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Abstract

In this paper we investigate an application of hybrid Monte Carlo Tree Search
(MCTS) based algorithms to solving dynamic decision making problems.

We employ UCT (the most popular MCTS approach) in combination with
well-known Resource Constrained Project Scheduling Problem (RCPSP) and
Stochastic Resource Constrained Project Scheduling Problem (SRCPSP) solvers
to devise strategies for a generic and highly dynamic version of RCPSP, which
we call Risk-Aware Project Scheduling Problem (RAPSP). We compare these
strategies’ performance with results of both pure MCTS approach and non-
MCTS solvers for projects of varied characteristics. We reach a conclusion that
proposed hybrid simulation-heuristic methods are a promising approach to dy-
namic decision making problems, RAPSP in particular. Consequently, we argue
that more research effort should be directed to applications of MCTS algorithm
outside the domain of game-playing, with which it is commonly associated.

At the same time, to the best of our knowledge, this paper is the first at-
tempt at defining generalized SRCPSP model encompassing arbitrary risks and
risk response / mitigation strategies as an optimization problem and applying
Computational Intelligence methods to build fully-automated decision making
systems. We strongly believe it to be a research direction worth further in-
vestigation, combining project scheduling, risk management and metaheuristic
optimization techniques into a well-defined platform allowing direct comparisons
of different strategies.

Keywords: Resource-Constrained Project Scheduling Problem, Risk-Aware
Project Scheduling Problem, UCT, MCTS, GRASP, RCPSP, RAPSP

1. Introduction

Monte Carlo Tree Search (MCTS) is a family of simulation-based methods
and UCT (Upper Confidence bounds applied to Trees) [27] is its most widely
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used variant. It is most popular and successful in the area of game playing,
especially Go [41] – still the most demanding and difficult game to master for5

AI of all traditional games.
MCTS can, however, be useful in the wide research area of decision-making

and decision-support [16]. It can, in particular, be applied to any Markov
Decision Process (MDP), for which generative model exists [24]. It should be
especially useful in stochastic problems with very large or infinite state spaces,10

for which many traditional algorithms and reinforcement learning approaches
prove inapplicable. Still, MCTS applications outside game domain remain fairly
limited – an insightful overview of those can be found, e.g., in [6].

So far, there have been few attempts at applying MCTS to scheduling prob-
lems [11, 33], and its employment in project scheduling is a new idea, not yet15

significantly explored. A single recently published paper [2] successfully uses
MCTS as one part of a sophisticated approach to solving Multi-mode Resource-
Constrained Multi-Project Scheduling Problem (MRCMPSP) - a complex, yet
fully deterministic optimization problem with an optimization goal of minimiz-
ing the sum of project completion times. We were not inspired by this research20

in any way, as it has been published only after we have finished most of our
experiments. Additionally, it deals with a fully deterministic problem, while we
concentrate mainly on the dynamic aspects of project scheduling.

In this paper, we continue our research [46, 42, 47, 48, 43, 29, 31, 23] into ver-
ifying MCTS applicability and efficiency in dynamic decision making problems,25

especially as a part of hybrid algorithms combining it with problem-specific
heuristic approaches. To this end we apply MCTS to a highly dynamic stochas-
tic version of the project scheduling task – Risk-Aware Project Scheduling Prob-
lem (RAPSP).

While the Resource-Constrained Project Scheduling Problem (RCPSP) and30

its myriad deterministic and stochastic variations have been studied for years,
RAPSP is innovative in that it incorporates not only scheduling risk (present
in all stochastic models), but also external risks, as well as risk mitigation /
response strategies. The proposed representation is flexible enough to allow
modeling of aspects considered by many other project scheduling problems,35

including multiple activity execution modes, stochastic resources availability,
external events influence and restarting activities. At the same time, the dy-
namism and non-determinism of RAPSP makes it a useful testbed for both
advanced scheduling strategies and general-use metaheuristic approaches.

Risk management, on its own and as part of the, so called, dynamic schedul-40

ing, has been an active topic of interest for many years and multiple methodolo-
gies of varying complexity have been proposed for dealing with both scheduling
risk and external project risks. While the simpler of them, such as PERT [38]
or critical chain management [13], would concentrate on better duration estima-
tions and time buffers introduction, others would make use of techniques such as45

Monte Carlo simulations [19], sensitivity analysis [40] or decision trees [20]. More
sophisticated frameworks, such as Event Chain Methodology [21], sometimes
advocate using a combination of multiple of the above-mentioned approaches.

Still, to the best of our knowledge, research presented herein is unique for
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two reasons. Firstly, we define an optimization problem incorporating both ac-50

tivities scheduling and a very flexible external risks model; secondly, in order
to solve it we develop several fully autonomous decision-making agents based
on Computational Intelligence methods. Combined with the fact that we also
introduce a procedure for creating RAPSP instances of varying characteristics
based on popular RCPSP library (PSPLIB [36]), this opens new research per-55

spectives, by creating a platform for effective comparison of varied risk-aware
project scheduling strategies.

We propose five solvers for RAPSP, in total. Heuristic Solver is based on
the standard method applicable to RCPSP: priority rule in combination with a
schedule generation scheme. GRASP solver is a modified version of the GRASP60

method applied to SRCPSP in [4]. BasicUCT is an attempt at solving RAPSP
with plain UCT method, while Proactive UCT is a hybrid approach combining
UCT with any of the first two methods, thus arriving at two solvers: ProUCT-
HS and ProUCT-GRASP.

We analyze the relative performance of all the strategies for projects of65

varied sizes and characteristics, prove that UCT may be an important part
of the dynamic scheduling toolkit and further verify that hybrid MCTS-based
algorithms can be successfully applied to varied complex decision problems.

Compared to our previous publications on RAPSP ([47, 48]), as part of
the research presented in this paper we introduce a new strategy (ProUCT-70

GRASP), design improvements to the Proactive UCT algorithm (most notably
reactive heuristic) and further tune all solvers’ control parameters. We also
redesign our set of project test instances to offer more challenge and avoid pitfall
of being partially solved by trivial strategies (e.g. one of the risk responses being
universally more beneficial than others). Last but not least, we perform more75

in-depth testing and experimentation, drawing more conclusions about the pros
and cons of each of the methods. This publication is also the first one in which
our research is presented in full detail.

The remainder of this paper is divided into 7 main sections. The first of them
is concerned with the MCTS and UCT algorithms themselves and their general80

characteristic. The next one (section 3) contains short overview of Resource-
Constrained Project Scheduling Problem and selected methods for solving it.
Section 4, defining Risk-Aware Project Scheduling Problem, is followed by the
one describing the five strategies that we propose and analyze. After that, in
sections 6 and 7, we present the experimental setup and results, respectively.85

Finally, section 8 sums up the research and the conclusions we have drawn.

2. Monte Carlo Tree Search and UCT

Monte Carlo Tree Search (MCTS) is an iterative method, in which an in-
memory representation of the problem is gradually built in the form of a re-
peatedly visited and expanded tree, starting with only root node in the first90

iteration. Each iteration consists of 4 phases, as presented in figure 1.
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Figure 1: MCTS algorithm overview [6]

Selection Step 1, selection, is a traversal of the in-memory tree built so far.
Various path selection policies can be employed to optimize exploration
(testing new possibilities) to exploitation (repeating the best choices so far)
ratio, yet one has become predominant: UCT (Upper Confidence bounds
applied to Trees) [27]. It is also employed in our research and defines a
relatively straightforward algorithm for selecting next action (tree arc) in
each state (tree node). In each node all actions are first sampled once (one
per each iteration in which the node is visited). Further choices follow the
formula [27]:

a∗ = arg max
a∈A(s)

{
Q(s, a) + C

√
lnN(s)

N(s, a)

}
, (1)

where s is the current state, A(s) denotes the set of all actions legal in
state s, Q(s, a) – averaged payoff of performing action a in state s so far,
N(s) – current number of visits to state s in selection phase of all iterations
and N(s, a) – current number of times action a has been sampled in this95

state. Constant C controls the balance between exploration (trying action
with the fewest visits) and exploitation (choosing action with the highest
expected reward).

Expansion As soon as the above policy encounters state not yet included in
the tree, expansion step commences: the new node is added to the tree.100

Simulation Step 3 involves simulating the rest of the process, starting from
the newly-added node - typically via fully random rollouts. No data about
the states encountered in this phase is stored, except for the final payoff.

Backpropagation Finally, the payoff information is propagated up the path
selected in the tree, updating the Q(s, a), N(s, a) and N(s) values in each105

node accordingly.

Once the stopping condition is fulfilled (usually the time limit has elapsed
or a predefined number of iterations has been performed), the action with the
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highest Q(s, a) value in the root is returned as the recommended one. In the
case of repeated decision-making (such as Markov Decision Processes), the in-110

memory tree is usually retained for use during the next decision analysis.

3. Resource-Constrained Project Scheduling Problem

3.1. Project Model

Deterministic Resource-Constrained Project Scheduling Problem (RCPSP)
is a popular NP-complete optimization problem. Since it is widely known, it115

will not be fully defined herein - numerous publications can be consulted for
more formal presentation, e.g. [7].

In short, each deterministic single-mode RCPSP instance defines a set of
activities as well as a number of renewable resources with their corresponding
capacities. Performing each activity takes a certain amount of time and uses120

specified amount of each resource kind in each time unit it is performed. Addi-
tionally, activities may have predecessors - they cannot be started unless these
have already been finished.

The aim of the RCPSP is performing all the activities within as short a time
frame as possible – i.e. minimizing the makespan of the project.125

This basic model of a project realization can be, and often has been, modified
either to include more real-life aspects of project management or create a more
interesting research topic. Basic RCPSP definition assumes non-preemptivness
(i.e. no possibility to split activities into a number of smaller ones, or stop
an activity in progress), but this constraint can obviously be partially or fully130

lifted. On the other hand, new constraints may be introduced, e.g. defining
deadlines for some of the activities.

Additionally, multiple activity execution modes can be introduced, allowing,
e.g., to perform tasks in a more time- or capital-intensive way. With this change,
it also makes sense to introduce non-renewable resources, which are permanently135

used by activities.
It is also possible to model activity dependencies less popular than typical

finish-to-start, introducing start-to-start, start-to-finish and finish-to-finish de-
pendencies, as well as required delays between activities. Activities may also
consume differing amount of resources in each time unit.140

Stochastic project scheduling problems take into consideration the intrinsic
problems of precise estimation and non-deterministic nature of the business
environment. While it is natural to treat activity durations as random variables,
it is also possible to introduce non-determinism regarding resource availability or
even activity dependencies, e.g. in GERT model [34]. Finally, the optimization145

goal may be modified as well, e.g. by including financial flow and resources
utilization levels.

When Stochastic Resource-Constrained Project Scheduling Problem (SR-
CPSP) is considered, a strict schedule cannot obviously be developed before-
hand. It is, therefore, solved by designing a strategy that should minimize its150
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expected makespan. On the other hand, in business scenarios it is often benefi-
cial to create a preliminary schedule, even if it is going to be modified afterwards
and this issue has actually been a relatively popular research area, called ro-
bust project scheduling. It involves proactive development of baseline schedules
that should be resilient to non-deterministic nature of the project instances and155

require reactive recomputation as rarely as possible. Such schedules are then
coupled with reactive methods, expected to optimize the remaining part of the
schedule should the actual project realization diverge too far from it.

As mentioned before, in this paper we define and explore yet another SRCPSP-
based model, which is designed to be more dynamic than most other problem160

versions and actually sophisticated enough to be considered a superset of many
of them. Its definition is presented in section 4.

3.2. Solving RCPSPS and SRCPSP

RCPSP instances can be solved exactly, most notably by multiple versions
of linear programming and branch-and-bound methods [1]. With the problem165

being NP-complete, those approaches quickly become no longer feasible, even for
moderately-sized projects. Therefore, various heuristic methods are employed
instead.

These range from truncated branch-and-bound algorithm [10], through sched-
ule generation with activity priority rule [26, 5], Tabu Search [44] and GRASP [4,170

32] to Computational Intelligence (CI) approaches, such as evolutionary meth-
ods [17]. Recently, in the context of SRCPSP there has been some interest
in applying preprocessing techniques that simplify resource leveling and lessen
the dynamic aspects of the problem by introducing additional precedence con-
straints to the project prior to its execution [37]. Significant effort is also nowa-175

days still directed towards applying CI-based approaches to RCPSP [14] and its
more complex variants [22, 50].

Two of the above-mentioned approaches are employed in the research de-
scribed herein and their short descriptions follow. They have been selected
based on their strength, computational complexity and, to some extent, popu-180

larity. Since we planned to employ them as part of a hybrid iterative method,
we decided to avoid the most computationally expensive approaches, such as
evolutionary methods.

3.3. Priority Rules and Schedule Generation Schemes

Priority rules are a popular and relatively straightforward approach to build-185

ing project schedules for RCPSP. They basically define a partial order over the
set of all the activities, based on which a schedule can then be built by one of
the procedures called Schedule Generation Schemes (SGS).

While multiple priority rules have been proposed – some of them including
relatively sophisticated analysis of the project graph, elements of stochasticity190

or being a complex combination of a number of simpler ones – six popular ones
are considered in the context of our research:

• longest activities first;

6



• earliest late finish (calculated via Critical Path Method [25]);

• earliest late start (calculated as above);195

• least slack (calculated as above);

• longest summed duration of activity and its successors;

• maximum number of activity’s successors (including indirect ones).

Two basic schedule generation schemes are Serial Schedule Generation Scheme
(SSGS) [26] and Parallel Schedule Generation Scheme (PSGS) [5]. They both200

can be used in a forward, backward or bidirectional planning modes (the last
approach potentially employing both schemes at once).

SSGS [26] consists in iterating over the ordered list of activities and sequen-
tially planning each of them as early as possible, considering activities planned
so far and resource and prerequisite constraints.205

PSGS [5], on the other hand, iterates over time, or - more precisely - decision
points. Time unit is considered a decision point if it is either the first time unit
of the project or one immediately after activity execution end. In the case of
deterministic RCPSP instances, it is never optimal to start activities in any
other time units. In each decision point PSGS considers all remaining activities210

in the order defined by the priority rule. If any one can be started (taking into
consideration its resource and predecessor requirements) in the considered time
unit, it is immediately scheduled.

3.4. GRASP

GRASP stands for Greedy Randomized Adaptive Search Procedure [8]. It215

is an iterative algorithm that can be applied to solving many combinatorial
problems [9], and proved to be one of the successful approaches to SRCPSP [4].
While general description and analysis of the algorithm can be found in the
literature cited, herein we provide definition of the method as applied to solving
SRCPSP in our research.220

Fig. 2 visualizes the main loop of the algorithm. Basically, each iteration of
the method consists of the following five steps.

1. Transform stochastic project instance into deterministic one by replacing
random activity durations with their expected values.

2. Generate schedule for the deterministic project - possibly making use of225

data gathered in previous iterations.

3. Optimize the schedule locally.

4. Build stochastic project realization strategy based on the schedule.

5. Verify the strategy by means of random simulations – calculating the av-
erage makespan of the project – and possibly store the strategy definition230

in the elite set for future use.

While the first step is self-describing, the other ones require further expla-
nation, which follows.

7



Figure 2: GRASP algorithm’s iteration overview

3.4.1. Generating Deterministic Project Schedule

A schedule for the deterministic project is typically generated with the par-235

allel scheme, based on a priority rule in the form of an ordered priority list of all
activities. The rule is, however, replaced with new one every several activities
scheduled (actual number selected randomly).

During the first few iterations, building new priority list involves simply
randomly selecting one of the employed heuristics. At the end of each iteration,240

however, priority list representing the final strategy is added to the elite set.
From now on, this list can also act as a reference priority rule for building
subsequent schedules. Once the predefined size of the elite set is reached, in
each subsequent iteration, if the newly found strategy proves superior to the
worst one in the elite set, the former strategy replaces the latter.245

3.4.2. Local Optimization

Local schedule optimization is performed by applying a procedure called
double-justification [45]. It involves shifting all activities as far as possible with-
out changing project end time to the right and then to the left. More formally,
activities are first planned backward as late as possible in non-increasing order250

of their finish times in the original schedule and then as soon as possible in
non-decreasing order of their start-times in the backward schedule. It can be
proven that this procedure can never increase the makespan of the project and
in many cases actually manages to decrease it.
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3.4.3. Building SRCPSP Strategy255

At this stage the deterministic project schedule must be translated back
into a stochastic project realization strategy. For this purpose scheduled start
times of activities are interpreted as their priorities and the strategy consists in
starting them as soon as possible in the ascending priority order.

This procedure is equivalent to serial schedule generation scheme for deter-260

ministic projects - activities are started exactly in the order defined by the rule.
In the case of stochastic models, this approach has the advantage over parallel
scheme in that it avoids the so-called Graham anomalies [15], i.e. situations
in which shorter duration of one of the activities causes the makespan of the
whole project to increase (due to reordering of activities’ execution and, as a265

consequence, underemployment of the renewable resources).

3.4.4. Strategy Verification

Once the strategy is built, its quality is verified by a small number of random
rollouts, each simulating full project realization, in order to calculate its average
makespan. A fixed number of the best strategies found so far along with their270

estimated makespans are stored in the so-called elite set. They can be used
in the consequent iterations for building new candidate strategies, as described
earlier.

4. Risk-Aware Project Scheduling Problem

As mentioned earlier, in this paper we continue our research into a new275

dynamic variant of SRCPSP, which includes not only activities and resources
but also risks and risk responses. This inclusion of aspects of risk management –
a process crucial for the success of many projects – makes it even more applicable
and useful in business scenarios. It is a very flexible approach, which actually
allows modeling of many of the features of other project scheduling problem280

variations - such as multiple modes of activity execution, non-determinism of
resource availability, activity restarting etc. It also makes it possible to define
very dynamic problem instances, which are of specific interest to us, in the
context of applying simulation-based methods. All in all, we feel that it provides
a very interesting non-deterministic and dynamic testbed for various AI and CI285

algorithms.
Risk-Aware Project Scheduling Problem (RAPSP [47, 48]) augments SR-

CPSP by introducing two new concepts, inspired by elements of standard risk
management processes [35]: risks and risk responses.

4.1. Risks290

Risks represent non-deterministic and unpredictable events, possibly exter-
nal to the project, that influence the project in any way. Risks can be positive
or negative, although typically most attention is placed on the latter.

In RAPSP risks can freely modify the project definition and problem con-
straints in multiple ways. Each risk is described by three main components.295
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• Materialization conditions describe conditions which have to be ful-
filled for a risk to materialize. These may include any elements of the
current project state, e.g. some activity may not have been started yet, a
specific amount of resources may have to be available, etc.

• Materialization probability defines the probability of the risk materi-300

alizing in each time unit when the above conditions hold true. Should need
arise, materialization probability can be defined as a function of project
state, thus potentially changing in time.

• Effects of the risk are the consequences of its materialization. As men-
tioned before, no strict limitations are placed on the transformation of the305

problem instance triggered by the risk. Risk effects can also be stochastic,
so when, for instance, an employee’s sick leave is modeled, its duration
may be described by a random variable.

4.2. Risk Responses

Risk responses are actions that can be taken by the project manager and/or310

the project team to deal with the identified risks. They may be aimed at elim-
ination of the risk, reducing its probability or mitigation of its negative effects.
It should be underlined that, contrary to intuitive understating of the term ’re-
sponse’, these actions can also be performed proactively and independently of
the actual risk materialization.315

Formally, risk responses are simply a special kind of activities, which, apart
from requiring time and resources as any activity, have two distinguishing fea-
tures:

• they are not required for the project to finish;

• similarly to risks, each of them is associated with an effect, which is applied320

as soon as the risk response is finished.

Risk responses are, therefore, not directly associated with any specific risks.

5. RAPSP Solvers

We have developed two MCTS-based strategies for solving RAPSP: Ba-
sicUCT and Proactive UCT (ProUCT [47, 48]). While the former is a relatively325

simple, direct application of the UCT method to project scheduling, the latter
is a hybrid approach combining simulations with a plain RCPSP or SRCPSP
solver. We have developed two such solvers and also their modified versions
dedicated to RAPSP (named Heuristic Solver and GRASP), thus arriving at
a total of 5 RAPSP strategies. These are summarized (together with their330

interdependencies) in fig. 3 and described in detail in the following sections.
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Figure 3: RAPSP strategies overview

5.1. Heuristic Solver

Heuristic Solver (HS) makes use of forward parallel schedule generation
scheme combined with the six priority rules listed in section 3.3. In general,
HS strategy attempts to create a baseline schedule and follow it for as long as335

it is feasible. RAPSP baseline schedule consists of:

1. a set of risk responses that should be executed immediately (in the first
time unit of the schedule);

2. deterministic schedule for the activities, i.e. an assignment of start times
to all the project activities.340

In order to generate the schedule the project is converted to a deterministic
one by ignoring all not-yet-materialized risks and replacing activity duration
random variables with their expected values. All combinations of legal sets of
risk responses and priority rules are then considered and schedules are generated
for each of them (the number of candidates tested can be capped to avoid prob-345

lems with extremely large projects). A candidate with the shortest makespan
becomes the baseline schedule.

This schedule is then, in general, followed in an SSGS fashion with minor
addition introduced after preliminary testing. Namely, whenever the first ac-
tivity in the baseline can not be immediately started, the next ones are also350

considered as long as they have been planned no further than two time units
ahead, as this has been verified to slightly improve the strategy performance.

Apart from this, HS considers some time units to be decision points, at
which new baseline schedule should be generated. This happens when one of
the following conditions holds true:355

• no baseline schedule exists;
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• a new risk has materialized in the last time unit;

• a new, never before considered, risk response has become eligible;

• the first non-yet-started activity is running late by more than 2 time units
compared to the baseline schedule.360

5.2. GRASP

GRASP method (described in section 3.4) is adapted to RAPSP in a manner
similar to HS. In this case a baseline strategy consists of a set of risk responses (to
be executed immediately) and a priority list for SSGS-based activity realization
strategy. Replacing a baseline schedule with priority rule also means one less365

decision point trigger: there are no activity start times to compare.
Monte Carlo simulations employed as the last step of each GRASP iteration

are flexible enough to accommodate full RAPSP model, including risks and their
effects. This should allow for designing more robust baseline strategies - more
resilient to the effects of materialized risks.370

On the other hand, relatively high computational complexity of GRASP,
means that not always all legal risk response combinations can be tested. In
our experiments, we would consider a maximum of 14 randomly chosen sets for
each decision point. Still, this actually was enough to test all options in majority
of the mid-project states (significantly more possibilities were available almost375

exclusively in the beginning of more complicated projects).

5.3. Basic UCT

Basic UCT represents an attempt at directly applying UCT method to the
Risk-Aware Project Scheduling Problem. As a complex dynamic problem, which
can be represented as a Markov Decision Process with explicitly available gen-380

erative model, RAPSP is a natural candidate for this kind of an approach.
Still, there are some problems to tackle. Since arbitrary number of risk

responses and activities can be started simultaneously, the branching factor of
the directly represented decision tree easily becomes very high. Early tests
proved this to be problematic and, therefore, slightly different representation of385

the problem space has been designed. In this approach a single time unit may
encompass multiple project states, differing by the decisions made so far. Three
classes of actions are possible in each state:

• start one of the legal activities;

• start one of the legal risk responses;390

• wait till the next time unit - i.e. perform no operation (noop).

The first two options do not iterate over time, so that multiple tasks can be
started simultaneously. The last one, on the other hand, is a marker operation
for making no more decisions in this time unit and proceeding to the next one.
A graphical representation of a resulting sample iteration is presented in fig. 4.395
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Figure 4: Basic UCT algorithm iteration

This transformation leads to MCTS trees with lower branching factor, but
greater depth and more nodes (states). Considering already very high number
of possible project states, due to stochastic and dynamic nature of the problem,
this aggravates another problem hindering the MCTS methods. In order to deal
with it, we introduce simplified project states consisting of:400

• a list of identifiers of risks that may yet possibly materialize;

• a list of identifiers of not yet performed activities and risk responses;

• a list of activities and risk responses in progress - including approximated
(to nearest even value in our configuration) time to finish;

• a list of active risk / risk response effects - with basic and/or approximate405

data about them (specifics depending on the effect type);

• amounts of available renewable and non-renewable resources.

Only these simplified states are then stored as part of the UCT tree and,
therefore, expected payoffs are calculated only for them. Decreased number
of states should lead to faster convergence at the possible cost of introducing410

a minor bias in the results (as long as the states are not oversimplified). It
requires, however, slight changes to the selection formula (1), because states
simplification breaks two implicit assumptions of the UCT formula.
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Firstly, actions available in given node can change from simulation to simu-
lation. Secondly, and as a consequence of the previous fact, a number of node
visits is no longer always equal to the sum of the currently eligible actions’ visits.
This can easily be fixed by replacing the number of state visits N(s) with the
sum of action visits

∑
a∈A(s) N(s, a). Consequently, after applying the above

modifications, we arrive at the final selection formula used by the BasicUCT
method:

a∗ = arg max
a∈A(s)

{
Q(s′, a) + C

√
ln
∑

a∈A(s) N(s′, a)

N(s′, a)

}
, (2)

where s denotes the actual project state and s′ – its simplified version.
Basic simulation policy consists in random rollouts with equal probability415

of choosing each eligible action. In the case of project scheduling, however,
it rarely makes sense to wait (choose noop) when an activity may be started.
Therefore, a simple dedicated policy, is employed instead:

1. if there are any eligible activities, with probability of 90% start one of
them (selected at random);420

2. if there are any eligible risk responses, start randomly selected one with a
probability of 25%;

3. otherwise wait till the next time unit (noop).

Probability values above have been chosen empirically and tuned to a limited
extent in a series of preliminary experiments.425

While UCT is an anytime algorithm and can operate in a time-regime, we
have decided to employ a stopping condition based on the number of simulations
proportional to the branching factor of the root node.

5.4. Proactive UCT
Proactive UCT (ProUCT) is a hybrid algorithm, allowing to combine sim-430

ulations with practically any RCPSP / SRCPSP solver. In our experiments
we employed risk-management-stripped versions of HS and GRASP. Since the
solver is used as part of each and every simulation (usually more than once), it
is expected to be relatively fast – and for that reason we have not used, e.g.,
any more complex Computational Intelligence approaches, such as evolutionary435

algorithms.
ProUCT employs MCTS in a way very similar to BasicUCT, but includes

only two classes of actions:

1. starting one of the legal risk responses;
2. letting solver run the project till the next decision point (possibly with a440

limit on the maximum duration).

Again, only the last action causes movement in time; this time, however, not
necessarily by one time unit only. Fig. 5 visualizes a sample iteration of the
algorithm.

This approach means that responsibility for risk-aware project management445

is basically split: UCT decides about risk responses, while the solver gets to
schedule all the activities.
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Figure 5: Proactive UCT algorithm iteration

5.4.1. Reactive Heuristic

Additionally, as part of ProUCT method we have designed a mechanism for
heuristically identifying risk responses worth considering reactively in response450

to materialized risks. While this method is strictly dedicated to RAPSP, its
usage to influence simulation policies has been inspired by UCT research, both
ours [46, 42, 43] and external [6], as well as the general idea of history heuristic
employed in game playing agents [39].

For each combination of risk and risk response the average project makespan455

is calculated for all simulations in which a given risk materialized, separately
with a given risk response performed and not. This data should supply infor-
mation about conditional effects of the risk response.

Reactive Heuristic (RH) is designed to be an approximate measure of how
helpful given risk response may be considering currently materialized risks. We
define it, therefore, as a maximum difference in average makespan for projects
with and without the response, across the set of all materialized risks:

RH(a) = maxr∈R(Kr(V r
¬w − V r

w)), (3)

where R denotes the set of all materialized risks, V r
w – average makespan for

projects with materialized risk r and risk response w, V r
¬w – average makespan

with risk r but without response w. Finally, Kr is a function that accounts for
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the time distance between risk occurrence and current project state:

Kr(v) = v

(
0.5 + 0.5

Tr

T

)
, (4)

where T represents current time unit and Tr – time unit when risk r has mate-
rialized. Its introduction stems from the concept that typical reactive measures460

are usually introduced shortly after risk materialization.
Should additional data be available, some or all V r

w and V r
¬w starting values

can be predefined as part of the project definition - this may be very natural
for risk responses that have been designed to deal with specific risks. These
initial estimates do not have to be very accurate as they will be recalculated465

and improved during further simulations.
RH is employed as part of the random rollouts policy. Whenever a risk

response is to be executed, it is no longer selected with a uniform probability
distribution from all legal possibilities. Instead, RH values for all eligible risk
responses are normalized to interval [0.5; 1] and a roulette wheel selection is470

performed. Any responses for which RH value is not yet available – due to the
lack of V R

¬w or V r
w value for any of materialized risk – are included with weight

of 1.

5.5. ProUCT-HS

As explained before, ProUCT is a hybrid algorithm that can make use of475

almost any (S)RCPSP solver. In the case of ProUCT-HS, it is a dedicated
version of Heuristic Solver – stripped of risk response management part, i.e.
with baseline schedule including activities only. Basic decision point criteria
remain unchanged and lead to control being transferred back to the MCTS part
of the method.480

While ProUCT can treat its solver as a black box operator, full control of the
solver allows additional dedicated optimizations to be introduced. This should
lead to additional gains from synergistic use of the methods combined.

Firstly, generating new baseline schedule may not be necessary for each and
every solver call. It may be the case that decision point was required to con-485

sider starting risk responses, but current schedule it still applicable. Generating
schedule is the only computationally expensive part of HS, so avoiding it may
allow for more UCT simulations to be performed within the same amount of
time. Additionally, if decision points become computationally cheaper, more
can be introduced and risk response analysis can happen more often.490

In our implementation of ProUCT-HS, new baseline schedule is only gener-
ated:

• for the first solver call in each simulation;

• whenever the next activity in the baseline schedule is delayed by more
than 6 time units;495

• for every other decision point with probability of 50% in the MCTS selec-
tion phase, and 20% during random rollouts.
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The last condition was introduced to avoid following stale schedule for too long
with changing project environment conditions.

For other decision points (triggered by hitting solver’s decisions time limit,500

new risk materializing or next activity delay of more than 2 units) the baseline
schedule may be retained and used in the next solver call. Values of the above
parameters (maximum deviations from schedule and probabilities of regenerat-
ing baseline) have been set based on a number of preliminary experiments.

Additionally, HS operates on deterministic project model, which is generated505

by replacing activity duration random variables with point estimates. These,
by default, equal expected values of the original distributions. Still, they may
be influenced by the effects of risks or risk responses, which probably will be
executed. UCT simulations can be used to calculate average durations which
account not only for the random variables’ distributions but also the above-510

mentioned external factors (which remain problematic for pure Monte Carlo
simulations [49]). These average durations are calculated separately for each
node in the UCT tree and the project as a whole. When transforming project
into its deterministic equivalent, lowest-level values supported by at least 3
rollouts are used.515

A small number of preliminary experiments were performed to verify the
positive effect of all the above modifications.

5.6. ProUCT-GRASP

ProUCT-GRASP, a hybrid of UCT and GRASP, can be optimized in a way
similar to ProUCT-HS. Analogically to the baseline schedule, GRASP’s priority520

list does not have to be regenerated in each decision point, but only once per
UCT iteration and then probabilistically for each subsequent decision point – a
baseline schedule delay condition obviously does not apply in this case.

Significant part of the GRASP method is concerned with building a schedule
for a deterministic project. Again, just like in the case of HS, transformation of525

the activity durations can be based on the simulations-based expected durations.
Still, the main problem of GRASP-based solver is its computational cost –

multiplied by the number of UCT iterations and decision points count within
each simulation. A relatively simple modification can, however, be introduced
to at least partially alleviate this problem: elite sets caching.530

Iterative nature of the MCTS method leads to the GRASP algorithm being
invoked many times for the same or very similar project states. In ProUCT-
GRASP elite sets are, therefore, cached for each simplified project state for
which they were generated. In theory, subsequent call to the solver for a known
project state could immediately produce a response. In practice, a small number535

of GRASP iterations is still performed every time to further improve solver’s
performance for frequently analyzed paths.

Again, we have verified usefulness of the introduced modifications by per-
forming a limited number of preliminary experiments.
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6. Experiments Setup540

In order to first tune algorithms’ parameters and then compare and verify
the strategies, several thousand experiments have been performed, spanning
project instances of different sizes, with varying levels of dynamism and non-
determinism. To this end, a sufficient set of test project instances had to be
defined.545

6.1. Problem Instances

We performed all the tests on RAPSP instances based on a popular and
widely used library of deterministic projects: PSPLIB [36, 28]. While RCPSP
is a subset of RAPSP, we were obviously interested in testing our strategies for
actual dynamic, non-degenerated risk-aware project instances.550

To that extent we have developed a procedure for transforming RCPSP sam-
ples into RAPSP instances. While the transformation itself was deterministic
(given the same input project and settings, it would yield the same result), the
resulting RAPSP instances were not - i.e. multiple realizations of the same
project might have different makespans even with the same strategy due to555

different realizations of random variables describing project risks.
Designing the transformation required making a number of arbitrary choices,

modeling sample risks and risk responses, defining their effects and frequencies.
Our goals were two-fold: firstly, to model events relatively common and typical
for many real-life projects; secondly, to make sure that the resulting problem560

instances remain a challenging problem and no universally-dominant risk miti-
gation strategy exists. This last aspect became especially important for projects
in which risk response budget was shared across multiple types of risk responses.
We have actually performed a set of simple tests to ensure that for each given
problem instance the choice of responses is non-trivial and instance-dependent.565

Additionally, in order to avoid simplification of the problem to either SRCPSP
or risk-management only, we have tried and made sure that both scheduling
and risk response decisions remain approximately equally important for the fi-
nal project makespan.

The transformation process itself consisted of two phases. Firstly, activities’570

durations and resource requirements were modified. Fixed durations were re-
placed with random variables – thus converting RCPSP into SRCPSP. Those
variables were described by Beta distribution with parameters set so that prob-
ability of the duration falling within the range of 75% to 150% of the original
estimate would approximately equal 0.9 and the mean would equal the original575

fixed duration estimate. This way, we follow the typical project modeling tech-
niques, as Beta distribution (usually with longer right tail) has remained one
of the more popular distributions used for activity durations for several dozen
years [38].

Additionally, 10% of the project activities with the highest original durations580

were considered resource-intensive - each of them gained a new requirement for
one unit of a dedicated non-renewable resource. One unit of each of those
resources was also added to the project - so that it remained feasible.
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Second transformation phase was when the risks and risk responses were
generated. Three types of risks and related risk responses were introduced,585

and three different versions of the process employed. The details are presented
below.

6.2. Risks and Risk Responses

Renewable Resource Unavailability

For each renewable resource type a risk was added that represented its tem-590

porary unavailability, e.g. an employee taking a sick leave. Such a risk could
materialize in any time unit (but only once per resource type) with probabil-
ity of 5% and would cause a decrease of available resource amount by 1 or 2
units (with equal probability) for 5 to 20 time units (actual value sampled from
uniform distribution).595

At the same time, the same number of risk responses was defined as well.
Each would require 2 time units and 3 units of a dedicated nonrenewable re-
source (budget) to increase the resource amount by 1, for the period of 15 time
units. An amount of the budget resource allowing for execution of half of all
the responses was also added to the project.600

Nonrenewable Resource Unavailability

Nonrenewable resources risks and risk responses were defined analogically.
This time, however, resource amount would always decrease by 1 and risk ma-
terialization probability was set at 3%. Additionally, budget resource would
suffice for only one fourth of the risk responses.605

Major Duration Underestimation

Risks of the last kind represented the possibility of an activity taking much
longer than anticipated. One such risk was introduced for every third of the
project activities. This kind of risk could only materialize in the time unit in
which its associated activity was started and would lead to doubling the activity610

duration. Risk’s materialization probability was set at 15%.
Related risk responses represented the possibility of executing the same ac-

tivities in a capital-intensive way. Those risk responses could only be executed
before their associated activities were started (therefore, also before risks could
materialize). Executing one of them reduced the associated activity duration615

by 34%, at the cost of 6 budget resource units per 1 unit of expected duration
reduction. Enough response budget resource was added to the project to allow
executing 10% of the risk responses.

6.3. Project Transformation Modes

The above project transformation was actually performed in three different620

modes leading to problem instances with varying degrees of dynamism and
non-determinism - with varied problem search space sizes and greater or lower
importance of the risk-management decisions.
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6.3.1. SEP Mode

In the SEP (separate risk response budgets) mode each of the three risk625

response families would use a separate budget resource, so that there would
be no trade-off between different risk response types, e.g. switching activity
execution to capital-intensive mode and hiring additional resources. This led
to the least sophisticated problem instances in our tests – with smaller search
spaces and fewer possible decisions in the risk-management area.630

6.3.2. NSH Mode

In the NSH (non-failing, shared response budget) mode, all risk responses
shared the same risk response budget resource. The strategies had full freedom
of allocating it only to the most beneficial risk response types. As explained
earlier, their costs have been configured (partially by trial and error) so that635

none of the risk response types would be universally better than other (detailed
costs have been provided in section 6.2).

6.3.3. FSH Mode

FSH (failure-prone, shared risk response budget) mode differed significantly
from the first two and was introduced as a way to test strategies behavior640

under extreme conditions for which they have not been specifically designed. It
differed from NSH in that the nonrenewable resources risks and risk responses
were modified so that their effects were permanent.

This simple change led to a situation in which it was possible that a risk
materialization might make it impossible to finish the project, if there were not645

enough nonrenewable resources available and too little response budget was left
to hire new ones. Additionally, this situation became more and more probable
with the rise in the project size.

Such problem instances called for more careful (and probably more reactive)
risk-response planning. Still, even with perfect strategy, enough risks material-650

ization would doom the project to failure.

6.4. Test Procedure

Since RAPSP instances can differ significantly, strategies should always be
tested across a wide set of projects. Additionally, highly stochastic nature of
the problem may lead to very different makespans even for repeated tests with655

the same project. Therefore, in order to fully compare the solvers, several
thousand project realizations have been simulated in total. For each of the
three transformation methods at least 300 projects of 30 and 60 activities, and
at least 100 instances of 90 activities were tested.

Each project instance was solved by each of the five algorithms. To make660

the comparison as fair as possible, random number generators for risk material-
ization, their effects and activity durations would be initialized with the same
values for each of the methods.

Since, obviously, no optimal makespans could be known for the problems,
and instances were different enough to make their makespans incomparable,665
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BasicUCT: iterations per root node action 6480
GRASP: iterations 600
GRASP: Monte-Carlo simulations per iteration 30
GRASP: elite set size 24
ProUCT-HS: iterations per root node action 1080
ProUCT-GRASP: iterations per root node action 20
ProUCT-GRASP: iterations 26
ProUCT-GRASP: Monte-Carlo simulations per iteration 3
ProUCT-GRASP: elite set size 4

Table 1: The most important control parameters of the RAPSP solvers

two success measures have been introduced: relative makespans and win rates.
Relative makespan was defined as the relation of makespan achieved by a given
method to the shortest makespan achieved by any of the strategies for a given
RAPSP instance (and random number generators’ seeds). Therefore, for each
problem instance at least one of the methods would always achieve relative670

makespan of 100%, with others equal or greater. The win rate, auxiliary meth-
ods’ performance measure, was defined as the percentage of the projects for
which a given method achieved this lowest relative makespan (i.e. 100%).

Whenever there was doubt if the observed score differences were statistically
significant, Wilcoxon signed-rank test was employed.675

6.5. Solvers configuration

In order to fairly compare the methods, we needed to not only find opti-
mal values for their control parameters but also make sure that their average
computational complexities are comparable. The latter depend heavily, how-
ever, on problem instances characteristics, since, for instance, the frequency of680

(S)RCPSP solver calls in ProUCT is mostly determined by the risk materializa-
tion probability distributions. We also specifically did not want to bias results
by choosing different configurations for specific project classes or sizes and de-
cided to share the same configuration across all tests. Therefore, we started by
performing a small set of experiments on varied projects to not only choose op-685

timal parameter values but also empirically compare algorithms’ behavior and
computational requirements.

Final values of the most important control parameters are presented in ta-
ble 1. They resulted in decision times of about 1 to 2 minutes for the most
sophisticated projects tested. It is worth noting how significant the differences690

in the number of iterations are between specific MCTS solvers, which is caused
by the disparities in single iteration costs.

7. Experiments Results

After the preliminary phase of the projects’ transformations and solvers’
parameters tuning, we performed the final set of more than two thousand ex-695

periments in total to compare the quality of the five solvers. As explained earlier,
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Figure 6: Cumulative results for SEP and NSH project instances: average relative makespans

Figure 7: Cumulative results for SEP and NSH project instances: win rates

Figure 8: SEP and NSH project instances: average relative makespans

Figure 9: SEP and NSH project instances: win rates
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Figure 10: SEP and NSH 30-activity project instances: average relative makespans

Figure 11: SEP and NSH 60-activity project instances: average relative makespans

Figure 12: SEP and NSH 90-activity project instances: average relative makespans
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we decided to accept SEP and NSH mode results as the standard measure of
solvers performance. FSH projects, with their unusually high failure rates, were
considered an edge case, providing additional information about the algorithms
flexibility in circumstances for which they have not been optimized.700

7.1. SEP and NSH Modes Results

Summarized results for the SEP and NSH projects (more than 1600 instances
in total) are presented in figures 6 and 7. As explained earlier, we believe the
average relative makespan to be the more meaningful of the statistics.

The first and most obvious conclusion is that the results of BasicUct solver705

turned out to be significantly worse than those for all the other methods. Vanilla
UCT approach proved insufficient (or at least significantly slower) than more
specialized, domain-specific algorithms. This should come as no surprise, con-
sidering how generic algorithm was employed by this solver.

While Heuristic Solver’s average makespan turned up slightly shorter than710

that of GRASP, the difference is statistically insignificant. As expected, the
hybrid approach of Proactive UCT proved to be the superior one. What is
important, ProUCT-GRASP turned out more successful than its pure-heuristic
counterpart, even with the number of GRASP iterations cut by more than an
order of magnitude (to keep computational complexity of both algorithms even).715

All the differences (except for the one exception above) have been verified as
statistically significant (with p-values well below the 0.05 threshold).

Win rates (figure 7) remain, in general, consistent with the average relative
makespans and the ranking of the methods remains mostly unchanged. One
observation is that ProUCT-GRASP achieves a relatively low wins percentage720

while still maintaining, on average, short makespans. This suggests low variation
of the method’s results. Limited number of MCTS iterations is not enough for
the solver to extensively search for the optimal strategy, yet it is still able to
avoid high makespan outliers.

Figures 8 and 9 present the scores dependence on project type. As explained725

earlier, NSH instances offer greater risk management decisions freedom and, as
a consequence, larger solution space to search. These conditions should, at
least to some extent, favor ProUCT over dedicated heuristics and GRASP over
HS. Consequently, the gap between ProUCT-GRASP and ProUCT-HS becomes
smaller for NSH - to the point of no longer being statistically significant. The730

average relative makespans of HS and GRASP also become almost equal, with
GRASP actually scoring more wins than HS. On the other hand, these effects
are not significant enough to draw any definitive conclusions.

Results for specific project sizes, presented in figures 10 to 12, are not sur-
prising, either. There is little change to methods’ ranking positions with project735

size for both SEP and NSH instances. HS consistently proves slightly stronger
than GRASP - possibly because more risk response combinations can be tested
within the same amount of time. This may be simply a matter of further fine-
tuning of GRASP parameters, but our experiments have not led to satisfactory
results thus far.740
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Figure 13: FSH 30-activity project instances: average relative makespans and corrected aver-
age relative makespans

Figure 14: FSH 30-activity project instances: failure rates

ProUCT methods consistently outperform their heuristic-only counterparts,
even for GRASP, for which iterations count is significantly reduced in the hybrid
algorithm. The single exception to this rule, 60-activity NSH projects, is not
statistically significant.

We suspect that ProUCT-HS proves more efficient than ProUCT-GRASP745

due to the sheer number of simulations - HS is so much cheaper than GRASP
that several dozen times more of them can be performed in the same time.
Still, for larger project instances, even ProUCT-GRASP (the weaker of the two
proactive approaches) fares better than the best heuristic-only method.

Finally, we can yet again observe how ProUCT and, to lesser extent, GRASP750

scores improve as problem complexity grows. For 90-activity NSH (i.e. more
complex) instances GRASP actually outperforms HS (although, admittedly, the
difference is not statistically significant).

7.2. FSH Mode Results

As explained earlier, FSH instances are very specific, in that they represent755

projects with high risk of failure - i.e. reaching a state in which it is no longer
possible to perform all activities, due to the lack of required non-renewable
resources and no way to obtain them. Additionally, the way these instances
were defined (as described in section 6.3), led to an increase in the risk of failure
with the project size. Since none of the algorithms were actually designed to deal760

with this kind of projects, we expected those experiments to provide valuable
insight into flexibility and generalization capabilities of our solvers.
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Figure 15: FSH 60-activity project instances: average relative makespans and corrected aver-
age relative makespans

Figure 16: FSH 60-activity project instances: failure rates

Figure 17: FSH 90-activity project instances: average relative makespans and corrected aver-
age relative makespans

Figure 18: FSH 90-activity project instances: failure rates
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Failure possibility forced us also to redefine our success measures for this
experiment. Firstly, we would use two average relative makespan values. The
first one would be calculated over successful projects only (i.e. different number765

of instances for each method). The second one, the corrected average relative
makespan, would include all the projects, assigning a relative makespan of 200%
to the failed ones - representing ’wasting’ resources equal to twice the optimal
cost of the project. Wins rate statistic was replaced with failures rate, which
was a simple measure of the percentage of the projects that were not finished770

successfully.
Results (figures 13 through 18) lead to several interesting conclusions. Firstly,

BasicUCT turns out to be surprisingly successful. For FSH instances it is much
more important to concentrate on searching for any feasible solution rather than
optimizing the makespan, running the risk of not delivering the project at all.775

High number of simulations can be expected to be crucial for identifying the
worst case scenarios and avoiding them. Wide search and fast iterations are the
main strengths of BasicUCT approach and thus its high success rate. At the
same time, BasicUCT is still not very good at actually minimizing the makespan
of the project, hence its relatively high non-corrected relative makespans, espe-780

cially for smaller projects.
Heuristic methods lead to shorter makespans, but lack mechanisms for suf-

ficiently minimizing failure risk. This is especially true for the HS approach
and is, to some extent, alleviated by random simulations employed as part of
the GRASP algorithm. GRASP’s advantage diminishes, however, with growing785

project sizes, as the small number of simulations employed no longer proves
sufficient.

In terms of failure rates and corrected relative makespans comparison, both
ProUCT hybrid methods with their simulation capabilities achieve significantly
better results than the problem domain dedicated heuristics. Interestingly, while790

there is no clear winner among them for small and medium projects, ProUCT-
HS definitely wins the competition for 90-activity problem instances. Again,
this can be explained by much higher number of MCTS simulations it performs.

8. Conclusions

Both risk-management and project-scheduling are active and interesting re-795

search topics and we believe that formally defining a new flexible model which
combines both into a challenging optimization problem for which autonomous
decision-making agents can be developed is a promising research avenue. Fur-
ther standardization of a set of benchmark instances (based on proposals in this
paper and suggestions of other researchers from the project scheduling com-800

munity) should allow for objective comparison of various scheduling and risk-
management approaches – the aspect that seems to be often missing in today’s
publications.

To this end, we have defined the Risk-Aware Project Scheduling Problem
(RAPSP) which, as confirmed by the results presented above, proved to be an805

interesting modification of the SRCPSP, that introduces new levels of dynamism
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and challenges when designing project management strategies. Consequently,
we believe that it is worth further investigation, both as a complex benchmark
problem and a testbed for both dedicated and metaheuristic algorithms, as well
as a response to an actual business need.810

We have designed and tested five solvers for RAPSP, in total: two based
directly on successful RCPSP and SRCPSP methods (HS and GRASP), one
being a relatively straightforward application of the UCT method (BasicUCT)
and two hybrid simulation-heuristic approaches (ProUCT-HS and ProUCT-
GRASP). While HS was the fastest of the algorithms and BasicUCT was able to815

best explore the problem space and thus deal with extreme cases of failure-prone
projects, our results prove that the hybrid UCT-based approaches show most
promise, being able, on average, to outperform both vanilla MCTS approach
and dedicated domain-specific heuristics.

Concluding experiments presented in this paper, as well as our previous re-820

search ([30, 46, 42, 47, 48, 29, 31, 23]), we believe that MCTS-based approaches
should be considered a useful and strong tool for building complex solutions
for many problems, that can be represented as Markov Decision Processes. De-
fault MCTS/UCT simulation policies can be relatively easily augmented with
problem-dedicated heuristics, leading to hybrid methods more efficient than any825

of their components alone. While we believe RAPSP is worth further attention
on its own, we see a great and not yet fully discovered potential in hybrid
MCTS-based methods as well.

Our current research in the project-scheduling area is focused on combining
the proposed ProUCT approach with techniques for automated extraction of830

risks and risk responses related information from historical data (i.e. a given
ensemble of already completed RAPSP instances).
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[32] P. B. Myszkowski, J. J. Siemieński, GRASP Applied to MultiSkill Re-
sourceConstrained Project Scheduling Problem. In: Nguyen NT., Iliadis L.,
Manolopoulos Y., Trawiski B. (eds) Computational Collective Intelligence.
ICCCI 2016. Lecture Notes in Computer Science, vol 9875, 2016 Springer
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