
Swarm Intelligence in Solving Stochastic

Capacitated Vehicle Routing Problem

Jacek Ma«dziuk1,2 and Maciej �wiechowski3

1 Faculty of Mathematics and Information Science, Warsaw University of Technology,
Warsaw, Poland, mandziuk@mini.pw.edu.pl

2 School of Computer Science and Engineering, Nanyang Technological University,
Singapore, j.mandziuk@ntu.edu.sg

3 Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland,
m.swiechowski@ibspan.waw.pl

Abstract. In this paper, the two most popular Swarm Intelligence ap-
proaches (Particle Swarm Optimization and Ant Colony Optimization)
are compared in the task of solving the Capacitated Vehicle Routing
Problem with Tra�c Jams (CVRPwTJ). The CVRPwTJ is a highly
challenging optimization problem for the following reasons: while the
CVRP is already a problem of NP complexity, adding another stochas-
tic layer to its de�nition (related to stochastic occurrence of tra�c jams
while traversing the planned vehicle routes) further increases the prob-
lem's di�culty by requiring that potential solution methods be capable
of on-line adaptation of the routes, in response to changing tra�c con-
ditions. The results presented in the paper shed light on the underlying
di�erences between ACO and PSO in terms of their suitability to solving
particular instances of CVRPwTJ.

Keywords: Vehicle Routing Problem, Tra�c Jams, Particle Swarm Optimiza-
tion. Ant Colony Optimization, Imperfect Information

1 Introduction

Capacitated Vehicle Routing problem (CVRP) is a popular NP-complete op-
timization problem which consists in �nding the set of routes of a minimum
cumulative length (cost) for a given number of trucks that serve a given set of
clients. All trucks start from and ultimately return to a pre-de�ned depot (with
a certain 2D location). Each client is de�ned by its location on a plane and an
amount of goods (a demand) to be delivered to them in one shot (a client cannot
be served by multiple trucks). Each truck has some pre-de�ned capacity and all
trucks (as well as goods to be delivered) are homogenous. In short, the problem
combines the multiple-tour Traveling Salesman Problem with the Bin Packing
Problem. For its formal de�nition please refer, for example, to [10].

There are many approaches rooted in Operation Research or Computational
Intelligence which can be applied to solve the CVRP (see, for instance, [10] for
their overview).



In this paper, similarly to [9], the baseline problem formulation is extended
by adding tra�c jams which may occur on the edges (atomic parts of the routes)
and therefore increase the cost of their traversal. This extension leads to the Ca-
pacitated Vehicle Routing problem with Tra�c Jams (CVRPwTJ) speci�cation.
Due to highly dynamic nature of CVRPwTJ, the methods used to solving it must
be able to swiftly adapt to the on-line changes in the cost function (the cost of
currently planned routes) due to frequently changing tra�c conditions.

The proposed idea of solving the CVRPwTJ is based on the concept of Swarm
Intelligence (SI) which consists in having a population of simple objects that en-
code solutions to the problem in the search space. These objects iteratively com-
municate and in�uence each other, which enables them to modify the encoded
solution. Each object has relatively simple rules and goals and the complexity
of the system is an emergent feature resulting from maintaining a swarm as a
whole. Two such metaheuristic SI methods are employed: Ant Colony Optimiza-
tion [2] (which uses the notion of an ant as the baseline element of the swarm)
and Particle Swarm Optimization (PSO) [4] (which refers to a particle as an
atomic object).

2 ACO in CVRPwTJ

Our implementation of the ACO approach is inspired by a classical algorithm
used to solve the Traveling Salesman Problem [2, 3] which was adjusted to take
into account the CVRP speci�city [1, 11] and furthermore the stochastic nature
of the CVRPwTJ stemming from the existence of tra�c jams in the problem
de�nition. The approach was initially proposed and described in detail in our
previous work [9] devoted to comparison of ACO and the Upper Con�dence
Bounds Applied to Trees (UCT) method [7]. In this section the ACO-based
algorithm presentation is limited to introduction of its main components. For
the full coverage and in-depth description of the method please refer to [9].

Assuming that the number of available trucks is equal to k, the initial solution
is computed by the modi�ed Clark and Wright (CW) Savings algorithm [13] and
used to deposit the initial pheromone traits on the initial k routes. Then, in each
time step of the algorithm, each ant seeks the solution for the remaining part of
the problem (i.e., the complete routes for k vehicles) using the current solution
as the starting point (state). Once the solution is found, its quality is evaluated
based on the cumulative length of all k routes and the pheromone is deposited
on the route's segments.

For each of the k routes, the ant starts its search in the current vehicle's
position and looks for the next most suitable customer to be added to the route
according to the current pheromone traits and considering the current (stochas-
tic, due to the existence of TJ) cost of traversing particular edges. If the space
left on the truck is not su�cient to serve any of the remaining customers or
all edges from the current position to the remaining customers are jammed, the
truck returns to the depot to accommodate the left customers within a new
route.



A pseudo-roulette is used to select the next customer to be visited by an
ant. The greedy selection (i.e., of the closest, in terms of dynamic cost, yet not
visited client) takes place with probability 0.05. Otherwise, the roulette-wheel
method is applied, which selects customer j while being currently at customer i
with the following probability:

pij =
ταij ∗ η

β
ij∑

ij(τ
α
ij ∗ η

β
ij)

ηij = (BASE/dij)
2 (1)

where τij is pheromone amount deposited on edge eij and dij is the dynamic
(tra�c-aware) cost of traversing this edge at the moment. BASE is a normal-
ization factor equal to the length of the initial (static) solution. Coe�cients α
and β were set to 2 and 3, respectively, based a limited number of preliminary
tests.

Once solutions are found by all ants in the current iteration, the pheromone
deposit on the edge eij is incremented in the following way:

∆τij =
∑
a

δij(BASE/Da)
2 (2)

where Da denotes a cost of solution s(a) found by ant a, and δij can take one of
the three values: 0, if eij /∈ s(a); 10, if eij ∈ s(a) but s(a) is not the best overall
solution; 20, if eij ∈ s(a) and s(a) is the generally best current solution (among
all solutions found by the ants in the current iteration).

The �nal step in the pheromone update procedure is the evaporation, which
is de�ned at the level of 90% of the previous amount (due to high degree of
system's dynamism) and then con�ned to the prede�ned interval [τmin, τmax] by
Confτmax

τmin
:

τij := Confτmax
τmin

(0.1 ∗ τij +∆τij) (3)

Once the last iteration is completed by all ants in a given time step, the best
overall solution is found and used to move the trucks one step ahead (to the next
client) according to the schedule represented by this solution. At the beginning
of the next step, the best solution is left out, the pheromone traits are reset, new
TJ are distributed, and the system proceeds with solving the next step of the
problem. Please note, that resetting pheromone traits after each main simulation
step, i.e., when the new TJ are imposed on the routes, is indispensable, since
the problem is highly dynamic and traces from the previous step are misleading.
This necessity was fully con�rmed in the preliminary simulations.

3 PSO in CVRPwTJ

In this section, the proposed approach to CVRPwTJ with the use of PSO meta-
heuristic is presented and discussed in detail.



3.1 Problem Encoding

We use one of the standard CVRP encodings presented in the literature [6, 5],
in which a population of M particles is maintained, and each particle is encoded
as a vector of length N , where N is the number of yet unvisited customers.
Each position in the vector is associated with a particular customer's ID. This
association, i.e., positionIndex ↔ customerID is maintained by means of a
dictionary (see section 3.2 for the details).

3.2 Initial Population

The modi�ed CW algorithm [13] is used to obtain the initial solution to the
static problem, i.e., a set of initial routes. The dictionary, which maps indices
of the particle encoding vector to customers' IDs is populated in the following
way:

int index = 0

for each route R in the initial solution

for each customer C in R

dictionary.Add(index, C)

index = index+1

Whenever a customer is visited by a vehicle, the dictionary is updated in a
way that it maintains the original order, but uses only indices that are smaller
than the number of unvisited customers (i.e., {0, . . . , N − 1}). More precisely,
if a given customer is visited, and consequently should be dropped from the
remaining schedule, all subsequent customers are shifted to the left (assuming
the schedule is sorted from left to right). The idea is depicted in Figure 1.

In order to induce diversity within the swarm, only 20% of particles are
dedicated to encoding the initial solution. The remaining 80% are initialized
randomly and afterwards undergo the corrective procedure (c.f. section 3.5) if
needed, followed by a local optimization phase by means of 2-OPT algorithm [8].

3.3 Operational scheme of the proposed method

The algorithm solves the problem iteratively, in discrete time steps. A pseu-
docode of one time step of the method is listed in Algorithm 1.

In each step (which corresponds to atomic movement of vehicles to their
next assigned customers) the best solution from the previous step is reset and a
series of MAXPSO iterations is executed. For each particle, its velocity and new
position are calculated (the details are presented in the next subsection) and then
the vehicles' routes are decoded to a vehicle-centric representation that allows
immediate analysis of the routes. Particles containing at least one route (one
vehicle), which does not obey the maximum capacity constraint, are marked as
invalid and undergo a corrective procedure (discussed in details in section 3.5).

In the next step, for each valid particle (either initially or after correction), a
2-OPT local optimization procedure is executed. The best particle, i.e., the one



Fig. 1. The top row presents an encoding of a sample solution (3 vehicles and 9 un-
served customers) stored in a particle. In the middle part a corresponding sample
dictionary state is shown with the customers (7, 2, . . . , 8, 6) indexed from 0 to 8. The
lowest encoding corresponds to the situation after the �rst customers assigned to ve-
hicles 1, 2 and 3 (i.e., number 7, 1 and 9) have been visited and removed from the
schedule. All the remaining customers are shifted to the left and their corresponding
indices are renumbered to (0, . . . , 5).

having the lowest total cost of routes, is stored. Once the MAXPSO iterations
are over, the vehicles move to the next customers based on the encoding kept by
the best particle.

3.4 Position and Velocity Update

The position of particle x at step t + 1 is updated according to the following
equation:

xit+1 = (xit + vit) mod K (4)

where xit and v
i
t are the ith components of a particle's position at time step t and

particle's velocity at time step t, respectively, and K is the number of available
vehicles.

Particle's velocity is updated according to the following equation:

vit+1 = inertia ∗ vit + u
(1)
[0;g](xgBest − x

i
t) + u

(2)
[0;l](xlBest − x

i
t) (5)

where inertia is a factor that speci�es how much of the previous velocity is
retained; xgBest is the global best solution found so far; xlBest is the local best
solution (i.e., the one found by the current particle), g and l are global and local
attractors, respectively, and u(1)[0;g] and u

(2)
[0;l] denote random variables drawn from

the uniform distribution bounded by g and l, respectively.



Algorithm 1: A pseudocode of the PSO method. Procedures for calcu-

lating velocity and updating position are described in section 3.4. Decode

routes and repair procedures are discussed in section 3.5.

1 set iteration := 0;
2 Reset BestParticle;
3 while iteration < MAXPSO do
4 forall particle in Particles do
5 calculate velocity of particle;
6 update position of particle;
7 decode routes in particle;
8 if particle is not valid then
9 repair particle;

10 end
11 if particle is valid then
12 run 2-OPT for particle;
13 if cost of particle < cost of BestParticle then
14 BestParticle := particle;
15 end

16 end

17 end

18 end

3.5 Corrective Procedure

The DecodeRoutes procedure starts with an empty set of routes and iterates
over the vehicleIDs stored in the particle encoding vector. For each vehicleID
it consults the dictionary to identify the client associated with the current index
and appends them to the route of vehicle vehicleID.

The above-described decoding process may create routes for which the total
sum of customers' requests exceeds available capacity, in which case the cor-
rective Repair procedure is executed. Please note, that the available capacity
depends on two factors: the sum of all requests of customers that have already
been visited and those who are planned to be visited � the corrective procedure
can only in�uence the not yet visited customers. In the following description of
the corrective procedure each vehicle with exceeded capacity will be referred to
as ILV (illegal vehicle) and the remaining ones as LV (legal vehicles).

1) First, ILVs are identi�ed.
2) For each ILV, a minimal number of customers, removal of whom would re-

sult in a highest capacity within the allowed limit, is identi�ed. First, the
algorithm tries to remove one customer starting from the one with the lowest
requested amount. If it �nds a legal situation, it stops. If it does not, it will
investigate all pairs (again starting from the pair with the lowest cumulative
requested amount), etc.



3) The identi�ed sets of customers for each ILV are candidates for transfer to
other vehicles. Let us denote such sets of customers as TSETi, where i is a
vehicle's identi�er.

4) An outerList is created, which contains all vehicles, sorted in descending
order, by cumulative amount of requests in TSETi. The initially LV have the
TSETi empty, therefore will be placed at the end of the list.

5) An innerList is created, which contains all vehicles, sorted in descending
order, with respect to their available space. In this step, the customers in
TSETi are ignored.

6) In a double loop possible transfers between two vehicles are investigated.
The outer loop iterates over outerList, whereas the inner loop iterates over
innerList. The transfer algorithm is described below. If a transfer leads to a
legal situation (both vehicles' capacities are within the limit) it is applied.

7) If there are still vehicles with exceeded capacity, the algorithm will allocate
requests from the respective TSETi to new vehicles. If there are not enough
available vehicles to allocate all requests, then the particle is marked as invalid
in the current iteration of the PSO procedure. Such a particle may potentially
be repaired in subsequent iterations.

The transfer algorithm in point 6) above investigates, in a �xed order, three
possibilities of exchanging customers between two given vehicles (say k and l).
It returns success as soon as it �nds the �rst legal situation, i.e., capacities of
both vehicles are below the limit.

6a) Cross-pairing: customers from TSETk and TSETl are appended to the cus-
tomers of vehicles l and k, respectively.

6b) After performing the cross-pairing, all customers from a more loaded vehicle
(by means of a sum of requests) are one-by-one tried to be transferred to
the other vehicle starting from the biggest request.

6c) After performing the cross-pairing, all pairs of customers, one per vehicle,
are tried to be exchanged starting from the biggest requests.

4 Experimental Setup

Both methods are directly compared based on a set of widely-known benchmarks
taken from the literature (see 4.2 for their exact selection). While the common
benchmark instances are static (their de�nition does not include dynamic ele-
ments, such as tra�c jams), they are extended to dynamic versions by adding,
stochastically distributed, tra�c jams. More precisely for each benchmark set,
at each time step t a tra�c jam of intensity It can be imposed on each edge with
probability P , independently of other edges.

The following ranges of TJ intensity were tested: P ∈ {0.02; 0.05; 0.15},
It = UINT [10, 20], Lt = UINT [2, 5], where UINT [a, b] denotes random uniform
selection of any integer x such that a ≤ x ≤ b and Lt(e) denotes a duration of a
TJ.



For each of the three values of P and each benchmark set 50 pairwise inde-
pendent distributions of TJ were samples and used in the experiments. Conse-
quently, for both ACO and PSO we obtained 50 independent results (for pairwise
the same sets of TJ distributions) which were subsequently averaged to yield the
�nal score.

4.1 Steering parameters

Both methods are used with the best parameterizations we were able to �nd.
This methods' calibration was performed based on initial tests on 7 benchmarks
and 30 trials per benchmark (please recall that the �nal experimental setup
included 19 benchmarks, each tested 50 times).

ACO algorithm was run with a population of max(100, 2n) ants (where n is
the size of a benchmark set), for MAXACO iterations. MAXACO was set to 200
for benchmarks of size n < 70 and to 75 for benchmarks with n ≥ 70.

PSO method was run forMAXPSO = 200 iterations with the number of par-
ticles equal to 150 (for all benchmark sizes). The remaining steering parameters
in equation (5) were set as follows: inertia = 0.3, l = 0.3, g = 0.6.

The above parameters, for both methods, were selected based the assumed
reasonable time allotted for reaching the solution. Clearly, there is still possibility
of improvement of results with bigger populations (either of ants or particles),
but we believe that the current setup provides a good estimation of the general
quality of both approaches, and what is more important, based on the execution
times comparison it can be concluded that the selection is fair, i.e., not biased
towards any of the two proposed and investigated approaches.

4.2 Benchmark problems

A set of 19 benchmark instances for the static CVRP problem was downloaded
from the webpage [12]. Dynamic tra�c jams were added to these benchmarks
according to the procedure described above in this section. In order to maintain
diversity, those instances were chosen from �ve sets proposed by: Augerat et al.
(3 instances of �type A� and 3 of �type P�); Christo�des and Eilon (2 instances);
Fisher (3 instances); Christo�des, Mingozzi and Toth (2); Christo�des (1), and
Taillard (5). The number of customers in the selected benchmarks varies from
19 to 150 and the number of vehicles (routes) required to construct the initial
solution is between 2 and 14. Moreover, the distributions of clients requests' sizes
and their locations vary signi�cantly from benchmark to benchmark.

5 Results

The results are presented in Table 1. First of all, a clear advantage of both
proposed approaches over the static solution based approach can be observed.
While this is an expected result, it is, nevertheless, worth noting that the im-
provement stemming from application of noise-adaptive methods (ACO, PSO),
is quite signi�cant, around 3-4 times, in most of the cases.



Table 1. The average values and standard deviations (in parentheses) across 50 trials.
The Static column presents application of the initial solution (found at step 0, without
any TJ imposed yet) applied to (a dynamic version of) a benchmark set. The best result
for each pair (instance, P ) are bolded.

P Instance Static (σ) ACO (σ) PSO (σ) Instance Static (σ) ACO (σ) PSO (σ)

0.02 P19 388.9 (214.9) 281.2 (46.9) 251.8 (10.9) E76 1318.7 (295.5) 746.0 (54.4) 764.0 (32.6)
0.05 P19 612.0 (213.3) 311.8 (93.1) 326.1 (23.1) E76 2130.0 (460.4) 826.7 (159.9) 887.0 (39.8)
0.15 P19 1278.0 (358.9) 391.2 (155.9) 541.3 (61.3) E76 4536.7 (838.0) 1037.2 (264.3) 1444.9 (68.9)
0.02 P45 1007.7 (326.2) 607.6 (53.9) 590.9 (20.7) A80 2774.1 (625.2) 1907.1 (146.7) 1937.9 (58.4)
0.05 P45 1759.6 (411.9) 682.0 (74.4) 740.9 (35.7) A80 4100.6 (830.1) 2003.3 (442.6) 2383.4 (121.9)
0.15 P45 3299.5 (733.3) 949.7 (281.7) 998.0 (54.3) A80 9066.5 (1437.4) 3161.8 (829.6) 3723.5 (141.7)
0.02 F45 1515.9 (703.3) 761.5 (75.8) 771.1 (33.7) Tai100a 3615.6 (849.4) 2316.3 (227.3) 3236.5(296.1)
0.05 F45 2078.7 (949.0) 831.1 (159.3.) 836.4 (77.5) Tai100a 5238.7 (1028.2) 2875.4 (420.3) 3390.6 (511.1)
0.15 F45 5060.3 (1519.1) 1138.8 (416.4.) 1103.6 (186.4) Tai100a 11029.6 (1717.2) 4788.9 (903.9) 3737.4 (953.4)
0.02 E51 989.2 (240.6) 614.1 (40.0) 637.0 (22.2) Tai100b 3425.1 (938.7) 2339.2 (337.3) 2973.0 (388.8)
0.05 E51 1571.6 (386.3) 650.1 (50.4) 778.9 (40.5) Tai100b 5246.1 (1084.6) 3201.0 (506.4) 3155.9 (586.9.)
0.15 E51 3509.7 (824.7) 789.9 (174.8) 1215.3 (70.2) Tai100b 10660.1 (1713.1) 5141.9 (940.0) 3739.6 (953.4)
0.02 A54 1939.2 (542.7) 1338.7 (84.0) 1260.5 (41.3) chmt100 792.3 (291.5) 469.3 (91.3) 467.3 (27.2)

0.05 A54 3072.4 (887.7) 1456.4 (286.0) 1418.0 (77.9) chmt100 1178.7 (409.5) 538.3 (103.9) 543.4 (58.4)
0.15 A54 6275.0 (1441.9) 1829.0 (519.4) 1901.0 (139.2) chmt100 2471.9 (549.1) 872.9 (319.8) 730.0 (116.9)

0.02 A69 2005.7 (531.8) 1395.9 (96.7) 1297.4 (43.3) P101 1436.5 (262.6) 846.8 (69.2) 809.1 (25.4)

0.05 A69 3235.4 (644.1) 1538.1 (294.5) 1668.3 (103.0) P101 5 2552.0 (547.3) 893.8 (127.3) 931.0 (38.2)
0.15 A69 6631.7 (1437.4) 2096.4 (588.4) 2634.0 (173.1) P101 5419.6 (801.5) 1375.0 (322.2) 1327.7 (81.9)

0.02 F72 445.3 (133.1) 292.3 (27.0) 273.0 (17.2) F135 2062.4 (484.0) 2976.6 (125.3) 1301.4 (261.2)
0.05 F72 712.9 (211.4) 424.2 (64.9) 313.5 (43.3) F135 3390.7 (962.8) 3211.8 (240.0) 1532.4 (256.6)
0.15 F72 1502.3 (279.6) 537.6 (119.3) 455.5 (60.7) F135 6945.8 (1410.6) 1936.6 (654.7) 2141.4 (423.4)
0.02 Tai75a 2781.6 (1015.3) 2257.1 (276.1) 1819.0 (280.4) C150D 1883.0 (368.8) 1297.0 (75.5) 1202.2 (39.1)

0.05 Tai75a 4036.8 (1095.0) 2447.8 (415.3) 2213.0 (403.5) C150D 3099.1 (587.5) 1392.5 (193.3) 1504.0 (53.5)
0.15 Tai75a 9281.3 (2008.2) 3236.5 (873.8) 3918.8 (830.7) C150D 6766.7 (840.1) 1987.5 (492.4) 2226.6 (110.6)
0.02 Tai75b 2494.7 (1145.5) 2025.1 (146.4) 1496.3 (293.9) Tai150b 4994.7 (1165.5) 4367.5 (515.0) 2790.4 (100.7)

0.05 Tai75b 4578.9 (1283.6) 2209.2 (364.0) 1930.1 (353.0) Tai150b 8751.9 (1936.7) 4834.3 (836.4) 3201.0 (176.3)

0.15 Tai75b 9108.3 (1752.7) 2769.6 (777.7) 3411.8 (804.7) Tai150b 18104.0 (2581.2) 7081.4 (1715.2) 7815.7 (285.5)
0.02 vrpnc75 817.1 (239.4) 627.6 (154.2) 584.7 (58.6) -
0.05 vrpnc75 1167.3 (349.9) 635.4 (156.6) 741.2 (141.2) -
0.15 vrpnc75 2394.8 (653.4) 898.2 (438.3) 1166.0 (250.6) -
Best result count 0 (0) 31 (11) 26 (46) -
Best P=2 count 0 (0) 6 (5) 13 (14) -
Best P=5 count 0 (0) 12 (3) 7 (16) -
Best P=15 count 0 (0) 13 (3) 6 (16) -

In a head-to-head comparison of both SI methods there is no clear winner,
although ACO seems to be slightly more e�ective, in general, than PSO. In
the summary of best results across all (instance, P ) pairs ACO wins 31 cases
compared to 26 wins of PSO (and none of Static). When it comes to stability
(repeatability) of results the order is reversed: clearly the more stable method
(with lower standard deviation) is PSO (46 wins out of 57 cases).

Closer examination reveals that PSO is better suited for the cases with lower
amount of noise imposed by tra�c jams (P = 0.02) with 13/19 of won cases,
while ACO is superior for more noisy instances (P = 0.15) with exactly the
same balance. For the mid-range tra�c jams intensity (P = 0.05) the advantage
is with the ACO approach, albeit, as stated above, in none of the cases is ACO
stronger than PSO in terms of results' stability.



6 Conclusions

The paper compares the e�cacy of two popular swarm-based methods (Particle
Swarm Optimization and Ant Colony Optimization) in solving the Capacitated
Vehicle Routing Problem with Tra�c Jams. To this end a new approach to
CVRPwTJ relying on the PSO algorithm has been proposed and experimen-
tally compared with the ACO-based method proposed by the authors in their
previous paper [9]. Experimental results presented in this study lead to the three
following conclusions: �rstly, the use of swarm-based methods (either ACO or
PSO) signi�cantly improves the results compared to static (non-adaptive) ap-
proaches; secondly, ACO seem to be slightly superior than PSO (at least in the
context of the particular benchmark selection), but at the same time the results
yielded by PSO have much lower variance; thirdly, for the cases of relatively
low amount of noise (by means of stochastic tra�c jams) in the CVRPwTJ in-
stance the preferable method is PSO, while with more dynamic situations (higher
amount of noise) the ACO system manifests its upper-hand.

References

1. Bell, J.E., McMullen, P.R.: Ant colony optimization techniques for the vehicle
routing problem. Advanced Engineering Informatics 18(1), 41�48 (2004)

2. Dorigo, M.: Optimization, Learning and Natural Algorithms. Ph.D. thesis, Politec-
nico di Milano (1992)

3. Dorigo, M., Gambardella, L.M.: Ant colonies for the travelling salesman problem.
BioSystems 43(2), 73�81 (1997)

4. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Neural Networks, Pro-
ceedings., IEEE International Conference on. vol. 4, pp. 1942�1948 (1995)

5. Khouadjia, M.R., Talbi, E.G., Jourdan, L., Sarasola, B., Alba, E.: Multi-
environmental cooperative parallel metaheuristics for solving dynamic optimiza-
tion problems. The Journal of Supercomputing 63(3), 836�853 (2013)

6. Khouadjia, M.R., Alba, E., Jourdan, L., Talbi, E.G.: Multi-swarm optimization for
dynamic combinatorial problems: a case study on dynamic vehicle routing problem.
In: International Conference on Swarm Intelligence. pp. 227�238. Springer (2010)

7. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Proceedings
of the 17th European conference on Machine Learning. pp. 282�293. ECML'06,
Springer-Verlag, Berlin, Heidelberg (2006)

8. Lin, S.: Computer solutions of the traveling salesman problem. The Bell System
Technical Journal 44(10), 2245�2269 (1965)

9. Ma«dziuk, J., �wiechowski, M.: Simulation-based approach to Vehicle Routing
Problem with Tra�c Jams. In: 4th IEEE Symposium on Computational Intelli-
gence for Human-like Intelligence. pp. 1�8. IEEE, Athens, Greece (2016)

10. Ma«dziuk, J., �ychowski, A.: A memetic approach to vehicle routing problem with
dynamic requests. Applied Soft Computing 48, 522�534 (2016)

11. Mazzeo, S., Loiseau, I.: An ant colony algorithm for the capacitated vehicle routing.
Electronic Notes in Discrete Mathematics 18, 181�186 (2004)

12. NEO. Networking and Emerging Optmization: (2013),
http://neo.lcc.uma.es/vrp/vrp-instances/capacitated-vrp-instances/

13. Pichpibul, T., Kawtummachai, R.: An improved Clarke and Wright savings algo-
rithm for the capacitated vehicle routing problem. Science Asia pp. 307�318 (2012)


