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Abstract—In this paper a new 2-phase multi-swarm Particle
Swarm Optimization approach to solving Dynamic Vehicle
Routing Problem is proposed and compared with our previous
single-swarm approach and with the PSO-based method pro-
posed by other authors. Furthermore, several evaluation func-
tions and problem encodings are proposed and experimentally
verified on a set of standard benchmark sets. For a cut-off time
set in the middle of a day our method found new best-literature
results for 17 out of 21 tested problem instances.

I. INTRODUCTION

D ynamic Vehicle Routing Problem (DVRP) is a hard
combinatorial optimization problem. It is a gener-

alization of the Traveling Salesman Problem (TSP) with
additional travel time and vehicle capacity constrains. In
the problem instances considered in this paper new clients’
requests may arrive during the whole working day.

The problem is demanding for both humans and ma-
chines. When solving the DVRP people heavily rely on
their life experience, imagination and the ability to develop
geometry-based graphical solutions. While life experience
and imagination are, to a large extent, beyond the scope
of current machines’ capabilities, the ability to move in a
“geometrically-guided” way in the search space in order to
detect the optimal cluster centers for individual vehicles’
routes can be, apparently quite effectively, accomplished by
artificial agents. One of such possibilities, based on the PSO
meta-heuristic is proposed in this paper.

In each point in time the DVRP may be looked at as
a combination of the two NP-Complete problems: the Bin
Packing Problem (BPP) for assigning the requests to vehicles
and the TSP for finding an optimal route for a given
vehicle. Such a combination may be effectively solved by
approximate or metaheuristic algorithms, e.g. [1],[2], [3]. The
solution method chosen by the authors consists in applying
Particle Swarm Optimization (PSO) algorithm to solving
both of these sub-problems [4]. To the best of our knowledge
it is the first published attempt of applying a two-phase PSO
approach to solving the DVRP1.

In this paper, we significantly improve our previous ap-
proach by introducing a new multi-swarm algorithm, which
is tested against various fitness functions and problem en-
codings. We compare our results with the state-of-the-art
solutions and for a cut-off time equal to 0.5 (i.e. set in the
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middle of a day) we present new best results in the case of
17 out of 21 benchmark problems tested in our experiments.

The rest of this paper is organized as follows. In section II
the PSO algorithm and its parameters are briefly presented.
In section III mathematical model for the DVRP is given.
In the subsequent sections (IV, V and VI) various problem
encodings and fitness functions for the PSO method are pro-
posed and discussed. Finally, sections VII and VIII present
the results and conclusions.

II. PARTICLE SWARM OPTIMIZATION ALGORITHM

PSO is an iterative global optimization metaheuristic
method proposed in 1995 by Kennedy and Eberhart [5] and
further studied and developed by many other researchers,
e.g., [6], [7], [8]. In short, PSO utilizes the idea of swarm
intelligence to solve hard optimization tasks.

The basic idea of the PSO algorithm consists in maintain-
ing a swarm of particles moving in the search space. Particles
which communicate (to a given particle) their position and
function value in that position are called neighbours of that
particle. Each particle maintains its current position, velocity
and a set of neighbours, as well as remembers its best visited
location.

Update position: In every step t, position of particle i, xi
t

is updated based on particle’s velocity wi
t:

xi
t+1 = xi

t + wi
t. (1)

Update velocity: In our implementation of PSO (based
on [9] and [6]) velocity wi

t of particle i is updated according
to the following rule:
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where

• g is a neighbourhood attraction factor,
• xi

best and xneighboursi
best represent the best position (in

terms of solving the problem) found hitherto, respec-
tively by particle i and by the neighbourhood of the ith
particle,

• l is a local attraction factor,
• a is an inertia coefficient,
• u

(1)
U [0;g], u

(2)
U [0;l] are random vectors with uniform distri-

bution from the intervals [0, g]and [0, l], respectively.



III. DVRP DEFINITION

In the class of Dynamic Vehicle Routing Problems dis-
cussed in this article one considers a fleet V of n vehicles
and a series C of m clients (requests) to be served (a cargo
is to be delivered to them).

The fleet of vehicles is homogeneous. Vehicles have iden-
tical capacity ∈ R and the same speed 2 ∈ R.

The cargo is taken from a dedicated depot d which has
a certain location0 ∈ R2 and working hours (start, end),
where 0 ≤ start < end.

Each client cl, l = 1, . . . ,m has a given locationl ∈ R2,
timel ∈ R, which is a point in time when their request
becomes available (start ≤ timel ≤ end), unldl ∈ R,
which is the time required to unload the cargo, and sizel ∈ R
- size of the request (sizel ≤ capacity).

A travel distance ρ(i, j) is the Euclidean distance between
locationi and locationj on the R2 plane, i, j = 0, . . . ,m.

The routei of vehicle vi is a series of pi locations, where
locationi1 and locationipi

are locations of a depot and a
series of pi time points of arrivals at those locations (denoted
arvr for locationr).

As previously stated, the goal is to serve the clients (re-
quests), according to their defined constraints, with minimal
total cost (travel distance). Formally, the optimization goal
and constraints can be written as:

min
n∑

i=1

pi∑
r=1

ρ(ir−1, ir)

∀i∈[n]∀r∈[pi]/ {1}arvir ≥ arvir−1 + ρ(ir−1, ir) + unldri−1

∀i∈[n]arvi1 ≥ starti1
∀i∈[n]arvip ≤ endip

∀i∈[n]

pi−1∑
r=2

sizer ≤ capacity

∀l∈{1,2,...m}∃!i∈[n]locationl+k ∈ routei
(3)

Please note that, according to equation (eq. 3), each client
must be assigned to exactly one vehicle and all vehicles must
return to the depot before its closing.

IV. SOLVING THE DVRP

There are two general approaches to solving dynamic opti-
mization problems. In the first one the optimization algorithm
is run every time there is a change in the problem instance. In
the second approach time is divided into discrete slices and
the algorithm is run once for each time slice. Furthermore,
the problem instance is considered ”frozen” during the whole
time slice, i.e. any potential changes introduced during the
current time slot are handled in the next algorithm’s run (in
the subsequent time slice period).

In our study we follow the second approach which, in the
context of the DVRP, was proposed by Kilby et al. [10].
In order to assure a direct comparison of obtained results

2In all benchmarks used in this paper speed is defined as one distance
unit per one time unit.

Fig. 1. Activity diagram of the multi-swarm 2PSO algorithm

TABLE I
COMPARISON OF BASELINE ALGORITHMS: 2PSO (A SINGLE SWARM

APPROACH PROPOSED IN [4]); 2MPSOV1 (A MULTI SWARM VERSION OF
THIS METHOD); AND MAPSO PROPOSED BY KHOUADJIA ET AL. [12].

ALL METHODS ARE COMPARED ON THE COMMON GROUND OF 104

CALCULATIONS OF THE PSO EVALUATION FUNCTION PER TIME SLICE.

2MPSOv1 (104) 2PSO (104) MAPSO (104)
Min Avg Min Avg Min Avg

c50 589.24 626.57 582.88 675.14 571.34 610.67
c75 937.41 988.58 912.23 1015.16 931.59 965.53

c100 957.54 1041.18 996.4 1149.48 953.79 973.01
c100b 828.94 849.69 828.94 850.68 866.42 882.39
c120 1079.14 1162.65 1087.04 1212.38 1223.49 1295.79
c150 1173.25 1240.9 1173.94 1336.84 1300.43 1357.71
c199 1408.74 1458.24 1446.93 1578.99 1595.97 1646.37

f71 293.1 317.15 315 356.75 287.51 296.76
f134 12304.03 12587.49 12813.14 13491.6 15150.5 16193

tai75a 1814.95 1958.95 1871.06 2142.07 1794.38 1849.37
tai75b 1435.76 1486.39 1460.95 1568.21 1396.42 1426.67
tai75c 1497.64 1660.36 1500.23 1811.08 1483.1 1518.65
tai75d 1459.68 1496.22 1462.82 1586.28 1391.99 1413.83

tai100a 2198.02 2381.24 2317.76 2707.61 2178.86 2214.61
tai100b 2134.31 2267.1 2187.86 2510.6 2140.57 2218.58
tai100c 1555.73 1611.17 1564.25 1672.33 1490.4 1550.63
tai100d 1819.56 1939.34 1859.7 2220.01 1838.75 1928.69
tai150a 3480.84 3667.11 3638.75 4151.31 3273.24 3389.97
tai150b 3004.98 3118 3107.95 3302.94 2861.91 2956.84
tai150c 2714.25 2821.53 2781.02 2952.88 2512.01 2671.35
tai150d 3029.75 3174.42 3048.24 3478.49 2861.46 2989.24

sum 45716.86 47854.28 46957.09 51770.83 48104.13 50349.66

with our previous work [4] and with other PSO-based ap-
proaches [11], [12], the number of time slices of the working
day is equal to 25.

Another critical DVRP parameter, which has a direct
impact on “the degree of dynamism” of a given problem
instance, is the cut off time which defines the part of requests
that is known at the beginning of the working day. In real
(practical) situations the requests received after this time
threshold are treated as received at the beginning of the
subsequent working day. In the one-day-horizon simulations
presented in this paper (as well as in practically all other
papers referring to Kilby et al.’s benchmarks [13]) the
requests located after the cut off time limit are simply treated



TABLE III
MULTI-SWARM ALGORITHMS COMPARISON. ALL METHODS ARE COMPARED ON THE COMMON GROUND OF 104 CALCULATIONS OF THE PSO

EVALUATION FUNCTION PER TIME SLICE.

2MPSOv1 ( 104) 2MPSOv2 ( 104) 2MPSOv3 ( 104) MAPSO ( 104)
Min Avg Min Avg Min Avg Min Avg

c50 589.24 626.57 578.61 608.71 583.09 618.59 571.34 610.67
c75 937.41 988.58 892.04 944.18 904.83 946.85 931.59 965.53

c100 957.54 1041.18 941.3 969.16 926.1 966.27 953.79 973.01
c100b 828.94 849.69 833.25 875.92 830.58 875.47 866.42 882.39

c120 1079.14 1162.65 1061.01 1178.43 1061.84 1176.38 1223.49 1295.79
c150 1173.25 1240.9 1142.57 1196.88 1132.12 1208.6 1300.43 1357.71
c199 1408.74 1458.24 1394.61 1470.16 1371.61 1458.01 1595.97 1646.37

f71 293.1 317.15 291.2 313.92 302.5 319.01 287.51 296.76
f134 12304.03 12587.49 12011.71 12509.83 11944.86 12416.65 15150.5 16193

tai75a 1814.95 1958.95 1742.31 1869.48 1721.81 1846.03 1794.38 1849.37
tai75b 1435.76 1486.39 1401.22 1470.92 1418.82 1451.92 1396.42 1426.67
tai75c 1497.64 1660.36 1461.74 1547.57 1456.9 1560.68 1483.1 1518.65
tai75d 1459.68 1496.22 1421.48 1463.29 1445.58 1481.25 1391.99 1413.83

tai100a 2198.02 2381.24 2197.94 2278.07 2211.3 2327.2 2178.86 2214.61
tai100b 2134.31 2267.1 2045.47 2156.24 2052.54 2131.91 2140.57 2218.58
tai100c 1555.73 1611.17 1480.89 1541.56 1465.06 1519.44 1490.4 1550.63
tai100d 1819.56 1939.34 1739.25 1789.74 1722.16 1808.67 1838.75 1928.69
tai150a 3480.84 3667.11 3350.14 3527.45 3367.55 3537.81 3273.24 3389.97
tai150b 3004.98 3118 2918.39 3032.84 2911.22 3033.83 2861.91 2956.84
tai150c 2714.25 2821.53 2497.55 2603.02 2510.51 2579.72 2512.01 2671.35
tai150d 3029.75 3174.42 2915.98 3000.5 2893.54 2992.53 2861.46 2989.24

sum 45716.86 47854.28 44318.66 46347.87 44234.52 46256.82 48104.13 50349.66

TABLE II
BEST OVERALL RESULTS ACHIEVED FOR THE BENCHMARK SETS. THE
RIGHTMOST COLUMN PRESENTS THE PARTICULAR ALGORITHM AND

THE NUMBER OF THE EVALUATION FUNCTION CALCULATIONS PER TIME
SLICE IN THE WINNING CASE.

Name Best result Algorithm
c50 568.82 2MPSOv2 (103)
c75 892.04 2MPSOv2 (104)
c100 918.61 2MPSOv3 (105)
c100b 823.19 2MPSOv3 (105)
c120 1057.94 2MPSOv2 (105)
c150 1121.50 2MPSOv2 (105)
c199 1371.61 2MPSOv3 (104)

f71 287.51 MAPSO (104)
f134 11944.86 2MPSOv3 (104)

tai75a 1721.81 2MPSOv3 (104)
tai75b 1391.74 2MPSOv3 (105)
tai75c 1440.20 2MPSOv2 (105)
tai75d 1391.99 MAPSO (104)
tai100a 2146.53 2MPSOv2 (105)
tai100b 2039.31 2MPSOv3 (105)
tai100c 1463.83 2MPSOv3 (105)
tai100d 1685.53 2MPSOv2 (105)
tai150a 3273.24 MAPSO (104)
tai150b 2861.91 MAPSO (104)
tai150c 2472.70 2MPSOv2 (105)
tai150d 2844.70 2MPSOv2 (105)

as being known at the beginning of the current day - they
compose an initial instance of the DVRP being solved.

In the experiment presented in the paper, in order to allow
a direct comparison with previous works, the cut-off time is
set in the middle of a depot’s working hours, i.e. lasts for

half of a day.

V. PROBLEM ENCODING

Due to natural graph-based DVRP representation, various
problem encodings have been tested in the literature. In
particular, Khouadjia et al. proposed Dynamic Adapted PSO
(DAPSO) (and its multi-swarm equivalent Multiswarm Adap-
tive Memory PSO (MAPSO)) [11], [12] which uses a discrete
version of PSO to solve the DVRP. In our approach, denoted
by 2-Phase Particle Swarm Optimization (2PSO) [4] a truly
continuous problem encoding is proposed. Furthermore, we
propose splitting the process of solving the DVRP into two
phases: a clustering phase, in which requests are assigned
to particular vehicles, and an ordering phase, in which the
tour for each vehicle is found with the use of (a separate
instance of) the standard PSO algorithm. In this paper we
present three versions of this method differing mainly by the
fitness functions used.

Additionally, we introduce a 2-Phase Multi-Swarm PSO
(2MPSO) algorithm for each of the proposed versions of
the 2PSO algorithm. The main technical difference between
single- and multi- swarm versions is a need for synchroniza-
tion of problems between swarms in the latter case, discussed
in section VI. A flow-chart of the above described multi-
swarm 2PSO algorithm is presented in Fig. 1. In all three
versions of the algorithm which are discussed below clients
(requests) are assigned to vehicles whose centers are the



TABLE IV
COMPARISON OF PROPOSED MULTI-SWARM ALGORITHM WITH ONE CLUSTER OF REQUESTS PER VEHICLE (2MPSOV2) AND VARIOUS NUMBERS OF
FITNESS EVALUATIONS PER TIME SLICE WITH THE MAPSO METHOD WITH THE REFERENCED NUMBER OF THE FITNESS FUNCTION CALCULATIONS

PER TIME SLICE (104).

2MPSOv2 ( 103) 2MPSOv2 ( 104) 2MPSOv2 ( 105) MAPSO ( 104)
Min Avg Min Avg Min Avg Min Avg

c50 568.82 629.08 578.61 608.71 571.53 614.61 571.34 610.67
c75 908.6 972.58 892.04 944.18 896.33 930.94 931.59 965.53

c100 982 1033.03 941.3 969.16 920.11 957.49 953.79 973.01
c100b 829.54 898.19 833.25 875.92 848.5 881.7 866.42 882.39

c120 1060.39 1158.68 1061.01 1178.43 1057.94 1174.65 1223.49 1295.79
c150 1138.03 1269.34 1142.57 1196.88 1121.5 1168.59 1300.43 1357.71
c199 1447.55 1581.75 1394.61 1470.16 1404.46 1461.58 1595.97 1646.37

f71 300.46 333.37 291.2 313.92 302.5 317.66 287.51 296.76
f134 12079.07 12529.43 12011.71 12509.83 11988.76 12324.98 15150.5 16193

tai75a 1798.99 1993.76 1742.31 1869.48 1727.89 1812.55 1794.38 1849.37
tai75b 1441.3 1530.25 1401.22 1470.92 1400.33 1438.5 1396.42 1426.67
tai75c 1511.04 1616.08 1461.74 1547.57 1440.2 1491.64 1483.1 1518.65
tai75d 1432.06 1502.44 1421.48 1463.29 1439.27 1470.93 1391.99 1413.83

tai100a 2244.3 2413.5 2197.94 2278.07 2146.53 2260.21 2178.86 2214.61
tai100b 2073.27 2247.82 2045.47 2156.24 2045.24 2119.36 2140.57 2218.58
tai100c 1527.25 1598.37 1480.89 1541.56 1469.12 1516.97 1490.4 1550.63
tai100d 1762.17 1845.61 1739.25 1789.74 1685.53 1775.09 1838.75 1928.69
tai150a 3566.83 3898.32 3350.14 3527.45 3345.88 3402.23 3273.24 3389.97
tai150b 3005.9 3215.82 2918.39 3032.84 2885.21 2942.49 2861.91 2956.84
tai150c 2593.7 2727.12 2497.55 2603.02 2472.7 2543.47 2512.01 2671.35
tai150d 3042.33 3198.31 2915.98 3000.5 2844.7 2949.2 2861.46 2989.24

sum 45313.6 48192.85 44318.66 46347.87 44014.23 45554.84 48104.13 50349.66

closest ones (in terms of Euclidan distance).

A. 2(M)PSOv1

In the first version of our 2PSO approach [4] the following
problem representation was used:

• In the first phase, each particle represents the centers of
clusters of requests assigned to vehicles.

• The fitness function value in this phase is calculated as
a sum of distances from the inter-cluster requests to the
clusters’ centers (a measure of quality of a clustering)
and twice the distances from the clusters’ centers to the
depot location (a measure of a cost of creating a cluster).

• In the second phase, which is solved by a another (sep-
arate) multi-swarm approach each particle represents an
ordering of requests assigned to a given vehicle (each
cluster/vehicle is solved by a separate PSO instance).

• The fitness value in this phase (in each of the PSO
instances) is equal to the length of a route (for a given
vehicle) defined by the proposed ordering.

• The final value is the sum of fitness functions’ values of
the best solutions found by each of the PSO instances.

B. 2(M)PSOv2

The second version of the 2PSO algorithm differs from the
above-described basic variant, by the fitness function used in
the first phase. Here, the estimated total length of all vehicles’

routes defined by the proposed clusters and optimized with
the help of 2-OPT, is used.

The cost functions calculated in phase 1 (requests cluster-
ing phase) for all three versions are schematically presented
in Fig. 2.

Fig. 2. Example of a DVRP problem with 2 vehicles and 5 clients’
requests. Solid lines represent possible routes, whose lengths are used as an
evaluation function by 2(M)PSOv2 and 2(M)PSOv3. Dashed lines represent
estimated cluster cost (quality), which is used as an evaluation function by
2(M)PSOv1. Each vehicle is located in the respective cluster’s center. Dotted
line separates the two operating areas assigned to vehicles.

C. 2(M)PSOv3

The third version of the 2PSO algorithm uses the same
fitness function as above in the first phase but allows for



TABLE V
COMPARISON OF PROPOSED MULTI-SWARM ALGORITHM WITH 3 CLUSTERS OF REQUESTS PER VEHICLE (2MPSOV3) AND VARIOUS NUMBERS OF

FITNESS EVALUATIONS PER TIME SLICE WITH THE MAPSO METHOD WITH THE REFERENCED NUMBER OF THE FITNESS FUNCTION CALCULATIONS
PER TIME SLICE (104).

2MPSOv3 ( 103) 2MPSOv3 ( 104) 2MPSOv3 ( 105) MAPSO ( 104)
Min Avg Min Avg Min Avg Min Avg

c50 603.61 632.05 583.09 618.59 571.53 610.89 571.34 610.67
c75 917.51 965.06 904.83 946.85 906.72 933.4 931.59 965.53

c100 949.9 999.71 926.1 966.27 918.61 953.13 953.79 973.01
c100b 835.71 886.21 830.58 875.47 823.19 871.07 866.42 882.39

c120 1076.15 1170.64 1061.84 1176.38 1112.73 1174.04 1223.49 1295.79
c150 1178.36 1240.35 1132.12 1208.6 1150.13 1187.27 1300.43 1357.71
c199 1440.99 1528.83 1371.61 1458.01 1427.73 1487.29 1595.97 1646.37

f71 302.5 327.09 302.5 319.01 311.59 319.23 287.51 296.76
f134 12015.9 12403.53 11944.86 12416.65 12022.64 12312.74 15150.5 16193

tai75a 1749.65 1935.95 1721.81 1846.03 1760.27 1821.01 1794.38 1849.37
tai75b 1416.61 1513.96 1418.82 1451.92 1391.74 1426.39 1396.42 1426.67
tai75c 1450.55 1575.28 1456.9 1560.68 1446.85 1529.36 1483.1 1518.65
tai75d 1437.93 1495.25 1445.58 1481.25 1435.92 1465.55 1391.99 1413.83

tai100a 2268.83 2419.43 2211.3 2327.2 2169.24 2248.91 2178.86 2214.61
tai100b 2087.39 2232.06 2052.54 2131.91 2039.31 2094.49 2140.57 2218.58
tai100c 1520.35 1581.29 1465.06 1519.44 1463.83 1516.35 1490.4 1550.63
tai100d 1731.95 1829.63 1722.16 1808.67 1690.89 1778.74 1838.75 1928.69
tai150a 3594.95 3841.77 3367.55 3537.81 3319.48 3430.9 3273.24 3389.97
tai150b 3001.21 3196.83 2911.22 3033.83 2901.2 2973.39 2861.91 2956.84
tai150c 2547.41 2699.46 2510.51 2579.72 2483.39 2525.04 2512.01 2671.35
tai150d 2965.78 3148.84 2893.54 2992.53 2868.94 2956.74 2861.46 2989.24

sum 45093.24 47623.22 44234.52 46256.82 44215.93 45615.93 48104.13 50349.66

assignment of up to c > 1 requests clusters to the same
vehicle. This allows formation of the routes which are
composed of up to c distinct subroutes (fragments), which
otherwise, due to the proximity assignment rule mentioned
above, would not be possible.

If we denote by m the number of requests (50 ≤ m ≤ 199
in the benchmarks used), by n the number of available
vehicles (n = 50 in the tested benchmarks), by n̂ the
estimated number of required vehicles (usually around n

3 ),
by c the number of clusters for each of the vehicles (we used
c = 1 or c = 3 in our study) and by b (b = 4 was used in
our test) the number of spare vehicles (beyond the estimated
need - for the safety of the method), then the theoretical and
the experimental dimension sizes of the search spaces are as
follows:

Algorithm Theoretical size Experimental size
2(M)PSOv1 2n 100
2(M)PSOv2 2n 100
2(M)PSOv3 2c(n̂+ b) [60, 120]

VI. KNOWLEDGE TRANSFER

In dynamic problems, one of the crucial tasks is proper
and efficient transfer of knowledge from partial (incomplete)
problems to the final solution.

Generally, it is assumed that solutions obtained for the two
problem instances which are close in time should not differ

much and therefore knowledge transfer may, in principle, be
very advantageous.

Another issue is the problem of efficient usage of parallel
or distributed architecture and knowledge transfer between
partial problems within the same problem instance (time
slot).

A. Knowledge transfer between time slices

In the MAPSO algorithms Khouadjia et al. proposed
adding an adaptive memory to each particle, in order to store
its best known solution (the vector of vehicles identifiers
which are assigned to each of the requests) from the previous
time slice. When new requests arrive, they are processed
in a random order and assigned to vehicles by a greedy
algorithm, thus forming the initial swarm locations for the
PSO algorithm.

In the 2(M)PSO method a different approach is taken.
Since the solution of the first phase in the previous time slot
consists of locations of clusters centers, these coordinates are
treated as reliable estimations of the clusters centers after the
arrival of new requests (in the next time slice). Therefore
initial swarm location is defined around the center of the
previous best known solution within a given radius.

B. Knowledge transfer between swarms

In the MAPSO algorithm knowledge is transferred be-
tween swarms by migrating particles. In every iteration for



each of the particles there is a small probability that a particle
will migrate to a different swarm. As MAPSO allows for
distributed way of solving the problem there is, in general,
no guarantee that in a given moment all swarms are solving
the problem for the same time slice. Therefore a particle after
migration may need to wait to be incorporated into a new
swarm or must be re-initialized with newly received requests.

The 2MPSO algorithm assumes that the problem is solved
in a parallel way on a single multithreading computer.
Therefore, we take an easy approach where, within a given
time slice, each thread works in isolation and at the end of
allotted time (slice time span) all threads are synchronized
and the best solution found is spread again among the threads
(cf. Fig. 1). Such approach is motivated by the assumption
that at the end of a time slice some vehicles are committed
to serve a given set of requests and it might be meaningless
to solve problem instances not synchronized with the current
state of the problem instance.

VII. RESULTS

In order to evaluate the performance of the algorithm we
used dynamic versions of Chritofides’, Fisher’s and Taillard’s
benchmark sets [13]. We compare our algorithm with the
MAPSO approach which provided the best so far average
literature results and majority of the best known literature
solutions (minima). The basic comparison is made for the
same number of swarms and the same number of fitness
function evaluations per time slice. Additionally we present
the results for higher numbers of function evaluations per
time slice to check whether using more function evaluations
will further improve the 2(M)PSO results. Due to inability to
precisely replicate the method, results for MAPSO are pre-
sented only in the reference case of 104 function evaluations
per time slice published by Khouadija et al.

In the experiments, parameters of the PSO method were
set in the following way:

Parameter Value
neighbourhood attraction factor (g) 0.60

local attraction factor (l) 2.20
inertia coefficient (a) 0.63

P (X is a neighbour of Y ) 0.50
#iterations {50, 250, 1000}
#particles {20, 40, 100}
#swarms {1, 8}

P (X is a neighbour of Y ) is a probability that particle X
belongs to the neighbourhood of particle Y. Note that the
relation of being a neighbor is not symmetrical.

Figure 3a presents the aggregated minimum and average
values together with standard error bars obtained for the basic
single-swarm (2PSO) and multi-swarm (2MPSO) versions of
the 2PSO algorithm.

Figures 3b, 4a and 4b present the same type of data,
respectively for various multi-swarm versions of the 2MPSO
algorithm, the 2MPSOv2 algorithm with various numbers
of fitness function evaluations, and the 2MPSOv3 algorithm
with various numbers of fitness function evaluations.

In each plot a solid horizontal line marks the average
performance of the MAPSO algorithm for the problem
instances in a given benchmark set, while dashed horizontal
line depicts the average of the best results of MAPSO for a
given benchmark set.

A detailed comparison of numerical results for the same
experiments is presented in Tables I, III, IV and V, re-
spectively with the best results marked in bold and sta-
tistically insignificantly worse average results marked in
italics. The significance of the differences in results between
the 2PSO/2MPSO methods was calculated with the use
of the Mann-Whitney U test [16] and the significance of
the differences in results between 2PSO and MAPSO was
tested using the Wilcoxon signed-rank test [17] with a null
hypothesis saying that a distribution of the 2PSO algorithm’s
results was symmetric around the average performance of
MAPSO.

The best obtained results for each of the benchmark
problems and the name and version of the algorithm which
found them are listed in Table II.

VIII. DISCUSSION AND CONCLUSIONS

The highest performance of the 2PSO algorithm was
accomplished using a multi-swarm version of this method.
Even a simple collection of isolated swarms synchronized
only once per time slice (at the end of it) allowed for visible
gain in the solutions’ quality (around 8%, on average).

Moreover, in most of the test cases, changing the fitness
function from a total sum of clusters’ weights (used by
2MPSOv1) to the estimation of a total sum of routes’
lengths (used by 2MPSOv2 and 2MPSOv3) proved to be
beneficial. The 2MPSO algorithms based on the modified,
routes lengths-based fitness function used for optimizing
the assignment, perform significantly better than the first
version of the algorithm except for the cases of highly spatial
clusters composed of uniformly distributed request sizes (e.g.
instances c100b, c120, c199).

According to our intuition, changing the problem encoding
from one cluster per vehicle to several clusters per vehicle
should enhance the range of possible solutions (by directly
allowing the overlaps among vehicles’ routes). Even though
some improvement is observable it is not statistically signif-
icant in terms of average results.

For the Christofides benchmark set the results get slightly
deteriorated when the number of fitness function evaluations
per time slice was raised to 105. This phenomenon may
possibly stem from the fact, that the algorithm is stuck in
the close-to-optimal solution for the initial time slices, which
is not the part of the final optimal solution and, as a result,
vehicles are committed too early to some of the requests.
Detection of such ”over-fitting” may potentially be used as
a stopping criterion for the method.

During the experiments new best solutions for the cut-
off time set to 0.5 (the same cut-off time was used by the
referenced MAPSO-related works) were found for 17 out
of 21 benchmark sets. All tested multi-swarm approaches
outperformed MAPSO in terms of the average value of the



1.
00

1.
15

1.
30

christofides

Test cases

R
el

at
iv

e 
re

su
lt

2MPSO 2MPSOv2 2PSO

1.
00

1.
15

1.
30

1.
00

1.
15

1.
30

1.
00

1.
15

1.
30

1.
00

1.
15

1.
30

fisher

Test cases

R
el

at
iv

e 
re

su
lt

2MPSO 2MPSOv2 2PSO

1.
00

1.
15

1.
30

1.
00

1.
15

1.
30

1.
00

1.
15

1.
30

1.
00

1.
15

1.
30

taillard

Test cases

R
el

at
iv

e 
re

su
lt

2MPSO 2MPSOv2 2PSO

1.
00

1.
15

1.
30

1.
00

1.
15

1.
30

1.
00

1.
15

1.
30

(a) Comparison for all the benchmark sets for the baseline versions
of the algorithms
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(b) Comparison for all the benchmark sets for the multi-swarm
versions of the algorithms

Fig. 3. Comparison of performance of different 2PSO algorithm versions. Solid and dashed lines represent the means of average and best performance
of MAPSO algorithm. A gray triangle represents the mean best performance for the given test case set.

best results and nearly all of them were more effective when
the average values of (all) the results were considered (only
2MPSOv2 with 1 000 fitness evaluations per time slice found
the routes which were, on average, 1% longer than those of
MAPSO).

The best average results were achieved by 2MPSOv2 with
100 000 fitness evaluations per time slice (they were 3%
better than MAPSO in terms of the average of the minima
and nearly 5% better in terms of the average lengths) and
2MPSOv3 with 10 000 fitness evaluations per time slice
(which outperformed MAPSO by nearly 4% in each of both
above-mentioned efficiency measures).

The results suggest that problem instances could be dif-
ferentiated based on the spatial distribution of request’ lo-
cations, as well as on the requests’ sizes distribution. The
task of autonomous selection of problem encoding and fitness
function to be used for a particular problem instance is one of
our future research goals. We also plan to perform additional
tests in order to further validate the 2(M)PSO ability to

effectively solve the DVRP.

ACKNOWLEDGMENT

The research was financed by the National Science Centre
in Poland grant number DEC-2012/07/B/ST6/01527 and by
the research fellowship within ”Information technologies:
Research and their interdisciplinary applications” agreement
number POKL.04.01.01-00-051/10-00.

REFERENCES

[1] L. Feng, Y.-S. Ong, I. W.-H. Tsang, and A.-H. Tan, “An evolutionary
search paradigm that learns with past experiences,” in IEEE Congress
on Evol. Comp. IEEE, 2012, pp. 1–8.

[2] F. T. Hanshar and B. M. Ombuki-Berman, “Dynamic vehicle routing
using genetic algorithms,” Applied Intelligence, vol. 27, no. 1, pp.
89–99, 2007. [Online]. Available: http://dx.doi.org/10.1007/s10489-
006-0033-z

[3] R. Montemanni, L. Gambardella, A. Rizzoli, and A. Donati, “A new
algorithm for a dynamic vehicle routing problem based on ant colony
system,” Journal of Combinatorial Optimization, vol. 10, p. 327343,
2005.



1.
00

1.
15

1.
30

christofides

Test cases

R
el

at
iv

e 
re

su
lt

10^3 10^4 10^5

1.
00

1.
15

1.
30

1.
00

1.
15

1.
30

1.
00

1.
15

1.
30

1.
00

1.
15

1.
30

fisher

Test cases

R
el

at
iv

e 
re

su
lt

10^3 10^4 10^5

1.
00

1.
15

1.
30

1.
00

1.
15

1.
30

1.
00

1.
15

1.
30

1.
00

1.
15

1.
30

taillard

Test cases

R
el

at
iv

e 
re

su
lt

10^3 10^4 10^5

1.
00

1.
15

1.
30

1.
00

1.
15

1.
30

1.
00

1.
15

1.
30

(a) Comparison for all the benchmark sets for the multi-swarm
version with 1 cluster per vehicle and various numbers of function
evaluations per time slice

1.
00

1.
15

1.
30

christofides

Test cases

R
el

at
iv

e 
re

su
lt

10^3 10^4 10^5

1.
00

1.
15

1.
30

1.
00

1.
15

1.
30

1.
00

1.
15

1.
30

1.
00

1.
15

1.
30

fisher

Test cases
R

el
at

iv
e 

re
su

lt
10^3 10^4 10^5

1.
00

1.
15

1.
30

1.
00

1.
15

1.
30

1.
00

1.
15

1.
30

1.
00

1.
15

1.
30

taillard

Test cases

R
el

at
iv

e 
re

su
lt

10^3 10^4 10^5

1.
00

1.
15

1.
30

1.
00

1.
15

1.
30

1.
00

1.
15

1.
30

(b) Comparison for all the benchmark sets for the multi-swarm
version with 3 clusters per vehicle and various numbers of function
evaluations per time slice

Fig. 4. Comparison of performance of multi-swarm 2MPSO algorithms for different number of fitness function evaluation. Solid and dashed lines represent
the means of average and best performance of the MAPSO algorithm. A gray triangle represents the mean best performance for the given test case set.
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