
UCT-Based Approach to Capacitated Vehicle

Routing Problem

Jacek Mańdziuk(�) and Cezary Nejman

Faculty of Mathematics and Information Science,
Warsaw University of Technology,

Koszykowa 75, 00-662 Warsaw, Poland
mandziuk@mini.pw.edu.pl, nejmanc@student.mini.pw.edu.pl

Abstract. Vehicle Routing Problem (VRP) is a popular combinatorial
optimization problem which consists in finding an optimal set of routes
for a fleet of vehicles in order to serve a specified collection of clients.
Capacitated VRP (CVRP) is a version of VRP in which every vehicle
has a capacity parameter assigned.

The UCT (Upper Confidence bounds applied to Trees) is a heuristic
simulation-based algorithm used for learning an optimal policy in games.
The algorithm is an extension of the Monte Carlo Tree Search (MCTS)
method, however, unlike MCTS which makes use of uniformly distributed
simulations in a game tree (in order to find the most promising move),
the UCT aims at maintaining an optimal balance between exploration
and exploitation, which results in more frequent visits to and deeper
expansion of the most promising branches of a game tree.

The paper is the first attempt to apply the UCT algorithm to solving
CVRP. The critical issue here is suitable mapping of the CVRP onto a
game tree structure, which is not straightforward in this problem domain.
Furthermore, in order to keep the tree size within reasonable limits the
appropriate way of child nodes selection must be considered. Another
pertinent issue is interpretation of game-related terms “win” and “loss”
in the CVRP context.

Experimental results of several mappings of CVRP to game tree-like
structure are presented for a collection of popular benchmark sets.

Keywords: UCT · Routing problems · Dynamic optimization

1 Introduction

Vehicle Routing Problem (VRP) along with its variants is a widely known com-
binatorial optimization task. Due to its practical relevance there is a strong
interest in finding new approaches to solving this problem despite already ex-
isting heuristic and approximate methods. UCT method, in turn, is one of the
most popular approaches to game playing mainly due to its adaptability and
long-term efficiency. An additional asset of UCT is the lack of need for domain-
specific knowledge. Taking the qualities of UCT approach and requirements of
VRP problem into consideration, we conducted research on possible ways of

c© Springer International Publishing Switzerland 2015
L. Rutkowski et al. (Eds.): ICAISC 2015, Part II, LNAI 9120, pp. 679–690, 2015.
DOI: 10.1007/978-3-319-19369-4_60



680 J. Mańdziuk and C. Nejman

incorporating the UCT algorithm, in its basic form, into specific class of Capac-
itated Vehicle Routing Problems (CVRP). The most promising factor of such
a combination is the fact that UCT proved to be very effective in solving the
so-called “exploration vs. exploitation dilemma”, i.e. the issue of balancing the
usage of discovered best solutions vs. finding the new ones. This property seems
to be very well suited to the nature of VRP/CVRP. Moreover, it is worth not-
ing the novelty of the proposed approach as, to the best of our knowledge, it is
the first time the UCT method is applied to solving the VRP/CVRP. The main
issues analyzed in this piece of research are related to appropriate problem repre-
sentation, interpretation of “win” and “loss” situations and finding efficient UCT
parameterization. Initial experiments showed that implementation of the basic
UCT method with naive problem representation leads to mediocre results. Af-
ter finding weak points of this preliminary approach the baseline algorithm was
modified by raising the importance of exploration as well as discretizing the so-
lution evaluation values. These changes led to the overall improvement of results
and allowed making a conclusion that the modified method with discretization
factor is a promising way of incorporating UCT into CVRP.

The remainder of the paper is organized as follows: in the next section a formal
definition of the CVRP is provided. Section 3 presents the UCT method and the
proposed way of its application to solving CVRP. Section 4 is devoted to exper-
imental setup, simulation results and conclusions. The last section summarizes
the main contribution of the paper and points directions for future research.

2 CVRP Formulation

VRP was formulated in 1959 [4] and proved to be NP-hard in 1981 [11]. In its
base formulation, there is a number of homogenous vehicles and a number of
clients (sometimes interpreted as cities) and each client has a certain (known)
demand which must be satisfied by (exactly) one of the vehicles. The goal is
to deliver demanded goods to all clients while minimizing the sum of vehicles
routes’ costs (lengths). The delivered goods are homogenous. Each vehicle’s route
must start and end in the specified depot. Each client as well as the depot has a
certain 2-dimensional location. It is worth noting that in the basic formulation of
VRP, there is no limit on the number of clients that can be serviced by a single
vehicle. In practical applications though, the capacity parameter must be added
to a vehicle characteristics in order to ensure that there will be no situation of
servicing clients with higher total demand than the vehicle’s capacity. Such a for-
mulation leads to CVRP. Since VRP/CVRP is NP-Hard no polynomial method
of its solving is known. Thus, exact solutions can only be obtained for small-size
problems. In practice, approximation algorithms must be used in order to obtain
the results in acceptable time. Among the exact algorithms, there are three main
approaches: full tree search, dynamic programming and integer programming.
An example of the first approach would be spanning tree and shortest path relax-
ations method [16]. A dynamic programming method was, for instance, proposed
in [6] for problems with known number of vehicles. As for the third approach,



Application of UCT to CVRP 681

a three-index vehicle flow formulation was presented in [7]. There exist various
approximation algorithms for VRP/CVRP, most of them designed to address
specific problem formulations, e.g. Savings algorithm [3] which assumes that the
number of vehicles is unlimited. Other well-known methods include Multi-route
improvement algorithm [1], Sweep algorithm [10], Ant Colony Optimization [5]
or Particle Swarm Optimization [12,18].

3 UCT Search Tree Method

UCT (Upper Confidence Bound applied to Trees) is an extension to Monte Carlo
Tree Search (MCTS) method developed in 2006 [13]. MCTS is an optimiza-
tion algorithm used in decision making processes. Its main advantage is the
knowledge-free nature [14,15], i.e. the only domain knowledge required is the
ability to recognize positive and negative final outcomes of decisions made. The
space (problem domain) in which the algorithm operates is represented by a tree
structure. The current state is located in the root of a tree. Each node represents
particular state and stores information about actions (game moves) taken in this
state as well as the respective scores (fractions of simulations that led to a “win”
outcome) assigned to that (action, state) pair. Each path in the tree represents
a particular sequence of decisions (game moves) with the final outcome being
read out in the leaf.

UCT relies on massive random four-stage simulations (see Fig. 1) performed
before making a decision:

– Choice - starting from the root, go down the tree until a leaf or unexplored
node is reached;

– Expansion - if possible, create child nodes of previously found node;
– Simulation/Play-out - from one of the created nodes, perform a random

simulation (game) until the final state;
– Backpropagation - populate the result of the above random simulation

(game) up the tree, thus update all nodes visited on the path from the root
to the leaf node.

The more iterations are performed the better estimations of the true min-max
value of each (action, state) pair are obtained, hence the better algorithm’s
behavior is observed. The issue which needs further explanation is the way nodes
are selected in the first stage (Choice). In UCT [13] the strategy of tree expansion
is based on the previous simulation outcomes and visit counts. This way the
method balances exploration and exploitation factors in order to find the most
promising directions of tree growth. In each node X if there exist child nodes
(actions) which had not been yet chosen, one of them is selected at random.
Otherwise (if all actions had been tried at least once already) the child node k
maximizing the following formula is selected:

Xj + C

√
lnn

nj
(1)



682 J. Mańdziuk and C. Nejman

Fig. 1. Operational scheme of the UCT method (reproduced from [2])

where Xj stands for the average score of simulations performed so far from j-th
child node, nj is the number of times the j-th action (child node) was selected
while visiting node X , n is the total number of visits to node X and C is the
exploration coefficient. In theory C should be equal to

√
2, but experiments

show that, for a given problem at hand, the best way is to test multiple values
and select the most appropriate one. The most popular applications of UCT are
those related to games, in particular the so-called General Game Playing [9,20]
and Go [8].

While both VRP and UCT algorithm are commonly known and researched,
there are no documented experiments on incorporating UCT into VRP. Thus, to
the best of our knowledge, analysis made and described in this paper is very likely
to be the first such attempt. Please note that it is the “capacitated” variant of
the problem which is considered. Nonetheless, the presented approach may also
be suitable for other formulations. In order to adapt UCT into CVRP, several
key issues must be considered:

– Representation of the problem in a tree-like structure;
– A method of simulation results evaluation;
– Node selection strategy basing on simulation data.

A tree-like representation is a standard way of describing the current situation
in many games, e.g. chess or checkers. As UCT was primary meant for gaming,
a corresponding data structure was an obvious choice. However, for CVRP it is
not straightforward and natural to translate the possible routes’ configurations
into tree structure. The first assumption made is that no baseline solution is
used and instead routes are built from scratch, i.e. at the beginning all vehicles
are located in the depot. This situation is represented by the root node. Going
one level down the tree corresponds to assigning one of the clients to a (specific)
vehicle. Thus, the height of the tree will be equal to the number of clients. Three
methods of making such assignments were analyzed:

– City-To-Vehicle (CTV) - each node has k child nodes, where k stands for
the number of vehicles. The i-th node corresponds to selection of the i-th
vehicle and appending the closest client at end of its current route;



Application of UCT to CVRP 683

– Vehicle-To-City (VTC) - each node has p child nodes, where p stands for
the number of unserved clients. The i-th node corresponds to the selection
of the i-th unserved client and appending it at the end of the route of the
currently closest vehicle;

– Vehicle-To-City Optimized (VTCO) - similar to VTC, but unserved
client is not automatically assigned to the closest vehicle. Instead, all current
routes (i.e. the partial routes of all vehicles) are analyzed in order to find the
place minimizing the insertion cost, i.e. the increase of a total routes length
due to the insertion of a new client. The client is then added at the specified
place.

The first two methods are naive while the third one was created as a result of
analysis of their weakness, i.e. proneness to client assignment order caused by the
rule of always appending clients at the end of a specified route. VTCO became
immune to this issue thanks to the best insertion place search.

Having resolved the first key issue, the next thing was to properly interpret
the result of a simulation. While it is trivial in games where (in majority of
them) the player can win, lose or draw, in CVRP one obtains a set of routes
(one per vehicle) and their total length as a solution. In order for the UCT
to expand the tree in the right directions, simulation results must be properly
classified as good/poor or promising/unpromising. The problematic issue here
is appropriate distinguishing of better routes from the worse ones. Assuming
that an approximation of the optimal solution is known (which is the case of
the benchmark problems used in this paper), the following formula of solution
assessment is proposed:

f(x) =

⎧⎪⎨
⎪⎩
1 for x < BEST

g(x) for BEST ≤ x ≤ 2 ·BEST

0 otherwise

(2)

where x is the assessed solution’s length, g(x) is the inner evaluation function and
BEST is the optimal solution length or its approximation. The inner function
defines the results’ gradation pattern, i.e. the policy of promoting and degrading
particular solutions. Three such functions

– Hyperbolic:

g(x) =
(2 ·BEST

x
− 1

)2

(3)

– Linear:
g(x) = 2− x

BEST
(4)

– Parabolic:
g(x) =

x

BEST

(
2− x

BEST

)
(5)

depicted in Fig. 2 were proposed by the authors. The hyperbolic function (3)
concentrates on promoting the very best results while ignoring poor and average
ones, the linear function (4) downgrades them proportionally, independent of a



684 J. Mańdziuk and C. Nejman

Fig. 2. Inner evaluation functions. From left: hyperbolic, linear and parabolic

distance to the optimal length and the parabolic one (5) has the widest range
of solutions which are promoted (treated as promising). As will be seen in the
results section the profile of the inner function has a crucial impact on the
method’s performance.

The last key issue is a suitable decision (node selection) strategy. After a
specified number of simulations, a proper choice of the next node (client-vehicle
assignment) must be made based on simulation data, i.e. fractions of won simu-
lations in child nodes. Using those one of the child nodes is selected and added to
the final solution. It also becomes a root node for the next series of simulations.
Three possible strategies were analyzed: best reward, simulations count,
two-phase method. The first two strategies are known approaches existing in
game domain.

In the best reward strategy, a child with the highest ratio of won simulations
to played simulations is chosen. In the simulations count strategy a child with
the highest visits count is chosen.

The two-phase method was invented by the authors based on critical analysis
of the usefulness of the first two node selection policies in CVRP domain. Please
observe that in the game playing suboptimal moves are generally acceptable since
the game can often still be won after making such a suboptimal choice. In CVRP,
however, assigning a client to a wrong vehicle usually means that the optimal
solution is no longer obtainable. In this respect, the best reward strategy or the
simulation count policy (both basing on high averages of simulation results) will
rather lead to a selection of a subtree containing many good solutions than a
subtree containing the best solution and some poor ones. In effect, making wrong
decision at the early stage of the algorithm will cost the loss of the optimal result.
Two-phase method was designed to partially alleviate this problem. In the first
phase child nodes are sorted in descending order based on their average reward
values (i.e. won/played ratio). Then, P best children are taken into account in the
second phase and among them the child node with the best (indivitwo) solution
found during simulations is selected. This way both the most promising regions



Application of UCT to CVRP 685

Table 1. Test instances. In the instance name X-nY-kZ, X∈ {A,B, P} denotes type
of a benchmark, Y its size, and Z the number of available vehicles

Instance #Clients #Vehicles Capacity Best solution (BEST )

P-n19-k2 19 2 160 212.66

P-n20-k2 20 2 160 220

P-n21-k2 21 2 160 211

P-n22-k2 22 2 160 216

P-n22-k8 22 8 3000 603

P-n23-k8 23 8 40 554

B-n43-k6 43 6 100 747.54

B-n45-k5 45 5 100 751

A-n60-k9 60 9 100 1408

P-n70-k10 70 10 135 834

A-n80-k10 80 10 100 1764

P-n101-k4 101 4 400 681

of a tree (in terms of average results) and the best indivitwo solution found in
these regions are taken into account by the node selection policy.

4 Experimental Setup and Results

Experiments were conducted using selected instances of CVRP obtained from
[17] whose basic parameters are presented in Table 1. The solution for one of
the considered benchmark sets is presented in Fig. 3. The following algorithm
parameters’ settings were tested:

Fig. 3. Solution for the A-n80-k10 benchmark problem

– Assignment method: CTV, VTC, VTCO;
– Inner evaluation function g(x) in (2): hyperbolic, linear, parabolic;
– Decision strategy: best reward, simulations count, two-phase method;
– Exploration factor C in (1);



686 J. Mańdziuk and C. Nejman

Table 2. Comparison of top-5 results (in terms of the average results of 50 tests)
obtained with CTV, VTC and VTCO methods in test instance with 19 clients and 2
vehicles (P-n19-k2)

Decision C AVG SD MIN MAX Evaluation

City-To-Vehicle

Simulations 0.5 294.719 21.752 248.764 343.572 Hyperbolic

Simulations 0.2 296.479 23.304 248.764 352.021 Hyperbolic

Reward 1 296.955 22.463 248.764 341.348 Linear

Reward 2 297.347 20.806 248.764 341.348 Linear

Reward 0.2 298.018 22.531 248.764 341.348 Linear

Vehicle-To-City

Reward 1 252.304 5.313 243.402 261.811 Hyperbolic

Reward 0.2 252.933 4.514 243.402 264.302 Hyperbolic

Reward 0.5 253.459 4.035 243.402 261.811 Hyperbolic

Reward 0.5 253.496 3.360 243.402 263.906 Hyperbolic

Reward 0.2 253.600 3.013 243.402 261.811 Hyperbolic

Vehicle-To-City Optimized

Reward 2 222.867 4.975 217.964 239.946 Hyperbolic

Reward 1.5 229.535 0 229.535 229.535 Hyperbolic

Reward 0.5 230.018 2.066 226.159 233.636 Hyperbolic

Reward 5 235.741 0 235.741 235.741 Hyperbolic

Reward 15 235.741 0 235.741 235.741 Hyperbolic

– Parameter P in two-phase method: constant value (P = 5) or variable se-
lection dependent on the number of clients (P = 0.25· #Clients).

The number of UCT simulations performed on a single tree level was adaptive
and equal to 50 000 on the first (top) level, then was falling linearly down to
5 000 on the penultimate level. Please recall that the number of levels equals the
number of clients.

The following data was collected during the experiments: AV G (the average
value of results), SD (the standard deviation of results), MIN (the best result
found), MAX (the worst result found), EFF (the number of times the MIN
result was found). Each experiment consisted of 50 tests based on which the
above-mentioned statistics were calculated. Additionally, in the last experiment
(summarized in Tables 4 and 5), the ranges of results were analyzed, e.g. 0.5%
stands for the number of results falling into the interval [MIN,MIN(1+0.5%)].

The first set of tests was performed for the smallest (thus computationally in-
expensive) benchmark P-n19-k2 and aimed at selection of appropriate ranges or
exact settings of the main steering parameters. For each combination of (assign-
ment method, C, inner evaluation function) 50 tests were performed for each of
the three main problem mappings: CTV, VTC, VTCO. The values of C belonged
to the set {0.2, 0.5, 1.0, 1.5, 2.0, 5.0, 15.0}. The top-5 results for each mapping are
presented in Table 2. The results show that VTCO outperforms both CTV and
VTC representations. Not only the average scores are better but also stability,
measured by standard deviation is clearly superior. Nevertheless obtained results
are far from optimal. This led to analysis and design of two-phase method.



Application of UCT to CVRP 687

Table 3. Results of two-phase method with VTCO in test instance with 19 clients
and 2 vehicles. Column EFF denotes the number of trials in which the MIN value was
found in the respective 50 tests.

Decision C AV G SD MIN MAX Evaluation EFF

Two-phase 0.5 219.845 2.396 212.657 220.643 Hyperbolic 4

Two-phase 1.5 213.793 3.409 212.657 224.02 Hyperbolic 45

Two-phase 5 215.39 4.266 212.657 224.02 Hyperbolic 35

Two-phase 15 214.254 3.194 212.657 220.643 Hyperbolic 41

Two-phase 0.5 218.799 4.333 212.657 226.159 Linear 16

Two-phase 1.5 213.456 2.396 212.657 220.643 Linear 46

Two-phase 5 212.657 0 212.657 212.657 Linear 50

Two-phase 15 212.657 0 212.657 212.657 Linear 50

Based on these initial outcomes we decided to use the two-phase decision
strategy and VTCO mapping as well as to skip parabolic inner evaluation func-
tion in further tests. We also restricted the tested values of C parameter to the
set {0.5, 1.5, 5.0, 15.0}. The results for each combination of (C, inner evaluation
function) for two-phase VTCO are presented in Table 3. Two-phase method
proved to be clearly the most efficient among tested approaches for the P-n19-
k2 instance. The AVG values are within a few per cent points from the BEST
value and in two cases (5, linear) and (15, linear) all 50 tests ended with the
BEST score. While VTCO representation and two-phase decision strategy are
clearly better than the competitive approaches, the inner evaluation functions
do not have such leader. Apart from parabolic function, which gave very poor re-
sults, hyperbolic and linear functions have both their better and worse outcomes,
however, more data is needed to form any firm conclusion in this matter.

Using the best configuration found, i.e. VTCO representation, two-phase
method, hyperbolic and linear evaluation functions and high exploration fac-
tors (C=5, 15), the final tests were performed on an ensemble of test instances.
The results are presented in Table 4.

The final experiments show that the two-phase VTCO method with proposed
configuration performs well on a wide range of test instances. However, there is
still room for potential improvement. First of all, it is difficult to tell the influence
of P parameter on the test results. In small-size problems a difference between
constant value and a calculated one (P = 0.25·#Clients) is minimal. In larger
sets no rule can be found as in some tests one option is clearly better while in
others it is the other way round. As for the evaluation functions, the situation
is similar. For both choices there exist test instances where one is visibly better
than the other. Linear function seems to work better for large test instances.
Generally speaking, higher exploration factor (C) values provide better results.
On the other hand, there are still some cases where the situation is the opposite.
Most probably this can be attributed to too large increase of this parameter and
therefore some intermediate values of C should be used instead. On a general
note, the results support the claim that two-phase method can be regarded as
efficient application of the UCT algorithm to solving CVRP. In order to compare



688 J. Mańdziuk and C. Nejman

Table 4. Top-3 results of VTCO with two-phase method. Columns denoted k% present
the numbers of results falling into the interval [MIN,MIN(1 + k%)]

Instance C P Evaluation AVG SD MIN MAX EFF 0.5% 1% 2.5% 5%

P-n19-k2 15 5 Linear 217.367 2.189 212.657 222.387 4 4 4 36 48

15 4 Linear 217.378 2.735 212.657 222.627 7 7 7 38 48

5 4 Linear 217.53 2.821 212.657 222.627 6 6 6 39 46

P-n20-k2 5 5 Hyperbolic 217.416 0 217.416 217.416 50 50 50 50 50

15 5 Hyperbolic 217.416 0 217.416 217.416 50 50 50 50 50

5 5 Linear 217.469 0.212 217.416 218.309 50 50 50 50 50

P-n21-k2 5 5 Hyperbolic 212.712 0 212.712 212.712 50 50 50 50 50

5 5 Linear 212.712 0 212.712 212.712 50 50 50 50 50

15 5 Hyperbolic 212.712 0 212.712 212.712 50 50 50 50 50

15 5 Linear 212.712 0 212.712 212.712 50 50 50 50 50

P-n22-k2 5 5 Hyperbolic 217.852 0 217.852 217.852 50 50 50 50 50

5 5 Linear 217.852 0 217.852 217.852 50 50 50 50 50

15 5 Hyperbolic 217.852 0 217.852 217.852 50 50 50 50 50

15 5 Linear 217.852 0 217.852 217.852 50 50 50 50 50

P-n22-k8 5 5 Linear 605.833 4.681 601.424 616.633 7 30 34 49 50

5 5 Hyperbolic 606.441 4.743 601.424 616.639 7 23 31 48 50

15 5 Linear 611.746 7.282 601.424 628.255 5 12 15 35 50

P-n23-k8 5 5 Hyperbolic 534.665 5.033 531.174 555.088 17 33 38 47 50

5 5 Linear 535.522 5.540 531.174 558.924 12 29 38 46 49

15 5 Hyperbolic 536.290 7.687 531.174 575.287 5 21 39 47 48

B-n43-k6 15 10 Linear 771.621 9.230 760.211 803.806 1 14 21 42 49

5 10 Linear 771.624 7.843 756.949 790.680 1 4 9 39 50

5 10 Hyperbolic 771.903 7.320 747.891 790.981 1 1 1 12 49

B-n45-k5 5 5 Hyperbolic 773.888 6.690 760.315 790.599 1 4 9 38 50

5 11 Hyperbolic 773.967 6.287 756.580 797.029 1 1 1 32 49

5 11 Linear 775.486 6.262 763.029 790.939 1 4 11 42 50

A-n60-k9 15 15 Hyperbolic 1460.932 30.257 1390.822 1533.801 1 2 3 4 27

5 15 Linear 1461.015 30.044 1406.876 1524.494 1 2 7 13 34

15 15 Linear 1465.919 27.417 1402.179 1526.206 1 1 2 8 29

P-n70-k10 5 17 Linear 929.452 18.142 879.660 965.643 1 1 1 5 17

5 17 Hyperbolic 933.520 17.375 898.108 969.764 1 2 3 11 37

5 5 Linear 933.928 22.629 889.544 990.779 1 2 3 9 27

A-n80-k10 5 20 Hyperbolic 1940.641 30.098 1889.752 2009.415 1 5 9 26 45

15 20 Hyperbolic 1941.046 28.495 1883.619 2013.686 1 2 2 22 45

5 20 Linear 1943.568 35.479 1882.487 2012.718 1 3 5 22 42

P-n101-k4 5 5 Hyperbolic 730.058 6.899 712.358 748.911 1 1 2 26 49

5 5 Linear 730.617 7.238 714.500 747.140 1 2 6 32 50

15 5 Hyperbolic 732.697 6.322 718.433 748.421 1 2 7 35 50

the results with an external approach adequate tests with a simplified version
of the 2-phase PSO method [18,19] were performed on same test instances. The
results are presented in Table 5.

A comparison of results presented in Tables 4 and 5 shows that the overall
results of 2PSO are a few percent points better than those of UCT, especially
for larger problem instances. It should be noted, however, that 2PSO is a highly
complex optimization approach which uses both PSO and 2-opt local optimiza-
tion. Moreover, the differences are relatively small, even though only the baseline
UCT implementation was tested in our approach, which did not include any en-
hancements, commonly used in games domain. Hence, we believe that proposed
approach has potential which we plan to continue investigating in our future
research.



Application of UCT to CVRP 689

Table 5. Test results of a simplified version of a 2-phase PSO approach

Test AVG MIN MAX EFF 0.5% 1% 2.5% 5%

P-n19-k2 213.13 212.66 226.02 45 45 45 50 50

P-n20-k2 219.94 219.94 219.94 50 50 50 50 50

P-n21-k2 213.26 212.71 218.31 46 46 50 50 50

P-n22-k2 220.05 217.85 225.68 38 38 49 49 50

P-n22-k8 607.01 600.83 742.12 32 34 46 46 50

P-n23-k8 531.17 531.17 531.17 50 50 50 50 50

B-n43-k6 757.82 746.98 871.31 1 15 29 48 50

B-n45-k5 766.72 754.22 921.59 3 13 20 43 50

A-n60-k9 1415.51 1374.83 1700.44 1 3 11 42 49

P-n70-k10 896.18 846.66 1132.65 1 1 2 18 39

A-n80-k10 1888.69 1796.51 2272.38 1 1 4 13 38

P-n101-k4 719.25 706.19 827.07 1 4 18 46 50

5 Conclusions and Future Work

In this paper, a novel approach to solving the NP-Hard CVRP based on the
UCT method was proposed and experimentally evaluated. In order to adapt
the UCT formulation to this new problem domain a two-phase node selection
procedure, which breaks the classical UCT selection scheme, was proposed and
experimentally verified. With larger exploration factors and appropriate choice of
the internal evaluation function the results are very promising and only slightly
inferior to those accomplished by a complex two-phase PSO algorithm.

In the future we plan to verify the efficiency of several UCT modifications
(commonly used in games) in CVRP domain, e.g. Rapid Action Value Esti-
mation [8] or weighted simulations [21]. We believe that application of the en-
hancements which proved to be efficient in games domain may lead to further
improvement of the CVRP results and strengthen the claim about potential
applicability of the UCT method beyond games.

Acknowledgements. The research was financed by the National Science Cen-
tre in Poland, based on the decision DEC-2012/07/B/ST6/01527.

References

1. Breedam, A.V.: An analysis of the behavior of heuristics for the vehicle routing
problem for a selection of problems with vehicle-related, customer-related, and
time-related constraints. Ph.D. thesis, University of Antwerp, Belgium (1994)

2. Chaslot, G., Winands, M.H.M., Szita, I., van den Herik, H.J.: Cross-Entropy for
Monte-Carlo Tree Search. ICGA Journal (3), 145–156 (2008)

3. Clarke, G., Wright, J.: Scheduling of vehicles from a central depot to a number of
delivery points. Operations Research 12(4), 568–581 (1964)

4. Dantzig, G.B., Ramser, J.: The truck dispatching problem. Management
Science 6(1), 80–91 (1959)

5. Dorigo, M.: Optimization, Learning and Natural Algorithms. Ph.D. thesis,
Politecnico di Milano (1992)

6. Eilon, S., Watson-Gandy, C., Christofides, N.: Distribution Management:
Mathematical Modelling and Practical Analysis, 1st edn., Griffin (January 1976)



690 J. Mańdziuk and C. Nejman

7. Fisher, M., Jaikumar, R.: A Decomposition Algorithm for Large-scale Vehicle
Routing. Paper / Department of Decision Sciences, Wharton School, University of
Pennsylvania, Philadelphia, Pa. Dep. of Decision Sciences, Wharton School, Univ.
of Pennsylvania (1978)

8. Gelly, S., Silver, D.: Monte-carlo tree search and rapid action value estimation in
computer go. Artificial Intelligence 175(11), 1856–1875 (2011)

9. Genesereth, M.R., Love, N., Pell, B.: General game playing: Overview of the aaai
competition. AI Magazine 26(2), 62–72 (2005)

10. Gillett, B., Miller, L.: A heuristic algorithm for the vehicle dispatch problem.
Operations Research 22(2), 340–349 (1974)

11. Lenstra, J.K., Rinnooy Kan, A.R.K.: Complexity of vehicle routing and scheduling
problems. Networks 11, 221–227 (1981)

12. Khouadjia, M.R., Alba, E., Jourdan, L., Talbi, E.-G.: Multi-Swarm Optimization
for Dynamic Combinatorial Problems: A Case Study on Dynamic Vehicle Routing
Problem. In: Dorigo, M., et al. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 227–238.
Springer, Heidelberg (2010)

13. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz,
J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212,
pp. 282–293. Springer, Heidelberg (2006)

14. Mańdziuk, J.: Knowledge-Free and Learning-Based Methods in Intelligenet Game
Playing. SCI, vol. 276. Springer, Heidelberg (2010)

15. Mańdziuk, J.: Towards cognitively-plausible game playing systems. IEEE Compu-
tational Intelligence Magazine 6(2), 38–51 (2011)

16. Christofides, N., Mingozz, A., Exact, P.T.: algorithms for the vehicle routing
problem, based on spanning tree and shortest path relaxations. Mathematical
Programming 20(1), 255–282 (1981)

17. Networking, N.: Emerging Optmization (2013), http://neo.lcc.uma.es/vrp/
vrp-instances/capacitated-vrp-instances/

18. Okulewicz, M., Mańdziuk, J.: Application of Particle Swarm Optimization Algo-
rithm to Dynamic Vehicle Routing Problem. In: Rutkowski, L., Korytkowski, M.,
Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part
II. LNCS(LNAI), vol. 7895, pp. 547–558. Springer, Heidelberg (2013)

19. Okulewicz, M., Mańdziuk, J.: Application of Particle Swarm Optimization Al-
gorithm to Dynamic Vehicle Routing Problem. In: Proceedings of the 2nd IEEE
Symposium on Computational Intelligence for Human-Like Intelligence, pp. 86–93.
IEEE Press (2014)

20. Świechowski, M., Mańdziuk, J.: Self-adaptation of playing strategies in gen-
eral game playing. IEEE Transactions on Computational Intelligence and AI in
Games 6(4), 367–381 (2014)

21. Xie, F., Liur, Z.: Backpropagation modification in monte-carlo game tree search. In:
IITA 2009 Proceedings of the 2009 Third International Symposium on Intelligent
Information Technology Application, vol. 2, pp. 125–128 (2009)

http://neo.lcc.uma.es/vrp/vrp-instances/capacitated-vrp-instances/
http://neo.lcc.uma.es/vrp/vrp-instances/capacitated-vrp-instances/

	UCT-Based Approach to Capacitated Vehicle Routing Problem
	1 Introduction
	2 CVRP Formulation
	3 UCT Search Tree Method
	4 Experimental Setup and Results
	5 Conclusions and Future Work


