
Specialized vs. Multi-Game Approaches
to AI in Games

Maciej Świechowski1 and Jacek Mańdziuk2

1 Phd Studies at Systems Research Institute, Polish Academy of Sciences, Warsaw,
Poland

m.swiechowski@ibspan.waw.pl
2 Faculty of Mathematics and Information Science, Warsaw University of Technology,

Warsaw, Poland
j.mandziuk@mini.pw.edu.pl

Abstract. In this work, we identify the main problems in which method-
ology of creating multi-game playing programs differs from single-game
playing programs. The multi-game framework chosen in this comparison
is General Game Playing, which was proposed at Stanford University in
2005, since it defines current state-of-the-art trends in the area. Based on
the results from the International General Game Playing Competitions
and additional results of our agent named MINI-Player we conclude on
what defines a successful player. The most successful players have been
using a minimal knowledge and a mechanism called Monte Carlo Tree-
Search, which is simulation-based and self-improving over time.

Keywords: Games, Artificial Intelligence, General Game Playing, Heuris-
tic Search

1 Introduction

The focus of this study is to review some of the approaches to AI in games and
elaborate on a shift from these approaches to multi-game playing. We emphasize
the difference between those two approaches while focusing on the latter. Games
have been a legitimate challenge of AI since the early days of the field. There have
been some common traits formulated by various researches [25], [21], [19], such
as deduction, reasoning, problem solving, intelligent search, knowledge repre-
sentation, planning, learning, creativity, perception, motion (manipulation) and
natural language processing. Most of them, especially the first seven, are part
of intelligent game playing. Researchers started to work on AI in the so-called
mind-games, often driven by the ultimate goal of getting closer towards gen-
eral intelligence. The programs began to be more and more specialized. Despite
displaying often a remarkable set of skills, their intelligence and usefulness of
the applied methods in the real-world problems are questionable. A top level
chess-playing computer program [10] can defeat any human in chess but cannot
help to form a medical diagnosis or even play a simple Tic-Tac-Toe game. A lack
for multi-game playing systems has emerged. There have been many attempts



2 Maciej Świechowski and Jacek Mańdziuk

to bring back to life the early-day concepts of AI, such as SAL [9], Morph [16],
Hoyle [5] and METAGAMER [26]. The most recent and probably the most well-
designed is General Game Playing [8] which we introduce in the next section.
In Section III we enumerate key differences to the methodology in both of the
aforementioned disciplines. Next, we review a variety of heuristics applied to
General Game Playing some of which are contributed by ours. Then, in section
V, we provide some experimental results and conclude in section VI.

2 General Game Playing

General Game Playing (GGP) [8] is a realization of the multi-game concept and
the current grand challenge of AI in games. The term was coined at Stanford
University in 2005, together with specification of the international General Game
Competition. The competition is held annually at the AAAI Conference (one
exception is IJCAI in 2011) and works as an official world championships. The
winners define the state-of-the-art solutions in the field. The GGP is about
creating agents capable of playing games which can be defined in the Game
Description Language (GDL) [17]. This declarative-logic language is a subset of
Prolog. It is used to define rules of games as well as for communication between
the agents and the Game Manager. The Game Manager is a communication hub
between the players and a referee checking ensuring if the game is played legally.
The communication, realized via HTTP, is also part of the GGP specification.
General Game Playing revisits the early AI concepts. With programs tailored
for playing specific games, most of the interesting analysis is done by the authors
(or consulted experts). The goal of the GGP is to transfer this analysis to the
programs, which start from scratch, without any knowledge. The programs are
also autonomous i.e. no human intervention is possible.

3 General vs. Specialized Game Playing

In the previous section we emphasized the characteristic concepts of General
Game Playing. There are various practical differences in research tools, key
problems, implementation and the overall research mind-set, when comparing
GGP and specialized game playing. We identify some of them in this section.

A) Rules Representation

In General Game Playing a rules interpretation system also known as an
inference engine is required to be able to determine the game states and perform
any kind of search. The GDL, which rules are represented in, is a declarative
first-order logic language which contains no high level game-related logic. It
means, that every concept present in games such as a piece, board, coordinate
or adjacency of coordinates has to be defined from scratch within the language
and there is no meta-information on what the concept is. Even mathematical
formulas such as addition must be defined by logical rules for every arguments



Specialized vs. multi-game approach to AI in Games 3

and results. Such an approach is very general but very costly at the same time in
terms of computational efficiency. As a consequence, the first choice to make in
GGP is an inference method. It affects the player in a way how fast it will be able
to search the game tree and also what the fidelity of the simulation will be. The
more control over the inference process the more game-playing algorithms can be
put inside which use the internal/intermediate state of the process. The speed of
a rules interpreter also affects the feasible game-tree search which can be applied.
It also quite convincingly hampers the methods of computational intelligence to
be used in GGP as long as the start and play clocks apply. There are a few
approaches to the problem of rules interpretation. Some players convert rules
directly to Prolog. FluxPlayer uses fluent calculus implemented in ECLiPSE
Prolog [1]. Many agents use custom-made interpreters for the GDL. Another
problem, apart from efficiency, arises with the rules representation. In General
Game Playing, we cannot design an efficient representation of a state because
we do not know dimensions of the state (state-space, possible elements and
arities of the elements) in advance. We do not even know what defines the state
exactly although a sensible approach is to approximate the state by taking all
facts used by init and next relations. An optimized representation such as 0x88
and Zobrist’s Hashing in chess, can be used for Transposition Tables [12] and
serialization required for the communication in a distributed parallel system.

B) Access to knowledge

In General Game Playing, there is no such thing as expert knowledge. Not
only any human-intervention is illegal but also the games can be unknown before-
hand or obfuscated so there would not exist an expert in most games. Moreover,
the start clocks are usually set to from a couple of seconds to a couple of minutes,
so there is no time for too complex methods. In specialized game playing lots of
analysis can be done either by experts or by a long off-line tuning. In General
Game Playing the agents either has to use robust simulation-based methods or
discover the knowledge relatively quickly. It can be assumed that the discovered
knowledge will not be very deep, but it may change in future when the GGP
area becomes more advanced. The lack of expert knowledge is connected with
the lack of databases of opening and endings. When a game is known, play-
ers quickly discover the reasonable ways how to start. Subsequent responses to
the start moves are studied, players seek new moves and a database of opening
grows. The endings are usually calculated using brute-force methods when the
complexities of states become low enough to allow for this. Those two features
are staples in single-game programs. Lastly, games in General Game Playing
contain no interpretation of what particular predicates mean i.e. there is no con-
nection to the game-specific objects. Even if there was such a connection defined
in the rules (some kind of meta-information) both the designers of games and
programs would have to predict names of all the possible game objects in ad-
vance. If the games’ authors (or automatic generators) were not able to define
custom types for the game objects, the GGP would not be general anymore. To
sum it up, there are no predefined game-specific elements which agents could use



4 Maciej Świechowski and Jacek Mańdziuk

in construction of evaluation functions. Every building block for the evaluation
function has to be discovered at runtime and only with certain probability of
being accurate.

C) Game tree search

The introduction of start and play clocks requires General Game Playing
programs to use the so-called anytime game tree search methods i.e. which can
be interrupted at any time and return the currently best action. Moreover, in
GGP, a search method cannot use reaching a particular tree level as a stop
condition because the required time cannot be predicted beforehand. The most
popular search method in GGP is Monte Carlo Tree-Search (MCTS) [3] which
will be presented in the next section. Lack of heuristics may limit possible usage
of methods such as alpha-beta pruning or MTD [27]. The problem which does
not exist in the specialized game-playing is that in multi-game playing the chosen
tree search should be universally good at the cost of being suboptimal in some
games.

D) Diversity of games

There are many properties of games which can be took advantage of when
designing an AI algorithm. Such properties include:

– Is the game zero-sum or not - zero-sum games can use the plain min-max
idea. Moreover, there is no need to store all scores.

– Is the game co-operative or competitive - co-operation, to implement well,
requires a completely different method.

– How many players there are - puzzles are inherently different whereas the
goal of two-player games is usually more focused on beating an opponent.
The game-tree structure can be also optimized for the number of players.

– Is the game turn-based or simultaneous - simultaneous games are usually
more difficult. Action selection formula for turn-based games can be opti-
mized.

– What is the Branching-Factor - a huge branching factor can render some
game-tree search methods useless whereas a tiny branching-factor can make
solving a game a viable attempt.

– Is there a board in the game - there have been various board-related concepts
well-studied and established in games.

4 Heuristics in GGP

In this section we go through various heuristics applied in General Game Playing.
We include both the related work and our contributions. We believe that the
existence of such a rich variety of approaches shows that there is no single best
solution to apply. Moreover, although the strongest programs use the Monte
Carlo Tree-Search (MCTS) combined with the UCT [14] algorithm, which has
become a de-facto standard, it is not clear whether with improvement in the
heuristics field a different type of search will be a dominant one.



Specialized vs. multi-game approach to AI in Games 5

4.1 ClunePlayer

ClunePlayer [4] is the name of the first (2005) GGP Competition champion.
It used the min-max search with an evaluation function. The key idea was an
abstract model representing the so-called simplified game: P : Ω → [0, 100] -
a function which approximates the payoff C : Ω → [−1, 1] - control: a relative
mobility T : Ω → [0, 1] - probability that a state is terminal Sp : [1,∞] -
stability of the payoff Sm : [1,∞] - stability of the mobility; the Ω represents
the set of legal states. The payoff function uses cardinality and distance between
features as the building blocks. A feature is a GDL expression, which denotes
a condition on a fact. Because its a condition and not the ground fact, it can
contain uninstantiated variables. Candidate features are all conditions using facts
defined in the GDL rules as well as new ones which are created by replacing
variables with symbols of the respective domains. The cardinality means how
many of facts fulfill the condition. The distances are used if a board relation and
a next relation, which defines ordering of the board’s coordinates, are detected
semantically in the description using predefined template. Only stable features
are used in the payoff function, where stability is computed based on the so-
called adjacent variance (between the consecutive states) and total variance.
The mobility is computed as follows:

C =
Movesa(ω)−Movesb(ω)

max(Movesa(ω)−Movesb(ω))
(1)

where Movesa denotes the number of our player’s legal moves. The formula as
well as the whole approach is dedicated to two-player games only. The termina-
tion function is computed purely statistically using least-squares regression. The
final formula for the evaluation function used in the min-max search combines
five elements of the abstract game:

V = T ∗ P + (1− T ) ∗ [(50 + 50 ∗ C) ∗ Sc + Sp ∗ P ] (2)

4.2 FluxPlayer

FluxPlayer [30] has been the second (2006) Competition champion. The key fea-
tures of FluxPlayer are: using fuzzy logic to determine the degree to which any
given state is terminal; identification of a few syntactic structures; fluent calcu-
lus implemented in a custom-made tool for reasoning in the GDL. In GDL, the
rules and facts can be either true or false, there is no such concept as partial sat-
isfaction. Moreover, the goal rule is defined to give a meaningful result only a in
terminal state. However, if a rule is FALSE, it is convenient to have a mechanism
of determining how close the rule is to TRUE. Moreover, it is useful to test the
goal rule in non-terminal states because it is often a structural representation
of the game objective. FluxPlayer is equipped with such a mechanism to reason
about the terminal and goal rules. The procedure is recurrently applied to the
GDL rules. When it reaches simple expressions (condition on facts) it returns 1
or 0 depending if the condition is true or not. More complex expressions can be



6 Maciej Świechowski and Jacek Mańdziuk

AND operators (between conditions in a rule), OR operator (defined explicitly
between conditions or implicitly between implications) and distinct conditions.
Distinct and negative conditions are ignored, whereas for AND and OR conjunc-
tions, t-norms and s-norms are used respectively. The authors settled down with
norms of the Yager family. Structures are identified using a syntactic templates.
For example an order relation such as (next 1 2) is a binary, anti-symmetrical,
injective and functional relation. The possible structures are step counter, order
relation, board’s pieces, quantities, control (turn) and board (ordered domains
+ pieces). The identified structures are used in a heuristic evaluation function
which improves the basic fuzzy-logic goal/terminal satisfaction procedure. Where
possible, complex expressions are replaced by the structures if the respective rule
uses them. In general, the evaluation function still evaluates the degree of fulfill-
ment for a terminal and goal states but in a more informed fashion. The search
method used on top of this function is a modified iterative-deepening depth-
first search with transposition tables. If a game is detected to be zero-sum and
two-player, the alpha-beta pruning technique is used.

4.3 Boards Continued

Board detection is present in various General Game Playing approaches. One of
them [11] is inspired by Hoyle [5] where game evaluators of two kind (struc-
ture and definition) are proposed following the idea of Hoyle’s advisors. All of
the game structure evaluators such as distance-initial, distance-to-target, count-
pieces and occupied-columns are related to a two-dimensional board which is
discovered using pattern detections algorithm. The novelty of the approach are
smart algorithms used to sort GDL facts to store them in a consistent manner.
Variance analysis helps to discover pieces which move around the board. A sim-
ilar approach to this and FluxPlayer’s [30] was proposed by [15]. The detection
of boards and candidate features for an evaluation function is essentially similar
but the application of the function is different. The authors introduce heuristics
as linear mappings from the lowest to the highest goal value parametrized by
the numeric value assigned to features (each one scaled to the [0,1] interval).
The approach uses almost 200 of the so-called slave nodes from which each one
is equipped with one heuristic. Another example exploring a board detection is
[23] but this time boards of any shapes are taken into account. A distance be-
tween two board positions depends on which piece’s movement we are interested
in. The distance is equal to the number of steps needed to move a particular
piece from one position to another. However, one of the problems of this ap-
proach is requirement to convert the GDL rules into a Disjunctive Normal Form
(DNF) which is not always feasible as well as not taking certain constructions
into account such as distinct keywords or negative conditions.

4.4 Monte Carlo Tree-Search Variations

The method was first proposed [2] as an approach to Go and was initially consid-
ered not serious. However, a confidence-based algorithm originating from gam-



Specialized vs. multi-game approach to AI in Games 7

bling mathematics called Upper Confidence Bounds Applied for Trees (UCT) [14]
made the MCTS the state-of-the-art approach both in Go and General Game
Playing. The MCTS together with the UCT works as follows: Start from the
root of a game-tree and traverse down until reaching a leaf node. During this
traversal choose an action a∗, i.e. an edge in the tree, according to the following
formula:

a∗ = arg max
a∈A(s)

{
Q(s, a) + C

√
ln [N(s)]

N(s, a))

}
(3)

where a - is an action; s - is the current state; A(s) - is a set of actions available
in state s; Q(s,a) - is an assessment of performing action a in state s; N(s) - is
a number of previous visits of state s; N(s,a) - is a number of times an action a
has been sampled in state s; C - is a coefficient defining a degree to which the
second component (exploration) is considered. The action which falls out of the
tree and the subsequent state define a new node which is added. This phase is
called expansions since the tree expands. Next, starting from that state a random
simulation is performed until reaching a terminal state (a simulation phase). In
general, players are simulated by making random actions but this is a room for
potential algorithms altering that choice. We will present several of them. The
last phase is called back-propagation in which the goals achieved by players in
the simulation are used to update the statistics in the tree. If the MCTS visits
a terminal state inside the selection phase then the simulation phase is skipped.

Monte Carlo Tree-Search is the method of choice of all the GGP Competi-
tion’s winners since 2007: CadiaPlayer [6], Ary [22] and TurboTurtle. Our agent,
called MINI-Player [32] also is based on this technique. Many enhancements to
the plain algorithm have been proposed. The most widely used is History Heuris-
tic [29]. History Heuristic was proposed initially to determine order of branches
to be visited by alpha-beta algorithm in Chess. It was first used in General
Game Playing either by CadiaPlayer [6] or FluxPlayer [30]. The key idea is
that actions occur repeatedly in simulations and certain actions are universally
strong i.e. independent of the state they are taken in. Examples of actions which
are usually good are capturing of pieces or placing markers in the middle in
the classic connect-n games. The first application of the history heuristic was
to assign non-uniform probability of choosing an action during a Monte Carlo
simulation. The process was modeled as a Gibbs Sampling and the historical av-
erage score defined a parameter Q of the Gibbs Distribution. Then CadiaPlayer
simplify the way history heuristic was used. The authors called the method ε
greedy which means that an action with the best historical score is chosen with
probability equal to ε and otherwise a random move is chosen. MINI-Player uses
a similar approach. An extension of History Heuristic is called N-grams [33] in
which not just one historical action is taken into account but arbitrary longer
sequences. A similar approach presented in [33] as well is Last-Good Reply Pol-
icy (LGRP). The idea is to store the best replies for particular moves, think of a
counterattack. The method originates from Go [2]. MINI-Player uses a portfolio
of heuristics called strategies [32] because they encapsulate the whole logic of
how an action during a semi-random simulation is chosen. The strategies include



8 Maciej Świechowski and Jacek Mańdziuk

History Heuristic, Mobility, Approximate Goal Evaluation, Statistical Symbols
Counting and Exploration. The first three are quite self-explanatory. The explo-
ration heuristic is aimed at choosing states which are bring the highest possible
difference to explore the state-space more efficiently. In order not to get stuck in
a local minimum we maximize the difference between the next consecutive state
and the most similar state to it among several last visited ones. The Statistical
Symbol Counting is our approach for board-like heuristics where we count oc-
currences of symbols at certain positions in their respective arguments lists. We
assign weights to that occurrences according to the correlation between their av-
erage count and the game outcome. An evaluation function is then constructed
as a linear combination of the respective weights and occurrences. A detailed
description is contained in [20].

4.5 Selected other concepts

A player called MAGICIAN [34] features a construction of a simulation-based
evaluation function. The function is based on counting and weighing the GDL
terms in a similar fashion to ClunePlayer’s and FluxPlayer’s. The process is
split into five phases: initialization, generalization, specialization, selection and
weighting. The generalization phase replaces symbols found in the GDL de-
scription by “?” which means any symbol. Then the specialization generates
all possible combination of terms by instantiating symbols from their domains.
This way, more terms can be detected as useful candidates for the evaluation
function than in the previous approaches. Another novel part is the way how
the evaluation function is combined with the UCT search. When a GGP game is
simple enough the question arises whether it can be solved. One of the approach
aimed at solving games is [13]. It attempts to instantiate all rules in a DNF
form and then use a symbolic breadth-first search (BFS) algorithm to generate
the whole game graph to solve the game. We found three works involving setting
neural networks in the GGP scenario. In the first one [24] a constructed neu-
ral network works as a state evaluation function. A dependency graph of GDL
rules is translated directly into a neural network by the C− IL2P [7] algorithm.
The result is a neuro-fuzzy goal inference engine. Unfortunately, a fully-fledged
player was not build on top of this method. Another approach is NeuroEvolution
of Augmenting Topologies NEAT [28]. A player named nrng.hazel uses NEAT
with a shallow min-max search. NEAT combines genetic algorithms with neural
networks. Each genotype encodes a neural network whereas each neural network
encodes a heuristic evaluation function. Two populations of neural networks
co-evolve. The reproduction uses the so-called explicit fitness sharing in which
individuals of one specie share the same fitness level. The last approach also
employs co-evolution of populations represented by an ant colony system [31].
Each ant models a General Game Playing agent which performs cyclical simula-
tions leaving pheromone. A simulation is driven by a local knowledge, common
cultural knowledge and the pheromone. The local knowledge is a simple evalua-
tion function being a linear combinations of GDL state terms. The pheromone is
defined as a factor which alters the weights in the evaluation function. The more



Specialized vs. multi-game approach to AI in Games 9

often a particular GDL term appears during a simulation the higher weight it
gets. The global knowledge are sequences of states which appear in simulations
of ants with the highest fitness level. The fitness level is computed in a tour-
nament between populations where ants of one population play against random
ants from the other population. It is proportional to the number of wins.

5 Results

Let us start from the results of the International General Game Playing Compe-
titions. Most of the published work is expected to contain some positive results
but both the choice of games and opponents can be arguable. The GGP Com-
petitions use a decent variety of games and, moreover, there is no reason not
to participate with a good player, so it is relatively safe to say that the win-
ners are all around the most efficient and universal players. In the Table 1 we
present the top 2 players from all the previous competitions and whether they are
based on MCTS/UCT. In Table 2 we show the results of our own MINI-Player

Table 1. Results of MINI-Player vs. MINI-PlainUCT denoting a player without addi-
tional heuristics. A 95% confidence intervals are included in the square brackets

Year Winner Runner-up Winner Runner-up
MCTS? MCTS?

2005 ClunePlayer Goblin NO NO

2006 FluxPlayer ClunePlayer NO NO

2007 CadiaPlayer ClunePlayer YES NO

2008 CadiaPlayer ClunePlayer YES NO

2009 Ary FluxPlayer YES NO

2010 Ary Maligne YES YES

2011 TurboTurtle CadiaPlayer YES YES

2012 CadiaPlayer TurboTurtle YES YES

2013 TurboTurtle CadiaPlayer YES YES

playing 270 matches against itself stripped down only to the basic MCTS/UCT
player. Although the fully-fledged player using strategies to guide the Monte
Carlo simulations fares better in 7 of 9 games, the advantage is not as big as
it could be expected. In some games such as Pentago or Pilgrimage, the sim-
plest approach is better while in Connect-4 Suicide the MINI-Player’s winning
margin is insignificant. Players based on neural networks have not been strong
in General Game Playing so far. The same rule applies for other approaches in
the spirit of the computational intelligence which are common in the non-GGP
game systems [18]. Restrictive time limits and lack of knowledge transfer hinder
any long-term learning.



10 Maciej Świechowski and Jacek Mańdziuk

Table 2. Results of MINI-Player vs. MINI-PlainUCT denoting a player without addi-
tional heuristics. A 95% confidence intervals are included in the square brackets

Game MINI vs. MINI-PlainUCT

Connect4 61.33 [5.69]

Cephalopod Micro 59.33 [5.86]

Free for all 2P 75.33 [4.86]

Pentago 40.00 [5.84]

9 Board Tic-Tac-Toe 66.30 [5.42]

Connect4 Suicide 51.33 [5.72]

Checkers 79.33 [4.83]

Farming Quandries 66.67 [5.36]

Pilgrimage 39.33 [5.40]

Average 59.88 [5.44]

6 Conclusions

We have shown a numerous approaches to General Game Playing. Most com-
petitive players use the Monte Carlo Tree-Search as the baseline method with
either none or only light-weight heuristics. Some other players use a min-max
inspired depth search whereas some other use neural networks without any deep
search. Since 2007, only simulation-based players have been the winners of the
GGP Competition. Together with our results, we conclude that in General Game
Playing, a too heavily marked heuristic bias is unfavorable on a large-enough va-
riety of games. The MCTS approaches have advantage of *not being inaccurate*
for any game. That means that while not being predefined for any class of games,
the players will always converge (at some arbitrary speed) to the optimal play.
For some games, the convergence rate may be very slow but it is still better than
inaccurate heuristic which is a barrier preventing a player from being success-
ful. Not suitable heuristics may even make the player going towards the wrong
goals. We predict that a truly multi-game player should be either aheuristic,
using statistical methods and crunching simulations efficiently or based on self-
adapting heuristics. Self-adaptation means that heuristics can be based on any
aspect of the played game (variety) and that only such heuristics are currently
used which are suitable for the game (accuracy). Although the MCTS currently
dominates, it is interesting to see which approach will the most be successful in
the future competitions.

Acknowledgment

M. Świechowski was supported by the Foundation for Polish Science under In-
ternational Projects in Intelligent Computing (MPD) and The European Union
within the Innovative Economy Operational Programme and European Regional
Development Fund. This research was partially funded by the National Science
Centre in Poland, based on the decision DEC-2012/07/B/ST6/01527.



Specialized vs. multi-game approach to AI in Games 11

References

1. Apt, K.R., Wallace, M.: Constraint Logic Programming using Eclipse. Cambridge
University Press, New York, NY, USA (2007)

2. Brgmann, B.: Monte carlo go. Technical report, Max Planck Institute for Physics
(1993)

3. Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowling, P., Rohlfshagen, P.,
Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A Survey of Monte Carlo
Tree Search Methods. IEEE Transactions on Computational Intelligence and AI
in Games 4(1) (2012) 1–43

4. Clune, J.: Heuristic Evaluation Functions for General Game Playing. In: AAAI,
AAAI Press (2007) 1134–1139

5. Epstein, S.: Toward an ideal trainer. Machine Learning 15(3) (1994) 251–277
6. Finnsson, H., Björnsson, Y.: Simulation-based approach to general game playing.

In: AAAI, AAAI Press (2008)
7. Garcez, A.S.d., Gabbay, D.M., Broda, K.B.: Neural-Symbolic Learning System:

Foundations and Applications. Springer-Verlag New York, Inc., Secaucus, NJ, USA
(2002)

8. Genesereth, M.R., Love, N., Pell, B.: General game playing: Overview of the aaai
competition. AI Magazine 26(2) (2005) 62–72

9. Gherrity, M.: A Game-learning Machine. PhD thesis, University of California at
San Diego, La Jolla, CA, USA (1993) UMI Order No. GAX94-14755.

10. Hsu, F.H.: Behind Deep Blue: Building the Computer that Defeated the World
Chess Champion. Princeton University Press, Princeton, NJ, USA (2002)

11. Kaiser, D.M.: Automatic feature extraction for autonomous general game playing
agents. In: Proceedings of the 6th International Joint Conference on Autonomous
Agents and Multiagent Systems. AAMAS ’07, New York, NY, USA, ACM (2007)
93:1–93:7

12. Kishimoto, A., Schaeffer, J.: Transposition table driven work scheduling in dis-
tributed game-tree search. In: Proceedings of the 15th Conference of the Canadian
Society for Computational Studies of Intelligence on Advances in Artificial Intelli-
gence. AI ’02, London, UK, UK, Springer-Verlag (2002) 56–68

13. Kissmann, P., Edelkamp, S.: Gamer, a General Game Playing Agent. KI 25(1)
(2011) 49–52

14. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Proceedings of
the 17th European conference on Machine Learning. ECML’06, Berlin, Heidelberg,
Springer-Verlag (2006) 282–293

15. Kuhlmann, G., Dresner, K., Stone, P.: Automatic heuristic construction in a com-
plete general game player. In: Proceedings of the Twenty-First National Conference
on Artificial Intelligence. (July 2006) 1457–62

16. Levinson, R.: Morph ii: A universal agent - progress report and proposal. Technical
report, University of California at Santa Cruz, Santa Cruz, CA, USA (1994)

17. Love, N., Hinrichs, T., Haley, D., Schkufza, E., Genesereth, M.: General game
playing: Game description language specication (mar 2008)

18. Mańdziuk, J.: Computational Intelligence in Mind Games. In Duch, W., Mańdziuk,
J., eds.: Challenges for Computational Intelligence. Volume 63 of Studies in Com-
putational Intelligence. Springer-Verlag, Berlin, Heidelberg (2007) 407–442

19. Mańdziuk, J.: Knowledge-Free and Learning-Based Methods in Intelligenet Game
Playing. Volume 276 of Studies in Computational Intelligence. Springer-Verlag,
Berlin, Heidelberg (2010)



12 Maciej Świechowski and Jacek Mańdziuk

20. Mańdziuk, J., Świechowski, M.: Generic heuristic approach to general game play-
ing. In Bielikov, M.r., Friedrich, G., Gottlob, G., Katzenbeisser, S., Tur n, G.r.,
eds.: SOFSEM. Volume 7147 of Lecture Notes in Computer Science., Springer
(2012) 649–660

21. Mccarthy, J., Hayes, P.J.: Some philosophical problems from the standpoint of
artificial intelligence. In: Machine Intelligence, Edinburgh University Press (1969)
463–502

22. Méhat, J., Cazenave, T.: Ary, a general game playing program. In: Board Games
Studies Colloquium, Paris (2010)

23. Michulke, D., Schiffel, S.: Distance features for general game playing. In: Pro-
ceedings of the IJCAI-11 Workshop on General Game Playing (GIGA’11). (2011)
7–14

24. Michulke, D., Thielscher, M.: Neural networks for state evaluation in general
game playing. In: Proceedings of the European Conference on Machine Learning
(EMCL). (2009) 95–110

25. Nilsson, N.J.: Artificial Intelligence: A New Synthesis. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA (1998)

26. Pell, B.: Metagame: A new challenge for games and learning. In: Programming
in Artificial Intellegence: The Third Computer Olympiad. Ellis Horwood, Ellis
Horwood Limited (1992) 237–251

27. Plaat, A., Schaeffer, J., Pijls, W., de Bruin, A.: Best-first fixed-depth minimax
algorithms. Artificial Intelligence 87(12) (1996) 255 – 293

28. Reisinger, J., Bahceci, E., Karpov, I., Miikkulainen, R.: Coevolving strategies for
general game playing. In: Proceedings of the IEEE Symposium on Computational
Intelligence and Games, Piscataway, NJ, IEEE (2007) 320–327

29. Schaeffer, J.: The history heuristic and alpha-beta search enhancements in practice.
IEEE Trans. Pattern Anal. Mach. Intell. 11(11) (November 1989) 1203–1212

30. Schiffel, S., Thielscher, M.: Fluxplayer: A successful general game player. In:
Proceedings of the 22nd AAAI Conference on Artificial Intelligence (AAAI-07),
AAAI Press (2007) 1191–1196

31. Sharma, S., Kobti, Z., Goodwin, S.: Coevolving intelligent game players in a
cultural framework. In: Proceedings of the IEEE Congress on Evolutionary Com-
puting, Special Session on Computational Intelligence in Games. (2009)

32. Świechowski, M., Mańdziuk, J.: Self-Adaptation of Playing Strategies in Gen-
eral Game Playing. IEEE Transactions on Computational Intelligence and AI in
Games (2014) Accepted for publication 20/06/2013. Available in Early Access.
DOI: 10.1109/TCIAIG.2013.2275163.

33. Tak, M.J.W., Winands, M.H.M., Bjornsson, Y.: N-grams and the last-good-reply
policy applied in general game playing. IEEE Transactions on Computational
Intelligence and AI in Games 4(2) (2012) 73–83

34. Walȩdzik, K., Mańdziuk, J.: An Automatically-Generated Evaluation Function in
General Game Playing. IEEE Transactions on Computational Intelligence and AI
in Games (2014) Accepted for publication 08/10/2013. Available in Early Access.
DOI: 10.1109/TCIAIG.2013.2286825.


