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Abstract. In this paper, we investigate the concept of a paralleliza-
tion of Monte Carlo Tree Search applied to games. Specifically, we con-
sider General Game Playing framework, which has originated at Stanford
University in 2005 and has become one of the most important realiza-
tions of the multi-game playing idea. We introduce a novel paralleliza-
tion method, called Limited Hybrid Root-Tree Parallelization, based on
a combination of two existing ones (Root and Tree Parallelization) addi-
tionally equipped with a mechanism of limiting actions available during
the search process. The proposed approach is evaluated and compared to
the non-limited hybrid version counterpart and to the Tree Paralleliza-
tion method. The advantages over Root Parallelization are derived on a
theoretical basis. In the experiments, the proposed method is more effec-
tive than Tree Parallelization and also than non-limited hybrid version
in certain games.
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1 Introduction

Monte Carlo Tree Search (MCTS) [5] is renowned for being the state-of-the-art
algorithm of searching a game tree in a variety of domains. It is particularly
useful in complex games with high branching factors such as Go [11], Hex [2],
Havannah [27] or Arimaa [26] where no good evaluation function exists. Since
the introduction of MCTS to a domain of General Game Playing (GGP) [13] in
2007, it has also become a backbone of almost all the strongest players [25]. GGP
deals with creating autonomous agents capable of playing many games with a
high level of competence. The term was proposed by Stanford Logic Group in
2005, together with the introduction of the General Game Playing Competition
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as the official world championships. Our player, called MINI-Player [22, 24], has
been our annual entry to the competition since 2012.

Parallelization is understood as making the program run simultaneously on
many computers and/or processing cores. In this paper, we are concerned with
the parallelization of the MCTS algorithm in the GGP framework, specifically.
The MCTS is relatively easy to parallelize compared to any classic Depth-First
Search algorithm [19] (e.g., alpha-beta, min-max, MTD-f) because it contains
fewer synchronization points. The synchronization can be less frequent because
there is a simulation phase in MCTS, which is usually very time-consuming
and isolated, i.e., the game tree does not need to be accessed in this phase.
However, running multiple simulations in parallel steps away from the original
idea of MCTS where for each iteration of the algorithm there is one simulation.
Therefore, parallelization is not only an implementation issue but also a design
choice.

The main motivation behind parallelization is to increase implementation
efficiency of the Monte Carlo Tree Search algorithm. Naturally, the more sim-
ulations are performed the more accurate statistics of actions are collected. In
GGP, each game is written in a universal logic language which is very slow to
interpret compared to any game-dedicated representation. Utilizing many CPU
cores is especially important in the GGP Competition scenario, where every par-
ticipant runs the program on their own computational facilities. Parallelization
in GGP area brings an additional difficulty stemming from the fact that the
approach needs to be universally good, i.e. suitable for a variety of games.

This paper is organized as follows. In the next section, we briefly introduce
the GGP competition setting and describe our MINI-Player and the MCTS algo-
rithm in more details. In section, 4 related parallelization methods are presented
which are the entry points to our method. The following section contains de-
scription of the proposed novel method applied in MINI-Player. The last two
sections are devoted to results and conclusions, respectively.

2 Background

2.1 General Game Playing

As already mentioned in the introduction, General Game Playing refers to the
area of creating autonomous multi-game playing agents. Each game in the GGP
framework is defined in the Game Description Language (GDL) [15], which al-
lows for describing any finite, synchronous, deterministic and perfect-information
game. Apart from these constraints, games have no limitation, e.g. they can fea-
ture any number of players (including only one), can be of various genres (not
only board games) can be cooperative, competitive or partially both.

GDL is a first-order logic language based on Datalog [1] and Prolog [4]. It is
relatively easy to convert a GDL description to a Prolog program. A complete
game state of any game is defined by a set of facts (predicates) which hold true.
When designing methods of parallelization, one must keep in mind that the
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GDL description must be sent to all remote units in the system. Moreover, many
methods require game states to be sent frequently. Although certain compression
of the state is possible (e.g., conversion of strings to numbers), the representation
is still less compact, in a general case, than a game-specific one [23]. Therefore,
not only simulations are slower but also the communication overhead is higher
in GGP.

In GGP, the communication takes place through messages sent via HTTP
protocol. Players do not communicate with each other directly, but with a special
component called the Game Manager (GM). The GM can be started locally
or provided by the organizers of the GGP Competition. The defined messages
are START, PLAY, STOP, ABORT, PING and INFO.

The START message is sent by the GM to each player when a game starts. It
may look as follows: (START matchl white ((role white)(role black)....) 40 10).
The message contains the keyword “START”, an identifier of the played match
(to differentiate between matches), a role for the player (which must exactly
match one of the roles defined in a game), the complete GDL description of
a game and a pair of clocks (in seconds). The START-clock defines the initial
preparation measured from sending the rules until the game starts. Players are
expected to respond with “(ready)” before the START-clock expires. The PLAY-
clock defines time available for players to make a move. After the successive
PLAY-clock, PLAY messages are sent and the game state is updated by the
GM. In the GGP competition, the START-clock is usually set to somewhere
between 20 and 120 seconds whereas the PLAY-clock to 10-30 seconds. These
relatively low settings significantly limit the possible approaches to creating and
parallelizing a GGP agent.

The START message, which is sent only once, is followed by a number of
PLAY messages at even intervals equal to the PLAY-clock. Before each PLAY-
clock expires, each player has to send their chosen move. When it expires, the
GM sends the PLAY message that contains moves chosen by all players (called
a joint move) to all the players so they can update their game state accordingly.
The GM is also responsible for checking whether the submitted moves are legal in
the game. If not, it chooses random ones instead and/or disqualifies the illegally
playing players. A play message may look as follows: (PLAY matchl (move a 1)
n0op).

Technically, the STOP message is the last PLAY message with the addi-
tional meaning that the game has reached the conclusion. Players should update
their state for the last time and check the outcome of the game. The ABORT
message means that game has been terminated prematurely - either by manual
intervention or a failure at the GM side.

The PING and INFO messages are used to check whether players are online.
They should respond with “(available)” or “(busy)”.

2.2 MINI-Player

MINI-Player [22,24] has been designed and implemented as part of the PhD
thesis [20] and with the aim of taking part in the official GGP championships.
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All of parallelization methods investigated in this paper were implemented in
MINI-Player. The key features of the program are:

1. Monte Carlo Tree Search. MCTS, which is the main routine of the player,
is described in subsection 2.3.

2. Simulation strategies. MINI-Player uses seven policies to bias the search
in the simulation phase of the MCTS algorithm. The policies are Random,
Approximate Goal Evaluation (greedily trying to fulfill a goal condition),
History Heuristic (exploiting past good actions), Mobility (maximizing the
relative number of available actions), Exploration (prioritizing novel game
states during search), Statistical Symbols Counting [16] (dynamically con-
structed material-inspired evaluation function) and Score (detection of ex-
plicitly defined scoring condition in the GDL rules).

3. Adaptive mechanism of selection of strategies. The strategies are eval-
uated dynamically based on their empirical performance. A strategy is as-
signed to guide a simulation based on its evaluation and a confidence of
the evaluation. The better or the less simulated the strategy the higher the
probability of choosing it.

4. Fast GDL interpreter. We developed a dedicated GDL interpreter [21]
which is faster than known Prolog distributions.

5. Three-time (2012-2014) participation in GGP competition. In 2012
and 2014, MINI-Player achieved the 7-8th place.

2.3 Monte Carlo Tree Search

The MCTS algorithm is an iterative simulation-based approach to searching the
game tree. Each iteration consists of four phases depicted in Figure 1.
Selection: start the search from the root node. Traverse the tree down un-
til reaching a leaf node. In each node, choose the child node with the highest
average score. More sophisticated approaches replace the average score with a
specialized formula for determining the node to choose.

Expansion: if a state in the leaf node is not terminal choose a continuation
which falls out of the tree and allocate a new child node. Typically, in the basic
version of the method, just one new node is added per each expansion step.
Simulation: starting from a state associated to the newly expanded node, per-
form a full game simulation (i.e. to the terminal state).

Backpropagation: fetch the result of the simulated game. Update statistics
(scores, visits) of all nodes on the path of simulation starting from the newly
expanded node up to the root.

When the time budget is up, an action leading to the highest average score is
chosen.

In the selection phase, MINI-Player uses the Upper Confidence Bounds Ap-
plied for Trees (UCT) [14] method. The purpose of the algorithm is to maintain
a balance between exploration and exploitation in the selection step. Instead of
sampling each action uniformly or choosing always the best action so far, the
selection of the best action is made as follows:
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Fig. 1. Four phases of the MCTS algorithm. The figure is reproduced from [8]

(1)

a€A(s) N(S, a)

a* = arg max {Q(s,a) +C ln[N(s)]}

where a - is an action; s - is the current state; A(s) - is a set of actions
available in state s; Q(s,a) - is an assessment of performing action a in state s;
N(s) - is a number of previous visits to state s; N(s,a) - is a number of times
an action a has been sampled in state s; C' - is a coefficient defining a degree to
which the second component (exploration) is considered.

The first remarkably successful application of MCTS in games referred to
Go. A majority of the strongest programs, e.g. MoGo [12] or CrazyStone [9]
use variants of MCTS. In contrast to all the variations of min-max alpha-beta
search, the MCTS is an aheuristic method. The aheuristic property means that
there is no game-specific knowledge (heuristics) required so the method can be
applied to a wide selection of problems.

3 Related Methods of Parallelization in GGP

There have been three major methods proposed for the task of parallelizing
an MCTS-based player, i.e. Leaf Parallelization (LP) [6], Root Parallelization
(RP) [6,17] and Tree Parallelization (TP) [6,7,18]. These methods can also
be called At-the-leaves Parallelization, Single-Run Parallelization and Multiple-
Runs Parallelization, respectively. Our method is based on two of them, so we
decided to dedicate a section for a short review of all the methods.

3.1 Leaf Parallelization

In Leaf Parallelization (LP), there is a single game tree with exclusive access
from the master process (a distinguished thread on one of the machines). The
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MCTS/UCT algorithm is performed by the master process. When it reaches
a leaf node, the state associated to that node is sent to all remote processes.
Then, a simulation starting from that state is executed in parallel in each of
these processes. The master process waits for the simulations to finish and col-
lects the results. In Leaf Parallelization, only simulation and back-propagation
phases differ in comparison to the original (sequential) MCTS formulation. The
simulation phase consists of multiple independent simulation starting from the
same state, whereas the back-propagation phases updates statistics aggregated
from these multiple runs instead of one.

A simple idea and easy implementation are the biggest advantages of the Leaf
Parallelization method. However, although many simulations performed from the
same node increase the confidence of its statistics, it is not the most effective
approach. The original MCTS/UCT algorithm chooses the node to simulate
after each simulation, because every time the statistics are updated, a new node
might be more suitable for the next simulation. In the LP approach, even the
meaningless state has to be simulation at least K times, where K is the chosen
number of remote processes. Moreover, the tree does not grow quicker than in
the single-threaded MCTS. Figure 2 shows how Leaf Parallelization works.

Fig. 2. An illustration of the Leaf Parallelization method with 3 parallel processes.
The parallel simulations start from the marked node and the MCTS algorithm waits
until all of them are completed.

3.2 Root Parallelization

The main idea of Root Parallelization (RP) is to expand the game trees on each
remote process individually and synchronize them occasionally. In the most typ-
ical approach, the master process passes raw messages (START, PLAY, STOP,
ABORT) received from the GM to all connected machines. Each machine acts as



A Hybrid Approach to Parallelization of MCTS in GGP 7

aregular GGP player with the following two exceptions: (1) - they respond to the
master node instead of to the GM; (2) - instead of the chosen action, they send
MCTS statistics (total score, visits) stored in the top-most level of the game.
The top-most level of the game tree contains the nodes related to all possible
actions in the current state. The master process performs synchronization by
aggregating the gathered statistics to its own game tree to compute the global
average scores for actions. The most frequently chosen method of aggregation
is a sum but certain other are possible, e.g., a sum of the best K or majority
voting.

The biggest advantage of the method is a minimal communication overhead.
The statistics gathered from the trees expanded by independent UCT algorithms
are more confident but they may also be too overlapping (similar). In overall,
the method scales relatively well and was successfully used by a GGP player
called Ary [17].

Three variants of aggregating the results were tested: Best (select the best
evaluated move from a distributed node), Sum (sum total scores and total visits
and compute a global average scores), Sum10 (Sum performed only for the
top ten best evaluated moves) and Raw (send only average scores of moves
from nodes without weighting by the number of total visits). The best results
were reported for Sum and Sum10 with no significant difference between them.
Figure 3 shows how Root Parallelization works.

Tree 1 Tree 2 Tree 3

(,) (,) (y)“”[@ O CHO ) O)

Fig. 3. An illustration of the Root Parallelization method with 3 parallel processes.
Each process maintains an independent tree constructed in a sequential fashion. Statis-
tics of the root’s children are aggregated during a synchronization point.

3.3 Tree Parallelization

Tree Parallelism (TP) resembles the idea of the sequential MCTS/UCT as closely
as possible. There is a single game tree expanded by the master process. When-
ever the MCTS/UCT algorithm schedules a new simulation, the master process
checks for the first available process which is either a local thread (the preferred
case) or a remote process. Once the master process sends the simulation request
it proceeds to the next iteration of the MCTS/UCT. The simulation count (vis-
its) of the previously selected node is incremented immediately but the scores
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are updated when the simulation is actually completed (therefore, until it hap-
peuns, it is a virtual loss for all players). If no parallel unit is available, the system
will wait or place the simulation request into a waiting queue, depending on the
implementation. The advantage of Tree Parallelization over both Root and Leaf
Parallelization is that more unique states are visited. The MCTS algorithm con-
verges faster in the Leaf Parallelization approach. However, the communication
overhead is significantly higher than in Root Parallelization. Figure 4 shows how
Tree Parallelization works.

N

Fig. 4. An illustration of the Tree Parallelization method with 3 parallel processes.
When a simulation is finished, statistics are updated in the tree and a new simulation
is scheduled based on the currently observed statistics.

4 Our Hybrid Approach: Limited Root-Tree
Parallelization

The idea of our method is to combine the best of both words. Within one machine
we use Tree Parallelization which is then mixed by Root Parallelization between
the machines. TP can be relatively efliciently performed on a single computer,
because of the benefits gained from a shared memory. TP on remote machines,
however, not only requires network communication but also serialization and
deserialization of states which simulations start from. With the shared memory
available in one program’s instance, all the necessary synchronization can be
put into a critical section or even a lock-free fashion can be pursued. The lock-
free version [10] assumes that some synchronization errors (often called faulty
updates) are possible. The idea is to detect such cases and ignore result from the
simulation if a fault was encountered. In our implementation, the safer approach
with the lock is used.
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Although the shared game tree has to be accessed twice in one iteration of
the MCTS algorithm (first during Selection/Expansion and next during Back-
Propagation), both phases can reside within the same lock when a smart reorder-
ing of the MCTS phases is applied. Figure 5 shows how Hybrid Parallelization
works.

Root Parallelization

N

¢

4 g ’ § 4

V Tree Parallelization \4 Tree Parallelization Tree Parallelization

Fig. 5. An illustration of the Hybrid Parallelization method with 3 parallel nodes and
3 parallel processes in each node.

A unique feature of the MINI-Player’s parallelization approach is that each
remote node operates on a subset of the tree to increase the variety of search.
Each remote node (a computer) is assigned a unique identifier ID € [1, N]. The
maximum number (V) is globally available to all nodes. On the first possible level
in the tree, where MiNI-Player has more than one available action we narrow
the search of each remote machine to the portion of the total moves defined by:

[ID—I ID—i—l} @)

N ' N

These intervals overlap to keep some redundancy in case a machine disconnects.
The last interval is wrapped back to the beginning. For instance, if N = 5, the
intervals are:

0. 2113, 212, 4112,1) and (4, 9" = (£, 1]U[0, 3]

These intervals are used on remote nodes to constrain the available actions to
the UCT algorithm in the selection phase. If M is the total number of moves,

then only actions with indices from the range as computed by Formula 3 are

available to choose.
ID -1 ID+1
M M
o5 [ 55 @

The redundancy caused by overlapping intervals can be further strengthened in
two ways:
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1. By increasing the overlapping margin i.e. [ID]\fk, IDA;FI“], where k > 1.
2. By having multiple machines assigned the same ID. For instance, with 8
machines, IV can be set to 4 and each value of ID can be assigned to a
pair of machines. In such a case, the same subset of actions will be checked
twice due to redundancy. Since the MCTS algorithm is non-deterministic,
repeated simulations may increase confidence of the statistics.

Actions of MINI-Player are limited only in the first node on each path
coming from the root in which our player has more than 1 action available. The
root is included, so if MINI-Player has more than 1 action in the root then it is
the only node with limited actions. There are no limitations of actions chosen for
the simulated opponents. There are two sample trees shown in Figure 6 where
the mechanism is illustrated. The set of allowed moves is limited only for MINI-
Player because in this approach the assessment of actions in distributed programs
is fair by means of being evaluated against all possible opponents’ actions. If the
search was limited to certain subsets of moves for all players, then some of them
could have too promising assessment if they happened to be simulated together
with only weak actions of the opponents. To solve this issue, each combination
of players’ actions would have to be simulated by some remote node what vastly
increases complexity of the problem.

Fig. 6. An illustration of how MINI-Player’s actions are limited in the UCT algorithm.
The nodes are labeled by the number of legal moves for MINI-Player. Circles marked in
green are the first nodes on each path from the root with more than 1 action available,
so the limiting takes place there. Branches ending with three dots are not relevant to
the algorithm’s presentation.

In the proposed parallelization approach, three types of nodes are used. The
setup is presented in Figure 7. Each physical computer is running one node at a
time which can be the Master, a Hub or a Worker Node.
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1. Master Node - the main program, which communicates with the Game
Manager. 1t passes START, PLAY, STOP and ABORT messages without
any processing further to other types of nodes. The MCTS/UCT algorithm
is used here to construct the game tree. Within a scope of the machine,
the algorithm uses Tree Parallelization. Before a PLAY-clock elapses, the
statistics are gathered and aggregated as in Root Parallelization method.

2. Hub Node - an intermediate layer passing messages back and forth between
the Master Node and Worker Nodes. Hub Nodes are used only in situations,
where there are so many computers available that maintaining connections
between the Master Node and each of them would be infeasible. Each Hub
Node gathers statistics from a certain group of Worker Nodes and sends
them, already aggregated, to the Master Node. A high number of connec-
tions to the main machine active at same time (just before a move is made)
renders it vulnerable to time-outs, which in turn can lead to game losses.
This is important in the GGP Competition scenario. However, with the in-
termediate layer the responsibility of communicating with Worker Nodes is
shared among Hub Nodes and the main machine is not overloaded.

3. Worker Node - a procedure of work is similar to the Master Node’s one.
The difference is only that Workers do not pass messages any further and
respond with the statistics of level one nodes (just below the root) instead
of the action to play.

Game pass GM message pass GM message

Manager /\ /\
| l (immediately) (immediately)

Master Hub Worker
Node | D8°PLAY-clock Node |, av.ciock| NOde
> -~ >

send statistics send statistics

e

PLAY-clock-m - A PLAY-clock - m - 2A

A - time margin for message gathering
m - time margin for the response to Game Manager

Fig. 7. A data flow in the proposed Hybrid Parallelization algorithm.
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4.1 Aggregation of Statistics

Worker Nodes send statistics computed for all currently available actions of all
players by local MCTS/UCT algorithms. Because the current state in the game
is stored in a tree root, the nodes which contain these statistics are the root’s
children. The total scores computed for all players and the number of visits are
sent twice per each PLAY-clock interval. The first synchronization is when 80%
of the PLAY-clock elapses whereas the second one occurs right before it elapses.
The Master Node sums the obtained data for every node which is present in its
own game tree. This operation affects the average score which is now updated.
Since the nodes are close to the root, the only situation in which they are not
present is when a game has an enormously huge branching factor or the PLAY-
clock is extremely small. Please recall that the UCT algorithm will prioritize
actions which were never visited before, so K children of the root are sure to be
visited in the first K simulations.

After the first aggregation, the Master Node propagates the aggregated statis-
tics back to Hub Nodes which are further passed to Worker Nodes. Statistics on
each machine become synchronized in the first levels of the game trees. From
now on, until the PLAY-clock expires, the remote nodes are allowed to sample
all actions, i.e., the search narrowing algorithm is switched off. In the remaining
portion of the PLAY-clock, all game trees have the chance to expand in direction
of the highest evaluated actions. If the narrowing mechanism was not switched
off at any point, the machines which did not have access to the eventually cho-
sen move, would have to build the game tree starting from the root only after
every PLAY message. If only there are no more actions in a current state than
available machines, Formula 3 guarantees that each action (the played action,
in particular) is available to exactly two machines, therefore, all but two would
have a degenerated game tree at each step.

4.2 Disadvantages of using intermediate layers

A huge advantage of the Hybrid Parallelization method is that it can utilize a
lot of threads and computers relatively easily. As depicted in Figure 5, it has a
hierarchical structure, where the Root component is higher in the hierarchy. In
comparison to Tree Parallelization method, where a communication cost quickly
becomes an issue, it can harvest significantly more power due to less frequent
need of sending data. In TP, each request for a simulation generates a message,
which can count to thousands per step between a single pair of machines. In
HP only two messages are exchanged per step between a pair of machines. The
utilization of computers can be even increased by adding more intermediate, i.e.,
Hub Node, layers. There is no difference whether a Hub Node passes messages
to a Worker Node or another Hub Node. A downside of adding intermediate
layers is that each such a layer has to include a small time margin - A - for
communication. To avoid time-outs, the Master Nodes responds with the chosen
action with a time margin - m. An i-th layer Hub Node sends the gathered
statistics to the Master Node with a margin equal to m +1i* A. A Worker Node
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sends the final statistics with a margin of m+ (K 4+ 1) x A, where K denotes the
number of intermediate layers.

4.3 Advantages over Root Parallelization

In comparison with Root Parallelization, the hybrid method scales better be-
cause the aggregation mechanism treats one computer, instead of one thread as
in the original RP, as one parallel unit. For instance, if quad-core computers are
considered, HP can employ approximately four times more machines with the
same communication overhead. Moreover, game trees constructed by the Hybrid
Parallel algorithm are of higher quality than in the Root Parallel one.

A predominance of the hybrid method over RP can be derived theoretically.
For a given pair (game, parallelization method) there always exists a saturation
point beyond which adding more threads does not increase the performance.
Eventually, the synchronization and/or communication cost will be even detri-
mental to the overall player’s strength. Let us denote this boundary number of
parallel instances for (gamel, RP) by B. For a given game, the Root component
of Hybrid Parallelization will stop scaling around approximately the same num-
ber of units. However, the communication costs imposed by this component are
completely unaffected by the synchronization costs from the Tree components
running on each remote unit. In the case of a classic RP, the remote units are
simply threads. In the case of HP, the remote units are k-core machines paral-
lelized via TP. This concludes, that Hybrid Parallelization scales asymptotically
better up to k times.

Root Parallelization has a chance to be more effective only with a small
numbers of computers, when it is not yet saturated. In general, it is more valuable
to compare HP and TP methods than HP and RP methods. The former are
simply more different whereas the latter use the same parallelization idea when
analyzed top-down (Figures 3 and 5).

5 Results

We performed two experiments in the following hardware setup: 16 identical
machines equipped with Intel(R) Core i7-2600 processors (4 physical, 8 logical
cores), 8GB of RAM and Windows 7 64-bit operating system. In both exper-
iments, two players parallelized on 32 threads (8 machines x 4 cores), play a
series of 100 matches against each other. The number of matches is limited to
100 due to significant amount of time required to complete the experiment.

In GDL, the obtained scores for players are defined by integer numbers from
the [0, 100] interval. These scores, called goals, are valid only in terminal states.
In order to make comparison of results from various games easier, we define the
concepts of a win, draw and loss. One player wins the match if it achieves a
higher score than the opponent it is tested against. In such a case, the latter
loses the game. A draw occurs if both tested agents achieve equal scores. In both
experiments, the total score for each player is calculated as shown in Eq. 4. The
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number of their wins is summed with a half of the number of draws. This method
of calculating scores has been widely used in GGP, e.g., in [3], where multiple
games are involved in an experiment. After 50 repetitions, the roles in the game
are swapped to avoid any bias related to a starting position.

Score = ((WINS|+ |DRAW S| % 0.5) (4)

The first experiment was aimed at testing Limited Root-Tree Parallelization
(Limited-RT) against the regular Root-Tree Parallelization (RT). In such a
case, we can measure the impact of the proposed actions limiting mechanism
and verify its usefulness.

Nine significantly different games, including chess-like games, connection
games, market-inspired games, of various complexity (in terms of the numbers
of possible unique states and actions) were chosen. For these selected games,
Table 1 presents two game properties which are very important from the paral-
lelization point of view: the average time required to perform one Monte Carlo
simulation and the average number of possible moves (branching factor).

Table 1. The average time required to complete one game simulation in our frame-
work (on a single thread) and the approximate average branching factor of each game.
The branching factors marked with a * were computed empirically based on massive
simulations in large UCT trees.

Game 1-sim time|Branching Factor
Breakthrough 4.6 [ms] 20*
Checkers 20.7 [ms] 2.8
Connect4 0.9 [ms] 4
Farmers 1.7 [ms] 1000
Farming Quandries| 1.5 [ms] 8%
Hex 9x9 0.8 [ms] 79*
Othello 298.5 [ms] 10
Pentago 13.9 [ms] 97.3
Pilgrimage 20.3 [ms] 9.2%

Table 2 presents the experimental results. Using 75% confidence intervals,
the total result (measured in wins-draws-losses) is 4-1-4 whereas within 95%
confidence intervals, the outcome is 3-3-3. The average score is slightly higher
for the Limited Root-Tree variant, but it is not significant by margins with at
least 75% confidence. We can conclude that both methods are similarly strong
but suitable for different games. Limiting actions on a machine seems to work well
for Farming Quandries, because in this game usually the last actions computed
by the GDL interpreter are the best, so the last two machines can take full
advantage of that. Good performance of this method in Farmers and Pentago is
probably caused by high average branching factors in that games, around 1000
and 100 respectively. Both games feature some universally good moves such
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as the buy/sell actions near the start/end, respectively, in Farmers or placing
stones in the middle of four sub-boards in Pentago. Hex, having a relatively
high branching factor too, features no universally good moves in the above-
mentioned sense. Connect Four has the second lowest branching factor, and
there are no move patterns like in Farming Quandries, what is the reason for the
plain Hybrid Method being stronger there. The same (low branching factor and
no move ordering patterns), is true for Othello. In a game-dependent scenario,
both parallelization methods should be initially verified (before choosing the
right one), because neither is universally stronger.

Table 2. Evaluation of Root-Tree Parallelization (Limited-RT) against the plain
Root-Tree Parallelization (RT). The results above 50, which are shown in bold, are
in favor of the first player appearing in the table, which is Limited-RT in this case.
Values in column Clock represent the time alloted for START-clock (the left value)
and PLAY-clock (the right value). There are both 75% and 95% confidence intervals
put in square brackets. Confident wins by either player are marked with ticks next to
confidence intervals.

Game Clock|Limited-RT|75% conf.|95% conf.
[s] vs. RT interval | interval
Breakthrough |45] 8 42.00 [4.16] v [9.67]
Checkers 60| 10 51.00 [3.99] [9.30]
Connectd 40| 5 | 37.50 3.64] v | [8.47] v
Farmers 45| 5 57.00 [3.86] v/ [8.98]
Farming Quandries|60| 8 77.00 [3.49] v [8.13]v
Hex 9x9 60[ 10|  40.00 [4.12] v | [9.60] v
Othello 90[ 15|  39.00 [4.06] v | [9.46] v
Pentago 45| 8 63.00 [3.93] v/ [9.15]v
Pilgrimage  |90] 10|  61.00 379V | [8.83]V
H Average ‘ ‘ 51.94 ‘ ‘ ‘

In the second experiment (see Table 3), the proposed parallelization method
(Limited-RT) was evaluated against a player using Tree Parallelization (Tree).
The total result (wins-draws-losses) is 6-1-2 in favour of the former method when
the 75% confidence intervals are applied and 5-2-2 with the 95% confidence.
Moreover, the average score of Limited-RT - 58.60 - is significantly higher
than that of Tree. The Tree approach appears to be generally better in slowly
simulated games (with the exception of checkers). Please notice, that RT as well
as Limited-RT, contain Tree as a subsystem limited to 4 CPU cores (in our
case). The biggest gain of parallelization measured after adding an additional
thread is noticed with the lowest number of threads. The more cores (threads),
the worse scalability of Tree, so the hybrid methods are much more promising
in maintaining scalability.
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Table 3. Evaluation of Root-Tree Parallelization (Limited-RT) against Tree Paral-
lelization (Tree). See the description of Table 2 for the interpretation of results.

Game Clock|Limited-RT|75% conf.|95% conf.
[s] vs. Tree | interval | interval
Breakthrough |45] 8 60.00 [4.12] v [9.60] v/
Checkers 60| 10 62.50 [3.88] v | [9.02] v
Connectd  |40] 5 | 57.00 347] v | [8.08]
Farmers 450 5 | 83.50 2.67] v | [6.21] v
Farming Quandries|60| 8 86.00 [2.80]v [6.51]v
Hex 9x9 60/ 10| 64.00 [4.04]v | [9.41]v
Othello 90[ 15|  24.00 3.60] v | [8.37] v
Pentago 45 8 52.00 [4.21] [9.79]
Pilgrimage 90| 10 38.00 [3.91] v | [9.10] v/
H Average ‘ ‘ 58.60 ‘ ‘ ‘

6 Conclusions

In this paper, a new method of parallelization of the MCTS algorithm was pre-
sented. The method was applied to a GGP program called MINI-Player. Its
underpinning ideas are a combination of Root and Tree Parallelization and nar-
rowing the search to only certain subsets of actions on remote units. We proposed
a mechanism of data aggregation coming from the remote machines. The combi-
nation of the two mentioned parallelization methods appears to be more suitable
for GGP scenario than Tree Parallelization alone (shown empirically) and Root
Parallelization alone (discussed theoretically). The mechanism of narrowing ac-
tions is beneficial in certain class of games, especially with high branching factor
and repetitive move patterns (e.g., when the last moves with respect to specific
ordering are stronger in average).

A dynamic detection of the most suitable parallelization method based on
game rules analysis in the START-clock time is one of the future goals. We also
plan to perform further tests with a higher number of games using the proposed
methods. In general, parallelization of the MCTS algorithm is a robust and
promising way to increase its performance. The methods discussed in this paper
in the scope of GGP should be easily adapted to any game or even beyond the
game domain where the MCTS algorithm is used.
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