes vs. learning on non positive
ones only. The best results were recorded after training the learning players on
non positive game outcomes and strong opponents. Next we compared these
results with the ones achieved by the EVO algorithm. The pseudo evolutionary
algorithm was significantly inferior to TD and TDLeaf.

The rules of making moves in GAC [12] are exactly the same as in checkers
[13]. What is different between these two games is the goal: in GAC the aim
is to either loose all pieces or to be unable to make a legal move on one’s turn.

1

Although computer checkers have achieved world class game play [14], the
GAC program able to compete with the best human players hasn’t been de-
veloped. The game at first glance may seem trivial or at least not interesting.
A closer look however reveals that it is not the case. For example a simple
piece disadvantage isn’t a good estimation of in-game player’s performance. A
player left with one king can easily be forced to eliminate all of the opponent’s
pieces. The main idea of this experiment was to check if the computer player
could be trained to some reasonable level of GAC play using a simple value
function and the TD algorithm for modifying weights.

This article is an extended version of the work presented in [15]. Several new
results and observations are also presented - in particular the ones concerned
with the third training/testing stage of the experiment.

2 Value Function

Following [16] we used the game state evaluation function of the form

P (s, w) =

MAX if s is a win
MIN if s is a loss

0 if s is a tie
V (s, w) for all other s ∈ S,

(1)

where MAX = +100, MIN = −100 and

V (s, w) = a · tanh
(
b ·

n∑

i=1

wixi

)
, a = 99, b = 0.027 (2)

V (s, w) is a state value function where x = [x1, . . . , xn] is a game state feature
vector consisting of state to integer mappings, w1, . . . , wn are real coefficients.
The parameter a equals 99 to guarantee that V (s, w) ∈ (−99;+99) and b
equals 0.027 to prevent V (s, w) from growing too fast and to cause |V (s, w)| to
approach 99 only when the sum in eq. (2) is greater than +99 or less than -99.
V (s, w) can be seen as a simple weighted sum of game state features. tanh(·)
in eq. (2) was only used for technical reasons in order to limit the possible
values of the evaluation function by P (s, w) ∈ (MIN ;MAX). The value of
P (s, w) for state s depends on the weight vector w. The TD(λ) algorithm was
responsible for changing these weights in order to achieve a good playing policy.

The 22 feature detectors or terms implemented in GAC were based on the
ones introduced by Samuel [4]. We have chosen to use the simplest ones (with-
out complex terms) and we did not use fixed weights for the piece advantage
term. Every feature represents a numerical property of a game state. For ex-
ample the number of pieces on a board, the number of pieces on a diagonal, the
number of some predefined formations, etc. Every feature for the active side
is computed relatively to the same feature for the passive side. So in fact we
have a piece advantage term rather than a feature that describes the number
of active pieces on the board.

2

The value function is used to assign values to leaf nodes of a fixed-depth
4-ply min-max game search tree. After that a move is executed following the
best line of play found. In this case it is said that a player follows a greedy
policy because at every state always the best move according to the program
is made.

3 Temporal Difference Algorithm

The TD(λ) algorithm [1] was chosen to modify the weights of the value function
presented in section 2. At time t the weight update vector ∆wt is computed
from the following equation:

∆wt = α · δt · et (3)

where α ∈ (0, 1) is the learning step-size parameter. The second component
δt = rt+1 + γV (s(l)

t+1, w)−V (s(l)
t , w) represents the temporal difference in state

values. rt+1 is the scalar reward obtained after a transition from state st to
st+1. γ ∈ (0, 1) is the discount parameter. In our experiments γ = 1 and rt = 0
for all t, although a small negative value of rt could have been used in order
to promote early wins. s

(l)
t is the principal variation leaf node obtained after

performing a d-ply min-max search starting from state st (the state observed by
the learning player at time t). In other words V (s(l)

t , w) is the min-max value
of state st or a d-step look-ahead value of st. The last component of equation
(3) is the eligibility vector et updated in the following recursive equation:

e0 = 0, et+1 = ∇wVt+1 + (γλ)et, (4)

where λ ∈ (0, 1) is the decay parameter. ∇wVt is the gradient of V (st, w)
relative to weights w. Formally, if we treat the value function V (s, w) as a
weighted sum of state features, the i-th element of this gradient equals:

(∇wVt)i =
∂V (st, w)

∂wi
= φi(st) i = 1, . . . , n, t = 1, 2, ... (5)

where n is the size of the weight vector and st is the state observed at time t.
Combining eqs. (4) and (5) gives the straightforward formula for updating et:

e0 = 0, et+1 = φ(st+1) + (γλ)et,

where [φ(st+1) = φ1(st+1), . . . , φn(st+1)] is the vector of game state features of
state st+1. The eligibility vector holds the history of state features encountered.
The elements of this vector (unless they are encountered again) decay expo-
nentially according to the decay parameter λ. The features in et are thought to
be significant while performing weight updates at time t. The eligibility vector
is the main tool used by delayed reinforcement learning for assigning credit to
past actions [17].

3

In TD(λ) weight updates can be computed on-line after every learning
player’s move. However in this paper the learning player’s weights are modified
only after the game ends (off-line TD(λ)). This enables to condition weight
replacement with the final result of the game (win, loss or tie).

The weight vector determines the value function which in turn determines
the player’s policy π : (S, RK) → A. Policy π(s, w) is a function that for every
state s ∈ S and some weight vector w ∈ RK maps an action a ∈ A. Thus
π(s, w) tells the computer player which move to perform at state s. In the
experiments presented in this paper, the computer player always performed
the move that followed the best line of play found. The best line of play was
determined by evaluating the leaf nodes of a game search tree. Our goal is to
learn an optimal policy that maximizes the chance of a win (learning control).
This is achieved indirectly by learning an optimal value function.

Following the greedy policy in each move can lead to insufficient state space
exploration. This is why some authors chose to introduce random instabilities
in the process of optimal move selection. This is known as following an ε-
greedy policy. We have decided to use a different approach. The learning
player always followed the greedy policy defined by his current weight vector
and state space exploration was forced by playing in turn with 25 different
opponents. This approach made the learning process fully deterministic which
helped in comparing learning strategies described in section 4.1.

4 Experiment Design

The computer player that has his weights changed (trained) after every game by
the TD(λ) algorithm is called the learning player. One training stage consisted
of 10,000 training games. We present the results of 3 training stages. In each
stage there were 10 learning players each of which trained against a set of 25
opponents. In the first stage all weights for players 1 and 6 were initialized
with 0. The rest of the learning players had their weight vectors initialized
with random numbers r ∈ (−10.0,+10.0). The first stage was the only one
that had different training opponents for each learning player. Each of the
250 opponents had its weight vector initialized with random numbers. All
the opponent’s weight vectors were pairwise different and were never changed
during learning. In training game number i the learning player played against
opponent (i mod25) + 1. Players 1 to 5 always played using white pieces (they
performed the first move). Players 6 to 10 played using red pieces. For every
win the learning player received 1 point, for a tie 0.5 and for a loss 0 points.

The second stage was similar. The only difference was that the opponents
were no longer random players. Twenty weight vectors used by the opponents
were taken from the learning players achieved in the first stage. The remaining
5 vectors were initialized with random numbers. These 25 opponents were the
same for all learning players. In the third stage the same opponent enhancement
process was performed. However this time all the 25 opponents used weights
achieved by the learning players in the second stage.

4

The game tree search depth was fixed to d = 4 mainly due to time limita-
tions. The size of the weight vector was n = 22.

In order to check if the performance in the training phase really reflects pol-
icy improvement, a testing phase was introduced for each training stage. One
test phase was performed after every 250 training games. In the test phase the
current weight vectors of the 10 learning players were used to play against 100
opponents. These test opponents were not encountered earlier by the learning
players. Two groups of test opponents were used. One consisted of random op-
ponents. The second one represented a group of 100 strong opponents trained
previously in another experiment. There was no learning during the test phase.

4.1 Learning Strategies

In order to perform training, some form of training strategy needs to be chosen.
We have applied three different learning strategies denoted by LB, LL and L3.
The first one - LB - was the simplest. The player’s weights were modified after
each game no matter the final outcome. In LL the weights were modified only
after non-positive game outcomes (ie. tie or lost). The L3 learning strategy was
similar to LL in that learning took place only after non-positive game outcomes.
Additionally however the learning player could play up to three times in a row
with the same opponent if the opponent kept winning with the learning player.
In short, the L3 strategy can be seen as a way of forcing the learning player to
play more games against stronger opponents. According to our knowledge, the
L3 method was used for the first time in our experiments.

4.2 TDLeaf and EVO

TDLeaf(λ) [11] is a modification of TD(λ), enhanced for use in domains where
a d-step look ahead state search is performed in order to choose an action to be
executed at a given time step. Compared to TD, the TDLeaf algorithm differs
only in that in eq. (4) the gradient ∇wVt+1 is computed for the leaf state sl

t+1

and not the root state st+1.
In the pseudo evolutionary learning method (EVO) [10] only one opponent

was used during training. This opponent was modified once every two games
by adding Gaussian noise to all of its weights. If the learning player lost two
games in a row or lost one and drawn one then its weights were shifted 5% in
the direction of the opponent’s weight vector. Otherwise no modification of the
learning player’s weights was performed. The two players changed sides after
each game.

5 Results

5.1 Tuning α and λ

Over 300,000 initial games were played in order to observe performance for
different choices of parameters α and λ. The results in this phase showed that

5

games α λ
1 - 2,500 0.000100 0.95
2,501 - 5,000 0.000020 0.70
5,001 - 7,500 0.000010 0.50
7,501 - 10,000 0.000005 0.20

Table 1: The scheme for decreasing the values of α and λ.

TD EVO
games LL LB
1 - 2,500 64.9% 64.7% 64.5%
2,501 - 5,000 70.5% 70.2% 63.5%
5,001 - 7,500 72.0% 72.2% 64.8%
7,501 - 10,000 70.8% 69.1% 63.1%

Table 2: Training phase stage 1.

applying appropriate scheme for changing these parameters can substantially
shorten the learning time and enhance the results. Decreasing the step-size
parameter α was necessary in order to achieve good performance. Tuning the
decay parameter λ had less impact. It only helped in reaching the maximum
performance in shorter time, i.e. after 7,500 games rather than 10,000 ones
or more. Finally, the scheme described in Table 1 for decreasing α and λ was
chosen. All the following experiments were based on games played using this
scheme.

5.2 Stage 1. Learning on 25 Random Opponents

Table 2 presents the results of training the learning players on 25 random
opponents. It is worth noting that the learning players’ results exceeded 50%
which means that policy learning really took place in the training phase. In
this experiment TD-LL and TD-LB methods achieved comparable results. The
highest average result (72.2%) was obtained using the LB method during games
5,001-7,500. In subsequent games the performance decreased.

Results of the learning players during training were observed after every
25 games. The history of performance changes for the best players trained
with TD-LL and TD-LB methods on 25 random opponents are presented in
Figs. 1(a) and 1(b), resp. The best overall result was achieved by player 9-
LB some time after the 6000-th game (Fig. 1(b)) and reached 24.5 out of 25
points. The worst overall result was a fall to 13 points (out of 25) for player
7-LL after 10, 000 games (not presented). The TD(λ) algorithm caused a quick
improvement of the learning player’s performance against random opponents.
This improvement (from 50% to 64%) took place in less than 200 games. In
subsequent games the performance increase was much slower. For the best
player using the LL method there was a raise from 64% to 80% after 6000

6

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 2000 4000 6000 8000 10000
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

po
in

ts

games played

points
avg

(a) Player 8-LL. Random opponents.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 2000 4000 6000 8000 10000
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

po
in

ts

games played

points
avg

(b) Player 9-LB. Random opponents.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 2000 4000 6000 8000 10000
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

po
in

ts

games played

points
avg

(c) Player 1-LL. Strong opponents.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 2000 4000 6000 8000 10000
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24
po

in
ts

games played

points
avg

(d) Player 10-LB. Strong opponents.

Figure 1: History of performance changes for the best players using LL and LB
training strategies against random and strong opponents.

games (see Fig. 1(a)).
The test phase results are presented in Table 3. The first test phase with

random opponents does not show significant differences between TD-LL and
TD-LB. The second test phase, against strong opponents, is different and 1 to
8 percent point superiority of TD-LL over TD-LB can be observed. This result
will be confirmed during the second training stage presented in section 5.3.

In both test phases the EVO algorithm was significantly inferior to TD. In
Table 3 the EVO results exceeded 50% which means that this algorithm was
able to play better than random players, but its performance is not satisfactory
when compared with strong test opponents.

5.3 Stage 2. Learning on 25 Strong Opponents

After playing 10,000 games against 25 random opponents, in the second stage
the learning players were trained against 25 strong opponents during a period
of another 10,000 games. The results are presented in Table 4. This time the
TD-LL method was superior to TD-LB one. The difference in performance was

7

Random opponents Strong opponents
TD EVO TD EVO

games LL LB LL LB
1 - 2,500 66.8% 69.9% 51.7% 44.2% 43.9% 30.1%
2,501 - 5,000 70.1% 70.9% 55.7% 51.6% 43.2% 32.9%
5,001 - 7,5000 71.7% 70.0% 57.2% 49.2% 43.5% 35.3%
7,501 - 10,000 70.7% 70.7% 59.4% 50.0% 44.5% 36.8%

Table 3: Test phase. Stage 1.

TDLeaf TD EVO
games LL LB LL LB L3
1 - 2,500 61.3% 59.0% 61.8% 52.9% 56.7% 65.3%
2,501 - 5,000 66.3% 65.6% 64.3% 54.9% 45.5% 65.7%
5,001 - 7,500 60.1% 63.3% 71.9% 51.8% 40.8% 62.2%
7,501 - 10,000 60.1% 64.6% 62.8% 52.3% 37.5% 70.1%

Table 4: Training phase stage 2.

about 10 to 20 percent points in favor of TD-LL during all the games played.
The history of performance changes for the best TD-LL and TD-LB players
is presented in Figs. 1(c) and 1(d), resp. While playing against strong test
opponents, the main performance increase was observed only with the TD-LL
method. Using the TD-LB method caused the results to be only slightly better
than 50%. Player 10-LB (Fig. 1(d)) was the only learning player using the
TD-LB method that recorder a steady performance increase.

The TD-L3 results were the worst during this training phase. Over time
the learning players started to loose more and more games with the training
opponents. This was caused by the decreasing of α in subsequent games. While
playing against strong opponents it appeared that one or two weight modifica-
tions (after the first and the second subsequently lost games) were usually not
enough to win in the third game. This was especially true when a small learn-
ing step size was used. Therefore in most cases the learning player recorded 3
loses in a row with the same opponent. The results when α was not decreased
were as follows: 56.7%, 45.5%, 44.5%, 44.0%. This is 4-7 percent points better
compared to the case of decreasing α. Please note that the overall training
results of TD-L3 are expected to be inferior when compared to other meth-
ods. This is caused by the fact that we deliberately play more games against
opponents with which we lost earlier.

The TDLeaf-LL results were similar to TD-LL except for the 71.9% result
for TD-LL during games 5001-7500. The LB learning strategy for TDLeaf was
enhanced by preventing the learning player from learning on the opponents’
blunders (state transitions that were not predicted by the learning player).
This limitation on the number of states that the learning player could learn on
was applied only when the learning player won with the opponent. In case of a

8

TDLeaf TD EVO
games LL LB LL LB L3
1 - 2,500 71.8% 71.9% 72.0% 69.5% 73.5% 58.7%
2,501 - 5,000 70.6% 72.5% 74.4% 71.2% 74.9% 56.2%
5,001 - 7,500 70.4% 72.4% 72.5% 72.1% 72.8% 56.8%
7,501 - 10,000 70.2% 71.4% 73.1% 73.2% 74.4% 54.9%

Table 5: Test phase - random opponents. Stage 2.

TDLeaf TD EVO
games LL LB LL LB L3
1 - 2,500 51.7% 50.4% 53.3% 43.3% 53.3% 35.2%
2,501 - 5,000 52.2% 55.0% 56.7% 44.8% 57.4% 33.4%
5,001 - 7,500 50.6% 56.1% 54.0% 47.9% 56.7% 32.8%
7,501 - 10,000 50.8% 56.0% 54.8% 48.2% 56.1% 31.6%

Table 6: Test phase - strong opponents. Stage 2.

loss or tie, the learning player learned on all encountered states. A similar LB
enhancement was used earlier in [6]. This enhancement caused that for TDLeaf
the LB method was not so inferior (compared to LL) as it was for TD. Using
the TDLeaf-LB method resulted in stable performance, without the sudden
decrease observed in TDLeaf-LL. Moreover TDLeaf-LB was visibly superior
over TD-LB.

The EVO results presented in Table 4 were obtained as a direct continuation
of stage 1 learning. No opponent change was performed at the beginning of
this stage due to the different learning strategy involved with EVO. The results
achieved in stage 2 are slightly better than these from stage 1.

Results from the test phase of stage 2 are presented in Tables 5 and 6. They
confirm the superiority of the TD-LL method used for training with strong op-
ponents. The results for the TD-LL method in the test phase were a little
better than for the TD-LB method after playing against random opponents.
However while playing against strong test opponents, the difference in perfor-
mance between the TD-LL and TD-LB methods reached 6-12 percent points
in favor of TD-LL. The L3 method added a few more percent points to the
TD-LL results which made this method superior among the ones tested.

Once again the EVO algorithm turned out to be the weakest. In Table 6
a steady performance increase can be observed but the results are still signifi-
cantly inferior to TD and TDLeaf.

The TDLeaf results were similar to TD with TDLeaf-LB even slightly out-
performing TD-LL during a few games. However these results never exceeded
the ones obtained for TD-L3.

9

TDLeaf TD
games LB LL L3
1 - 2,500 47.0% 53.6% 34.8%
2,501 - 5,000 51.6% 52.2% 33.0%
5,001 - 7,500 53.7% 55.9% 31.7%
7,501 - 10,000 53.9% 54.9% 32.0%

Table 7: Training phase stage 3

Random opponents Strong opponents
TDLeaf TD TDLeaf TD

games LB LL L3 LB LL L3
1 - 2,500 71.0% 71.8% 71.9% 49.9% 55.8% 51.4%
2,501 - 5,000 71.0% 70.5% 70.9% 48.1% 55.3% 56.5%
5,001 - 7,500 70.6% 70.8% 71.6% 49.8% 55.3% 55.1%
7,501 - 10,000 70.5% 70.8% 70.4% 50.3% 54.6% 55.3%

Table 8: Stage 3. The most promising learning methods. Test phase - random
and strong opponents.

5.4 Stage 3. Training on 25 yet Stronger Opponents

In the third stage we continued training for a further 10,000 games. We picked
only the most promising algorithms and methods in order to check whether
subsequent training would increase the results any further. The results of the
training phase are presented in Table 7. Note that these results should not
be directly compared with the ones presented in Table 4 because in stage 3
the training opponents were stronger than those used in stage 2. The thing
worth noting however is the steady increase of performance of TDLeaf-LB. The
learning players over time learned to defeat their training opponents.

The test phase results for stage 3 are presented in Table 8. The results
are between 1 and 7 percent points inferior to the ones presented for stage 2.
The greatest decrease in performance can be seen in the TDLeaf-LB method
and strong opponents. This is probably caused either by overtraining or by
inappropriate use of the LB method when learning on strong opponents. The
other reason could be that in the third stage all the training opponents were
very strong. Training only on strong and perhaps similar opponents may not
be an optimal learning strategy. On the other hand, it is worth to note that
the results of TD-L3 did not degrade as much as in stage 2.

The results from stage 3 show that further improvement is not possible
using the same techniques as before. Perhaps we have reached the maximum
performance that could be achieved with a simple value function and shallow
tree search used.

10

6 Conclusions

Results presented in sections 5.2 and 5.3 show that the TD(λ) algorithm can be
successfully applied in the game of give-away checkers for learning the computer
player’s policy. The most important results are the ones presented in the test
phases because they show the general policy quality of the trained computer
players. The best test phase results (75% against random and 57% against
strong opponents) were obtained when the computer player was trained using
the L3 method. In this method the weights of the value function were updated
only after non-positive game outcomes (i.e. loss or tie) and additionally the
learning player concentrated on stronger opponents.

Another training method worth noting was LL. In this method learning
took place only after non-positive game outcomes. An approach similar to the
LL method presented in this article was used earlier by Baxter [6]. In his chess
learning program (KnightCap), there was no weight update associated with
moves not predicted by the learning player (blunders) in the case when the
learning player won with a lower ranked opponent. However this method was
not directly compared to LB in the cited paper.

The superiority of the L3 and LL methods can be explained in the following
way. A loss or a tie of the learning player means that the weight vector is not
optimal and a weight update is recommended. A win however probably means
only that the opponent was not strong enough and another one could have
performed better. Learning on such outcomes can be misleading. As can be
seen from our results, ignoring these outcomes caused the training performance
to increase significantly.

There was little or no difference between the LB and LL methods’ perfor-
mance in the first stage of the experiment. The reason behind this could be
that while learning on random (weak) opponents no special care has to be taken
in order to achieve good results and TD-LB is sufficient. Another explanation
is that frequent weight updates, related to the LB method, may be desirable
when playing against random opponents that share no common strategy. Fre-
quent weight changing in this case could compensate for the superiority of L3
and LL learning.

References

[1] Sutton, R.: Learning to predict by the method of temporal differences.
Machine Learning 3 (1988) 9–44

[2] Tesauro, G.: Practical issues in temporal difference learning. Australian
Journal of Intelligent Information Processing Systems 8 (1992) 279–292

[3] Tesauro, G.: Temporal difference learning and td-gammon. Communica-
tions of the ACM 38 (1995) 58–68

11

[4] Samuel, A.L.: Some studies in machine learning using the game of check-
ers. IBM Journal of Research and Development 3 (1959) 210–229

[5] Schaeffer, J., Hlynka, M., Jussila, V.: Temporal difference learning ap-
plied to a high-performance game-playing program. In: International Joint
Conference on Artificial Intelligence (IJCAI). (2001) 529–534

[6] Baxter, J., Tridgell, A., Weaver, L.: Knightcap: A chess program that
learns by combining td(lambda) with game-tree search. In: Machine
Learning, Proceedings of the Fifteenth International Conference (ICML
’98), Madison Wisconsin (1998) 28–36

[7] Schraudolph, N.N., Dayan, P., Sejnowski, T.J.: Learning to evaluate go
positions via temporal difference methods. In Baba, N., Jain, L., eds.:
Computational Intelligence in Games. Volume 62. Springer Verlag, Berlin
(2001)

[8] Walker, S., Lister, R., Downs, T.: On self-learning patterns in the othello
board game by the method of temporal differences. In: Proceedings of
the 6th Australian Joint Conference on Artificial Intelligence, Melbourne,
World Scientific (1993) 328–333

[9] Kalles, D., Kanellopoulos, P.: On verifying game designs and playing
strategies using reinforcement learning. In: Proceedings of the 2001 ACM
Symposium on Applied Computing (SAC 2001), Las Vegas, NV, USA,
ACM (2001)

[10] Kotnik, C., Kalita, J.K.: The significance of temporal-difference learning
in self-play training td-rummy versus evo-rummy. In Fawcett, T., Mishra,
N., eds.: Machine Learning, Proceedings of the Twentieth International
Conference (ICML 2003), Washington, DC, USA, AAAI Press (2003) 369–
375

[11] Baxter, J., Tridgell, A., Weaver, L.: Tdleaf(lambda): Combining temporal
difference learning with game-tree search. Australian Journal of Intelligent
Information Processing Systems 5 (1998) 168–172

[12] Alemanni, J.B.: Give-away checkers. http://perso.wanadoo.fr/alemanni/
give away.html (1993)

[13] ACF: American checkers federation. http://www.acfcheckers.com/ (1990)

[14] Schaeffer, J., Lake, R., Lu, P., Bryant, M.: Chinook: The world man-
machine checkers champion. AI Magazine 17 (1996) 21–29

[15] Mańdziuk, J., Osman, D.: Temporal difference approach to playing give-
away checkers. In Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh,
L.A., eds.: Artificial Intelligence and Soft Computing - ICAISC 2004, 7th

12

International Conference, Zakopane, Poland, June 7-11, 2004, Proceed-
ings. Volume 3070 of Lecture Notes in Computer Science., Springer (2004)
909–914

[16] Baxter, J., Tridgell, A., Weaver, L.: Experiments in parameter learning
using temporal differences. ICCA Journal 21 (1998) 84–99

[17] Singh, S.P., Sutton, R.S.: Reinforcement learning with replacing eligibility
traces. Machine Learning 22 (1996) 123–158

13

