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Several problems in statistical physics, information sciences or neural computing 
require probabilistic modeling of multivariable systems composed of a large number of 
variables. Typically, the exact calculation of such models is computationally infeasible, hence 
there is a strong need for efficient, approximate methods in this area. One type of such 
methods well known to the statistical physics community are the Mean Field Methods 
(MFMs) in which the value of each random variable is approximated by the so-called 
effective field. Consequently, in the simple MFM approach the true (yet generally intractable) 
probability distribution of random variables is approximated by a factorized distribution, 
which then can be approached by variational optimization methods. More advanced MFMs 
are based on the TAP (Thouless, Anderson, Palmer) method which incorporates several non-
trivial dependencies between variables neglected in simple MFM approximations. 

MFMs were originally introduced and developed for calculations of the spin-glass 
models in quantum mechanics or, equivalently, for the Hopfield-type models in neural 
networks. Recently, they have been applied extensively in the rapidly growing field of 
probabilistic graphical models. These models are “a marriage between probability theory and 
graph theory. They provide a natural tool for dealing with two problems that occur 
throughout applied mathematics and engineering – uncertainty and complexity – and in 
particular they are playing an increasingly important role in the design and analysis of 
machine learning algorithms…” -- Michael Jordan. 

One of the recent events related to Mean Field Methods was the NIPS 1999 Workshop 
on Advanced Mean Field Methods organized by Manfred Opper and David Saad. The book 
discussed here is a collection of articles presented at the Workshop, with a few other field-
related papers. The book has 17 chapters, each of which presenting a separate piece of 
research and allowing for reading in isolation. Chapter 1, written by the Editors, outlines the 
book’s scope and summarizes its content chapter by chapter. Chapters 2 and 3 provide a 
concise and comprehensive introduction to the main MFMs from the statistical physics point 
of view.  

The next five chapters are generally devoted to TAP-type approaches. Chapters 4,  5 
and 7 offer generalizations of the classical TAP method by deriving TAP equations under less 
restricted assumptions. In Chapter 4, the approach based on a Taylor series expansion of the 
marginal probabilities is proposed and applied to several arbitrary probability distributions, 
for example those arising in stochastic neural networks with asymmetric couplings or in 
sigmoid belief networks. In Chapter 5, the approach developed for highly coupled systems 
with intensive connectivity is experimentally tested against the classical TAP formulation in 
case of extensively connected systems, such as the Hopfield associative memories. Chapter 7 
presents a novel TAP-type approach to models defined by quadratic interactions, which does 
not require specific assumptions on the randomness of couplings (typical for the TAP 
formulation). Chapters 6 and 8 are devoted to applications of TAP-like methods: respectively, 
to the problem of decoding corrupted codewords that were encoded by the sparse parity-check 
error-correcting codes and to the average case performance analysis of the stochastic batch 
mode learning algorithms for one layer perceptron.  



In Chapter 9, saddle-point methods are presented as an alternative to TAP and 
variational methods for the problem of inference with Bayesian belief networks. Chapter 10 
serves as a tutorial on modern variational methods, with emphasis put on presenting the ways 
in which the inference and estimation problems can be transformed into a suitable variational 
form. Chapter 11 provides a comprehensive description of the theory and practice of using 
variational methods for approximating inference and learning in the context of graphical 
models, with a special focus on Bayesian learning in probabilistic graphical models with 
hidden variables. In the next chapter, the Bayesian inference problem with hidden variables is 
considered from a different angle, with a certain recursive variational approach proposed and 
tested on a toy neural network model and a simple hidden Markov model.  

Chapter 13 introduces a new approach to Bayesian inference problem in densely 
connected directed graphical models. The method for a class of directed, loopy models 
provides an approximate implementation of the Belief Propagation (BP) technique based on 
Fourier integral representation. In Chapter 14, the max-product algorithm for large, loopy 
probabilistic graphical models is analyzed. In the context of codes on graphs it is theoretically 
shown that if BP messages are properly attenuated then, assuming that the algorithm 
converges, the maximum a posteriori configuration of variables is reached. Chapter 15 aims 
at comparing the Mean Field (MF) approximation and the BP method in the context of 
inference approximation problem in Markov Random Fields. Based on several low-level 
vision examples, it is shown that BP typically outperforms a simple MF method – mainly due 
to a superior optimization technique which efficiently avoids local minima.  

The last two chapters analyse Mean Field approximations from the information 
geometry point of view. In Chapter 16, properties of the naive MF approximation and those of 
the TAP approach are studied in the simple spin models, such as the Sherrington-Kirkpatrick 
model, or the Boltzmann machine. Chapter 17 presents a unified information-geometrical 
interpretation of the two MF approximation approaches – naive and perturbative – in the 
Boltzmann machine framework. Likewise, the information-geometrical approaches to the 
variational Bayes method and to variational approximation used in the EM algorithm are 
presented in this chapter. 

 
In summary, the book provides an up-to-date overview of the theory and practice of 

the advanced Mean Field Methods. The authors’ background spans a wide range of 
disciplines, from theoretical, applied, statistical and medical physics, mathematical statistic, 
applied engineering and computer science to neural computation and neuroscience. This 
diversity makes the book a valuable source of knowledge on recent advances in MFMs, as 
seen from different angles. Several authors aim at bridging the above disciplines by 
presenting the interrelation between different approaches. Further investigation of these 
interrelations may ultimately lead to the development of qualitatively new methods. 

The book deserves strong recommendation to anyone interested in Mean Field 
Methods, albeit with a word of warning that, in order to fully appreciate its content, some 
background in statistical mathematics and physics may be necessary. 
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