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Abstract—This paper presents a framework for cooperation
between a human and a general game playing agent. Cooperation
is defined as two entities causing each other to modify their
behaviour to achieve some mutual advantage. Such human-
computer cooperation has the potential to offer insights that
can help us improve the performance of artificial agents, as
well as improving the performance of humans during certain
kinds of strategic interactions. This paper focuses specifically on
game playing as a form of strategic interaction. By proposing a
framework for cooperation between a human and a general game
playing agent, our aim is to create a flexible system that may be
applicable to cooperation in other kinds of problem solving and
strategic interactions in the future. We evaluate the framework
presented in this paper by means of a human study. We observe
humans playing games with and without the cooperation of a
general game playing agent. We present experimental results of
the pilot study as well as proposed changes in the experiment.
These changes aim to verify the hypothesis that human-machine
cooperation within our framework can indeed lead to mutual
advantage.

Keywords—human-machine study; cooperation; General Game
Playing; Monte Carlo Tree Search.

I. INTRODUCTION

General Game Playing (GGP) has been claimed as “The
Al Grand Challenge”, since it is seen as a step towards
strong human-like intelligence [1]. The design and study of
approaches that permit cooperation between humans and GGP
agents is thus an important, complementary research stream.
Such human-computer cooperation has the potential to offer
insights that can help us improve the performance of artificial
agents, as well as improving the performance of humans during
certain kinds of strategic interactions. We borrow a concept
of cooperation from [2] stating that it takes place when two
systems cause each other to modify their behavior to achieve
some mutual advantage. The type of strategic interaction we
will consider is game playing. We will consider the type
of machine cooperator as a GGP [3] agent as proposed by
the Stanford Logic Group [4]. This is currently the most
prominent embodiment of the multi-game playing idea, which
aims to create systems capable of playing a variety of games
(as opposed to agents that can only play single games). The
specific type of GGP machine cooperator we will consider is
a Monte Carlo Tree-Search (MCTS) based player. The MCTS
is used as the main routine of the strongest state-of-the-art
GGP players and is also widely applied to other games such
as Go [5], Arimaa [6] as well as other areas of Artificial
Intelligence (AID) [7]. We will conduct a human user study
to validate our approach to human-machine cooperation. In

this paper, we present two pilot studies we have performed.
The aims of these pilot studies were to (1) verify our setup
for cooperation and (2) provide preliminary verification of our
research hypothesis. A large-scale experiment is the next step
to undergo. Apart from providing the circumstances for the
cooperation, we are also interested in measuring the effects
of such cooperation, i.e., how it affects the average quality of
play. Human-machine interaction has been a hot research area
outside the scope of games, e.g., in the areas of aviation [8] or
surgery [9]. In games, however, the task of creating machine
players has been challenging enough on its own [5][10]. To
our knowledge, there has been no related work concerning
human-machine cooperation in GGP or in any other MCTS-
based game playing. We believe that the way we approach the
problem of cooperation can contribute to the area of general
knowledge-free and learning-based methods in games [11],
because we can examine the way humans learn from machines
and provide a basis for automatic methods by which machines
can learn games from humans.

The remainder of the paper is organized as follows: the
next two sections contain brief descriptions of GGP, MCTS
and our cooperation platform within the MCTS framework.
In Sections IV and V, we formulate the research hypothesis
and the experimental methodology, respectively. Section VI
describes the two particular setups tested in the two pilot
studies and Section VII discusses the results. The last section
is devoted to conclusions and directions for future work.

II. GENERAL GAME PLAYING
A. Basics

GGP is a trend in Al which involves creating computer
systems, known as GGP agents, capable of playing a variety
of games with a high level of competence. The range of games
playable within the GGP framework is any finite deterministic
game. Unlike specialized playing programs, GGP systems
do not know rules of the games being played until they
actually start. The concept of designing universal game playing
agents is also known as multi-game playing or metagaming,
but as stated in the introduction, we refer to the Stanford’s
definition of GGP [3] which is the most recent one. The official
GGP Competition, which is de facto the World Championship
Tournament, is also part of the GGP specification. The ma-
chine player used in this research is our entry in the latest
installment of the competition (2014). Borrowing from the
GGP terminology, we will use the term play clock for the
time (in seconds) available to make a move by a player. To
enable matches between our GGP program and humans, we



had to slightly loosen the official specification. For instance,
GGP agents are normally penalized for not responding with
a legal move in time by having the move chosen for them at
random. In our scenario, human participants can think about
moves as long as they want to without any penalty and the
machine players always respond in time.

B. The Tree-Search Algorithms Used

MCTS is an algorithm for searching a game tree in a quasi-
random fashion in order to obtain as accurate an assessment of
game states as possible. In general, the assessment is computed
statistically as the average score - Q - which is defined by the
total score of simulations going through a state divided by
the number of visits to that state. The total score is a sum
of the outcomes of simulations. For all games considered in
this article, the value of 1.0 denotes a win, 0.5 denotes a draw
and 0.0 denotes a loss in a single simulation. The input to the
method is the current game state. Then, the algorithm gradually
searches the game tree starting from the current state in a series
of iterations adding one node in each of them. An iteration
consists of the following four steps:

1)  Selection. Start from the root and go progressively
down. In each node, choose the child node with the
highest average score until reaching a leaf node.

2) Expansion. If a state contained in the leaf node is
not terminal, choose an action which would fall out
of the tree. Allocate a new child node associated with
that action; simulation.

3)  Simulation. Starting from a state associated with the
newly expanded node, perform a full game simulation
(i.e., to a terminal state).

4)  Backpropagation. Fetch the result of the simulated
game. Update statistics (average scores, numbers of
visits) of all nodes on the path of simulation, starting
from the newly expanded node up to the root node.

The algorithm can be stopped at any time. The final output
of the search is the action with the highest average score Q
for the player who is currently to make a move in a game.
A significant improvement over the pure MCTS is the Upper
Confidence Bounds Applied to Trees (UCT) algorithm [12].
The purpose of the algorithm is to maintain balance between
the exploration and exploitation ratio in the selection step.
Instead of sampling each action uniformly (as is the case of
MCTS) or greedily, the following selection formula is applied:

In [N(s)]} 0

a* = arg max {Q(s,a) +C N(s.a)

acA(s)

where s is the current state; @ is an action in this state; A(s)
is a set of actions available in state s; Q(s,a) is an assessment
of performing action a in state s; N(s) is a number of previous
visits to state s; N(s,a) is a number of times an action a has
been sampled in state s; C is the exploration ratio constant.

III. COOPERATION IN THE MCTS FRAMEWORK

The machine cooperator used in this paper is an adapted
MiNI-Player [13][14] - a GGP program equipped with addi-
tional features to enable cooperation. First and foremost, the
machine provides statistics to help humans choose which move

to play. During cooperative play, it is always a human who
makes the final choice with or without taking advantage of
the provided statistics. The second means of cooperation is
by permitting interference with the MCTS. In this way, we
propose an interactive process of building the game tree, while
playing the game, involving both the machine and human. In
the original MCTS, the same four-phase algorithm is repeated
all the time during the play clock. For cooperative purposes
we split this time into three equal intervals T1 + T2 + T3 =
play clock. Between any two consecutive intervals (T1 and T2
or T2 and T3) humans can interact with the MCTS based on
statistics presented to them. The statistics include: each action
a available to the player to make a move with the Q(s,a)
and N(s,a) values from (1). These values are scaled to the
[0%, 100%] interval to be more readable by the participants.
The final statistic is the actual number of simulations which
ended with a win, draw and loss for the subject, respectively.
The MCTS can be directed by the human in two ways:
enabling/disabling actions available in the current state or
toggling priorities of the actions on/off. If an action is disabled,
the MCTS will ignore this action in the selection step, which
means that no simulations will start with a disabled action.
Changing the priority is equivalent to changing the value of
the C parameter in (1) from 1 to 10. Participants are allowed
to make any number of the aforementioned interventions at
each step and once they are done, they click the simulate
button to submit all of them in one batch and observe how
the statistics have changed. By doing so, they can help the
machine to focus on the most promising actions and avoid
presumably wasteful computations. On the other hand, the
feedback from the machine supports or questions the above-
mentioned human player’s choices. Our experimental design
is justified based on two observations. First of all, in many
well-established games, it has been found that the experts
can intuitively discard unpromising actions and focus on the
few best ones. Such behavior is manifested by human playing
experience and intuition and is one of the aspects in which
humans are better than machines. Provided that the human
choice is correct, the process can converge faster to the optimal
play. The introduction of action priority is a similar, but slightly
weaker, modification to the MCTS algorithm. The second
observation (or assumption) we made is that the cooperation
has to be easy for participants to understand.

IV. RESEARCH HYPOTHESIS

To focus the study of performance of human-machine
cooperation we formulated the following research hypothesis:
a human cooperating with a machine GGP agent is a better
player than human or machine agent individually. We write
this thesis in a shortened foorm of H+ M > M and H+ M > H,
where H denotes a human player; M denotes a machine player
and M + H denotes a hybrid player comprising a cooperating
machine and human. We attempt to verify this hypothesis in
a devoted experiment. The main research question is whether
a mutually beneficial cooperation can originate and develop
between human and machine players. In order to verify the
above-listed hypotheses, we gathered samples from people
playing without any machine assistance (H vs. M) and with
such assistance (H+M vs. M). The first case involves a human
simply playing a match against our GGP agent named MINI-
Player [13] [14]. The second case involves a human playing



against the same opponent but this time with assistance of a
“friendly” GGP agent running in the background.

V. PILOT STUDIES

This paper reports on the results of two pilot studies that
we have run to refine our experimental setup as well as to
gather preliminary evidence regarding the research hypothesis.
In this section, we present a technical setup and introduce one
of the games used in the experiment. Because a well-played
game is time consuming, we limited the number of games a
single person can play to three. The experiment was performed
separately for each human subject, so no information could
be exchanged in the process, e.g., looking how other people
play. The program participants used to play, and the opponent
program were run on the same computer, both having access
to two physical CPU cores. We set the play clock for the two
machines (the cooperator and adversary) to 30 seconds in the
first pilot study and 9 seconds in the second one. In order to
avoid time-outs resulting from the human player, we discarded
the concept of random moves if a player fails to respond in
time. The matches were played only during weekdays anytime
from the morning to the late afternoon. The age of participants
varied from 21 to 30 with only one exception of 31 to 40.
Most of them were PhD students of computer science. In the
experiment, we used three games but one of them, named
Tic-Tac-Chess, was discarded after the Pilot Study 1. Figures
1, 2 and 3 show screenshots of the program operated by
participants for Inverted Pentago, Nine Board Tic-Tac-Toe and
Tic-Tac-Chess respectively.

Inverted Pentago is a game played on a 6x6 board divided
into four 3x3 sub-boards (or quadrants). Taking turns, the two
players place a marble of their color (either red or blue) onto an
unoccupied space on the board, and then rotate any one of the
sub-boards by 90 degrees either clockwise or anti-clockwise. A
player wins by making their opponent get five of their marbles
in a vertical, horizontal or diagonal row (either before or after
the sub-board rotation in their move). If all 36 spaces on the
board are occupied without a row of five being formed then the
game is a draw. Participants play as blue and are the second
player to have a turn.

Nine Board Tic-Tac-Toe. In nine board tic-tac-toe, nine
3x3 tic-tac-toe boards are arranged in a 3x3 grid. Participants
play as O’ and are the second player to have a turn. The first
player may place a piece on any board; all moves afterwards
are placed in the empty spaces on the board corresponding
to the square of the previous move. For example if a piece
was placed were in the upper-right square of a board, the next
move would take place on the upper-right board. If a player
cannot place a piece because the indicated board is full, the
next piece may be placed on any board. Victory is attained by
getting 3 in a row on any board.

Tic-Tac-Chess is a game played on a 7x7 board. Players
start with one piece marked by a red or blue square in their
respective starting location. Participants are the second player
to have a turn. The starting locations are outside the movable
area of the board which is defined by the inner 5x5 square.
On their turn, each player may move a piece as though it were
a Chess knight or capture with a piece as though it were a
Chess king. Capturing is possible only with pieces belonging
to the center 5x5 square. Pieces from the starting locations
do not disappear when moved, so moving a piece from the

Figure 1. Screenshot of a program used to play Inverted Pentago (version
with the cooperation).

Figure 2. Screenshot of a program used to play Nine Board Tic-Tac-Toe
(version with the cooperation).

£

Figure 3. Screenshot of a program used to play Tic-Tac-Chess (version with
the cooperation).

starting location effectively spawns a new one on a destination
square. The first player to get three pieces in a row, column,
or diagonal in the center 3x3 square wins.

A. Pilot Study 1

We gathered 6 human participants for the first pilot study.
They were divided into two groups of 3 people each. These two
groups formed our two samples of data: playing with machine
assistance (H+M) and without (H). During the experiment,
we started each game with a short training session. We also
gave participants a transcript explaining what they are asked
to do and how the user-interface works. When participants
were ready, they started playing a serious (i.e., not training)



game and when they finished all three matches they were
asked to complete a short questionnaire to obtain a profile of
the subjects. The assignment of human players to games was
based on the Latin Square Design with 3 games, 6 participants
and two playing modes, i.e., with machine assistance being
switched ON or OFF. Using this design, the minimum required
number of participants for a full experiment is 12, but in the
pilot study we stopped at 6 participants.

B. Pilot Study 2

At this point, we decided to revisit the experimental setup
slightly and continue the experiment, called pilot study 2, to
mitigate some problems that arose. Instead of asking people
to play each game once, we asked them to play one game
three times in order to enable learning by experience. The
first match played includes a training session. The training
session was extended to be a full match to let participants
learn from their mistakes in endgames (late phases), which
are often the most tricky to play. It is also often the case
that people learn how to play better from the way they lost.
We also excluded Tic-Tac-Chess from the set of games for
giving too much advantage to the first player to have a turn.
As a consequence, each subject lost their match very quickly
in the same way leaving us with no relevant data to work on.
Although there exist certain strategies to avoid a quick loss,
it is unlikely to be seen by players unfamiliar with the game.
Having only one type of game per participant, we modified the
players’ assignment in such way that we have all combinations
of participants playing at least one of the three consecutive
matches with the co-operation of the machine. In order to
deal with the problem of long experiments, which was mainly
caused by the simulation time needed to get meaningful results,
we decided to write highly-optimized dedicated interpreters for
rules of the chosen games. We were able to reduce the play
clock just to 9 seconds.

VI. RESULTS

We make the following observations based on numerical
outcomes and human players’ behavior during the experiments:

e  The score between samples is even.

e All games appear to be very demanding for partici-
pants.

e  There were no wins for Inverted Pentago and for the
discarded game of Tic-Tac-Chess. There were 2 wins
for Nine Board Tic-Tac-Toe, one with the cooperation
and one without.

e The main reason for poor performance as specified
by subjects in the questionnaire (and said after the
experiment) was the lack of experience playing the
given games. The rotations in Pentago were commonly
mentioned as something being particularly difficult.

e  Despite understanding the role of the program and
the advice provided to them, the participants often
seemed not to have desire to cooperate. If they had
an assumption about which action was the best, they
just opted to play it instead of investing time for more
simulations.

e  The participants seemed to enjoy playing the game but
some stress was caused by the level of difficulty and
the expectation to win.
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Figure 4. Graph showing the average scores obtained by the cooperating
participants (H+M) and not cooperating participants (H) against the machine
in Inverted Pentago.

Figure 4 shows the average scores (0 meaning loss and
100 meaning victory) obtained by the cooperating participants
(H+M) and non-cooperating participants (H) against the ma-
chine in Inverted Pentago whereas Figure 5 shows the same
graph for Nine Board Tic-Tac-Toe. Vertical error bars denote
95% confidence intervals. The X axis denotes game step (ply).
The error bars overlap so the results cannot be used yet to
formally verify the hypothesis. There were not enough partic-
ipants in the pilot study to make any statistically significant
claims. However, the trend so far is that the participants who
did not cooperate played slightly better average games. This
is reflected in the H vs M curve, starting from step 10, being
above the H + M vs M one. However, both curves eventually
meet at a common point which means that the average game
results of both samples are even and equal to zero (which
means a loss). The same properties are valid in the Nine
Board Tic-Tac-Toe game. Because in the pilot studies, the
participants rarely and quite chaotically used the cooperation
possibilites, a conclusion that cooperation does not help would
be an overstatement. The sample is too small, the participants
would use the provided statistics when already behind in the
game and because the cooperation options were shown only
every second move, the machine was not able to help with a
coherent line of actions.

Based on things we have learned during the pilot studies,
these are the changes we want to make before moving to the
final phase of the experiment:

e FEach subject should play more than three times,
preferably at least five. We have to make room for
more learning possibilites, because it turns out that
three games are not enough to learn how to play
previously uknown games well (e.g., Inverted Pentago
and Nine Board Tic-Tac-Toe). With more repeats we
can also slightly reduce (though not eliminate) the
effect of personal predispositions.
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Figure 5. Graph showing the average scores obtained by the cooperating
participants (H+M) and not cooperating participants (H) against the machine
in Nine Board Tic-Tac-Toe.

e  The cooperation options should definately be shown
all the time for players playing with the help of a
machine.

e  We plan to remove actions’ priorities and leave only
enabling and disabling actions because the latter has
more influence on the game tree and should be used
more often. We have to make sure that all the par-
ticipants understand why and when it is beneficial to
disable actions.

e  We will ask participants to play two games with the
machine cooperation in the middle (e.g., the second
and the third ones) to be able to observe, in the
remaining games, the effects of learning from those
games.

VII. CONCLUSIONS AND FUTURE WORK

We analyzed the average outcomes of matches for the H +
M vs. M and H vs. M samples of data as well as the average
evaluation observed by the machine in every 4 steps of games.
We computed 95% confidence intervals using the t-student test.
It shows that the number of participants in the pilot study
is not enough to make any significant claims regarding the
hypothesis. Therefore, we plan to repeat the experiment for a
larger sample of participants and with setup slightly modified.

We have presented a complex competitive environment
in which human and machine can cooperate during strategic
interactions. In general it appeared that subjects not having
machine assistance fare slightly better, yet still worse than
the machine opponent alone. The reason for this could, most
likely, be attributed to the lack of continuous cooperation
option (which was shown only at every other move). The other
reasons include games’ difficulty compounded by the lack of
experience and possibly stressful activity of playing a game
which is recorded. We believe that the way of introducing the

cooperation into MCTS is a good idea, but the design of the
experiment should be revisited.

An additional caveat is to maintain a proper balance of the
experiment’s difficulty. Games cannot be too easy for humans,
because the machine cooperation would not be needed and,
at the same time, cannot be too difficult to avoid a majority
of games ending with a loss (which actually happened). We
will restart the experiment with increasing chance to make the
human participants learn the games. The participants also need
to be clearly told that winning the match is not the exclusive
goal of the experiment.
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