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Abstract—General Game Playing competitions provide a
framework for building multigame playing agents. In this paper,
we describe an attempt at the implementation of such an agent.
It relies heavily on our knowledge-free method of automatic
construction of approximate state evaluation function based on
game rules only. This function is then employed by one of the
two game tree search methods: MTD(f) or Guided UCT, the
latter being our proposal of an algorithm combining UCT with
the usage of an evaluation function. The performance of our
agent is very satisfactory when compared to a baseline UCT
implementation.

Index Terms—General Game Playing, UCT, MTD, evaluation
function, autonomous game playing.

I. INTRODUCTION

AMES, some of them played by humans for thousands

of years (Go and backgammon date back to 1000-2000
BC), are a natural and interesting topic for Artificial Intelli-
gence (Al) and Computational Intelligence (CI) research. They
provide well-defined environments for devising and testing
possibly sophisticated strategies. Most of them are not simple
enough to be solved by brute-force algorithms, yet they are
limited enough to allow concentration on the development
of an intelligence algorithm, instead of handling environment
complexities.

Years of research on particular games led to a situation in
which the goal of significantly outplaying top human players
has been achieved in almost all the popular games (Go being
the most notable exception). Several moderately sophisticated
games, most notably Checkers, have been solved [23].

Yet, almost all of those so successful applications in-
volved no learning mechanisms whatsoever, relying instead
on fast and heavily optimized search algorithms coupled with
manually-tuned game-specific heuristic state evaluation func-
tions, defined by human players with significant experience
in a given game. None of the top programs is actually able
to transfer its game-playing abilities to the domain of another
game, no matter how similar to the one it was intended for.

In this paper, continuing our research presented in [28], we
deal with the topic of constructing a multigame playing agent,
i.e. program capable of playing a wide variety of games, in our
case defined by Game Description Language (GDL) — part of
the General Game Playing (GGP) competition specification.
The multitude of possible games prevents introduction of any
significant amount of external knowledge or preconceptions
into the application. It is expected that it will rely on some
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kind of learning algorithm, allowing it to reason about the
game and come up with a successful playing strategy based
solely on the rules (and possibly experience gathered during
the play itself).

Our GGP agent relies on a fully automatically generated
state evaluation function. Its construction process interweaves
two human-specific, cognitively-inspired processes of gener-
alization and specialization for generating a pool of possible
game state features. Those features are then combined into
the final evaluation function depending on the results of their
statistical analysis. This function is then employed by one
of the two game tree search algorithms. The first one is a
modification of the standard MTD(f) method. The second one,
which we call Guided UCT (GUCT) is our own proposal of an
algorithm, combining typical UCT with an evaluation function
usage.

While the UCT algorithm itself can operate with no explicit
evaluation function and some applications of it have proven
successful in the context of multigame playing, we strongly
believe that its quality can be improved by the introduction
of a state evaluator. After all, game tree search algorithms
combined with heuristic evaluation functions have remained
the standard and most powerful approach to single game
agents creation for years, and for a good reason. An intelligent
mixture of both mentioned approaches should lead to the best
of both worlds solution.

Recent, limited use of the evaluation functions in the context
of GGP has probably been caused by the difficulties in
their generation for arbitrary games. In this paper we prove,
however, that this task is feasible, at least for some of the GGP
games and, with further refinement, can form at least part of
a successful GGP approach.

It is also worth noting that, as presented in the appendices,
our approach generates evaluation functions in a form that can
be relatively easily understood and analyzed by humans. This,
in effect, is an important step in a transition from a black-box
UCT algorithm towards a white-box approach to multigame
playing, in which an agent’s decisions can be analyzed in order
to further tweak its operation and improve playing strength.

The remainder of this paper is divided into several sections.
In the first three, we briefly introduce the concept of GGP and
basic UCT and MTD(f) algorithms. Afterwards, we describe
in detail the process of building the state evaluation function
and incorporating it into our solution - this includes the
specification of the GUCT method. Finally, we present the
promising results of several experiments we have performed,
conclude our research and provide suggestions for its further
development.
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;Roles:
(role x) (role vy)
;Initial state:

(init (cell 1 1 b))
(init (cell 1 2 b))
(init (control x))
;Rules:
(<= (next (cell ?x ?y ?player))
does (?player (mark ?x ?y)))
(<= (next (control x)) (true (control o0)))

(<= (line ?player) (row ?x ?player))
;Legal moves:

(<= (legal ?player (mark ?x ?y))
(true (cell ?x ?y b))
(true (control ?player)))
; Goals:
(<= (goal ?player 100) (line ?player))

; Terminal:

(<= terminal (line ?player))

Fig. 1. A condensed Tic-Tac-Toe game description in GDL [16]

II. GENERAL GAME PLAYING

GGP is one of the latest and currently most popular
approaches to multigame playing. It stems from Stanford
University, where the annual General Game Playing Com-
petition [10], [8] has been proposed for the first time. GGP
agents are expected to be able to play a broad class of games
whose rules can be expressed in GDL. Competitions typically
encompass a number of varied games, including one-player
puzzles, as well as multi-player competitive and cooperative
games. Some of the games are based on real-world ones
while others are designed from scratch specifically for the
tournament.

GGP matches are coordinated by the so-called game server.
Firstly, it sends the rules of the game (in the form of a
set of GDL statements) to all participants, then contestants
(programs) are allotted a limited amount of time (typically
from several seconds to several minutes, depending on the
complexity of the game) to study the rules and devise a
reasonable playing strategy. Afterwards, the match is played
with a time limit per move (again, typically of significantly
less than one minute).

Since games are not assigned names and their rules are
provided separately for each match, knowledge transfer be-
tween matches is severely limited. Additionally, a GGP agent
knows nothing about its opponents and, therefore, cannot
modify its strategy based on previous experience with the same
opponent(s).

A. Game Description Language

GDL is a variant of Datalog which can, in principle, be used
to define any finite, discrete, deterministic multi- or single-
player game of complete information. In GDL, game states
are represented by sets of facts. Logical inferences define the
rules for computing the legal actions for all players, subsequent
game states, termination conditions and final scores. Yet, GDL
remains fairly simple and requires only a handful of predefined
relations:

role(p) defining p as a player;

init(f) stating that f is true in the initial state of the
game;

true( f) stating that f holds in the current game state;

does(p, m) stating that player p performs move m;

next(f) stating that f will be true in the next state
(reached after all actions defined by does rela-
tions are performed);

legal(p, m) stating that it is legal in the current state for
the player p to perform move m;

goal(p, v) stating that, should the current state be termi-
nal, the score of player p would be v;

terminal stating that the current state is terminal.

An excerpt from a simple game (Tic-Tac-Toe) description
can be seen in figure 1. First, it defines players taking part
in the game via the role relation. Afterwards the initial game
state is described by means of a predefined predicate init
and game-specific function cell defining the contents of each
square of the game board. Rules for state transitions and
moves legality follow. Finally, game termination conditions
are defined, again based on a game-specific predicate line.

GDL makes use of an easy-to-parse prefix notation and
relies heavily on the usage of game-specific predicates and
variables (prefixed with ’?”). We encourage interested readers
to consult [16] for a more detailed description of GDL.

GDL, being a variant of Datalog, is easily translatable to
Prolog (or any other logic programming language). In fact,
this is exactly what we do in our implementation of GGP
agent, using Yap [30] as our main game engine.

Recently, some extensions to GDL have been proposed:
GDL-II allows defining non-deterministic games and, fur-
thermore, last year’s GGP tournament games included two
additional predefined relations, allowing easier identification
of all possible game-state description facts. All research pre-
sented in this paper is, however, based on the original GDL
specification.

III. GAME TREE ANALYSIS

Most of the approaches to the implementation of game-
playing agents (be it a GGP agent, or a single-game one) rely
on representing the game as a tree (or directed acyclic graph if
equivalent positions reached by different sequences of moves
are not differentiated). Nodes of such a tree represent positions
(game states) and arcs — possible transitions between states
(i.e. players’ actions).

These trees are then analyzed by dedicated algorithms.
Two of them are nowadays dominant: alpha-beta pruning [12]
(including its various modifications) and UCT [13]. They are
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Fig. 2. Conceptual overview of a single simulation in UCT algorithm [4]

both employed by our GGP agent and described in the next
subsections. For the sake of space savings the description
is only brief. Please consult the original papers for more
information.

A. UCT

Upper Confidence bounds applied to Trees (UCT) is a
simulation-based game tree analysis algorithm [13]. It repeat-
edly proves to be relatively successful in the case of some
very difficult games, including Go [6]. Many of the GGP
tournament winners so far have relied heavily on the UCT
algorithm [4], [20].

UCT is based on the UCBI1 [1] algorithm for solving a
K-armed bandit problem. The K-armed bandit problem deals
with the issue of finding an optimal strategy for interacting
with K gambling machines (or, alternatively, one machine
with K play modes - arms). The rewards of each machine/arm
are presumed to be nondeterministic but, nevertheless, stable
(their distributions should not change in time) and pairwise
independent.

The UCT algorithm assumes that the problem of choosing
an action to perform in a given game state is actually equiv-
alent to solving a K-armed bandit problem. While this may
not be strictly true, it is expected to be a sufficiently good
approximation.

UCT consists of performing multiple simulations of possible
continuations of the game from the current state. Instead of
performing fully random rollouts, as in the case of Monte-
Carlo sampling, it proposes a more intelligent approach to
choosing continuations worth analyzing so that the obtained
results are more meaningful.

In each state, following the principles of UCBI, UCT
advises to first try each action once and then, whenever the
same position is analyzed again, choose the move a* according

function MTD

I: fT:=MAX; f~ := MIN;,

2: repeat

3: b=(fT+f7)/2+5;

4: g := alphabeta(s,b — £,b);

5: if (b—¢e < g <b) then return g;

6 if (g<b)then fT:=gelse f~ :=g;
7: until forever

Fig. 3. MTD(f) algorithm for real-valued evaluation function [17]

to the following formula:

In N(s)
N(s,a)

a* = argmaz,ca(s{1Q(s,a) +C 1, (D
where A(s) is a set of all actions possible in state s, Q(s,a)
denotes the average result of playing action a in state s in the
simulations performed so far, N(s) — number of times state s
has been visited and N (s,a) — number of times action a has
been sampled in this state. Constant C' controls the balance
between exploration and exploitation, since the formula pos-
tulates choosing actions with the highest expected rewards,
however, at the same time, avoiding repetitive sampling of
only one action while others might yet prove more beneficial.

A direct implementation of the approach described above is,
of course, infeasible due to memory limitations. With sufficient
time it would lead directly to storing the whole game tree
in memory, which is impossible in the case of all but the
simplest games. Therefore, each simulation actually consists
of two-phases: strict UCT phase and Monte-Carlo (random
rollout) phase (see figure 2). An in-memory game tree is built
iteratively and in each simulated episode the UCT strategy is
applied only until the first not-yet-stored game state is reached.
This state is then added to the in-memory game tree, its first
action to be tested is chosen and a strictly random Monte
Carlo rollout is performed further down the tree. No data is
retained about the positions encountered during this phase of
the simulation. All the nodes visited during the strict UCT
phase have their N(s,a) and N(s) values incremented and
their (s, a) values updated with the final value of the rollout.

Additionally, as the game progresses, the part of the in-
memory game tree not reachable from the current game state is
discarded. In our implementation, in order to further optimize
the algorithm, we make use of the fact that some states may
be reached in several ways (by performing different move
sequences) and, therefore, as mentioned earlier, the game
should be represented as a directed acyclic graph rather than
a tree. This does not, however, influence the basis of UCT
algorithm operation.

With UCT analysis finished, choosing the next move is
simply a matter of finding the action with the highest Q(s, a)
value in the current state.

B. MTD(f)

MTD(f) [21] (a member of the family of Memory Enhanced
Test Driver algorithms) is one of the popular algorithms based
on alpha-beta pruning [12].
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MTD(f) consists of multiple zero-window alpha-beta-with-
memory searches. Every such search is going to fail high
or low, thus providing, respectively, a low or high bound
on the actual value of the node. Convergence of the bounds
indicates that the true value has been found. In the case of
real-valued evaluation functions, true zero-window search is,
obviously, not possible. Instead, the searches are performed
with a narrow (but not-null) window and a bisection method
is used to converge on the final value. A pseudocode for this
algorithm is presented in figure 3. Our GGP agent employs an
iterative-deepening version of the real-valued MTD(f) method.

IV. EVALUATION FUNCTION
A. Evaluation Function Construction

Building an evaluation function for a GGP player is in-
herently different and much more difficult than building an
evaluation function for any single-game application. While
in the latter case a lot is usually known about the game at
hand (or can be deduced by the function developer), in the
former, one has to create an agent able to deal with a vast
number of possible games that can be described in GDL.
There is virtually no way of incorporating any domain-specific
(game) knowledge directly into the program and the evaluation
function must be somehow autonomously generated, probably
by an Al- or Cl-based routine.

Nevertheless, some researchers attempted (with some suc-
cess) to identify (within the game rules) concepts typical for
many human-played games, such as boards and pieces [14],
[24], [11], [18], [17]. While there is no GGP-inherent reason
for this approach to work, many of the GGP games are
naturally based on real-world human games and, therefore,
these concepts are actually fairly abundant in many of them.

In our application, though, we decided to avoid any such
preconceptions and employ a totally knowledge-free evalua-
tion function generation approach, based solely on simulations
and statistical analysis of a game description. Our evaluation
function is represented as a linear combination of features.
Features are game-specific numerical values describing game
positions. Typical feature examples would be checker or king
counts in the game of Checkers or the presence of a particular
piece on a particular square in Chess. While a set of features
is not expected to uniquely and fully describe a game state, it
is expected to provide enough information to judge the most
likely outcome of the game with reasonable accuracy.

In order to build our evaluation function, we needed, there-
fore, two mechanisms: one for generating the set of features
to be incorporated into our function and another one for
assigning weights to them. The following subsections describe
the process in detail.

1) Features Identification: The first step of our algorithm
consisted in generation of a (possibly huge) set of features that
could be used for building evaluation function for a particular
game at hand. While designing this process, we were inspired
by the general ideas and concepts presented in some of the
earlier papers dealing with GGP, [14], [24] and [2].

Especially [2] is the source of many of the concepts
described below. It incorporates the ideas of extracting ex-
pressions from the game description and identifying function

argument domains to generate more specialized features. It
also introduces the concept of stability, albeit not calculated
according to the same formula we use. On the other hand,
the GGP agent presented in [2] does not employ a feature
generalization phase or build compound features in a way
present in our solution. Additionally, we do not attempt to
impose any predefined interpretations to the expressions or
build a simplified model of the game. Instead, we employ a
custom algorithm to build an evaluation function directly from
the generated expressions.

Features used by our agent are represented by expressions
similar to those of a GDL description of the analyzed game.
For instance, the expression (cell ?x 7y b) would represent
the number of empty fields in the current position in a game of
Tic-Tac-Toe. In general, the value of a feature (in a particular
game state) is calculated by identifying the number of possible
combinations of values for variables of the expression, so that
the resulting expression is true in a given state. In the case
of features with constants only (and no variables) only two
values would be possible: 0 and 1.

The initial set of features is extracted directly from the game
rules. This set is expected to already be reasonable as the
game description contains mainly expressions that have direct
significance either for further development of the game, or
for its score. In both cases, they make good candidates for
evaluation function components.

Still, we do not settle for this relatively small number of
candidate features and try to identify more of them. For this
purpose we employ two procedures, characteristic for human
cognitive processes: generalization and specialization. We be-
lieve their combination should lead us to a better understanding
of the game and finding features possibly crucial for a success.

We start with generalization, which is a relatively straight-
forward process. Namely, in each of the expressions identified
so far, we replace constants with variables, generating all
possible combinations of constants and variables. For instance,
for an expression of (cell 1 7 b), we would generate 3 new
candidate features: (cell ? ? b), (cell 1 7 ?7) and (cell 7 ? 7).
Obviously, we may arrive at a feature that is already in
our population - it is then ignored as we do not need any
repetitions.

The aim of the specialization phase is, as the name suggests,
opposite to the generalization phase. We try to generate
features that contain fewer variables than those found so far.
For the feature (cell 1 1 ?) we would ideally like to generate
3 new expressions (cell 1 1 x), (cell 1 1 o) and (cell 1 1 D).
This phase, however, requires a slightly more sophisticated
algorithm than generalization. Theoretically, we could simply
attempt to replace variables in all the features with all known
constants, but it would lead to an explosion in the number of
features that would be impossible to handle.

Therefore, we attempt to at least approximately identify
the domains of all parameters of all predicates. In order to
achieve that, we employ an algorithm first described in [24].
This method is not guaranteed to generate precise results but
rather supersets of the actual domains. Still, it is capable of
severely limiting the number of generated features. Basically,
it consists in analysis of all inferences and, within each of
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them, identifying variables present in several predicates (or
as several arguments of a single predicate). Whenever such a
case is discovered, it is assumed that the parameters in question
have identical domains. A simultaneous analysis of all constant
occurrences allows a quick assignment of constants to all the
shared domains found by the algorithm.

Still, in some cases it is possible for the domain sizes to
be prohibitively big, possibly leading to an explosion in the
candidate features count. Therefore, whenever a parameter’s
domain size exceeds a configured limit, it is ignored and takes
no part in the specialization process. In all our experiments this
threshold was set to 30, which led to up to several thousand
candidate features in moderately sophisticated games (4343
in Checkers, being the greatest value in this category) and
several dozen thousand in the extreme cases (such as Chess
with 28163 candidate features).

Finally, after the specialization phase is completed, even
more features are generated by the process of combining
existing features. The only type of compound feature currently
in use in our application is the difference of two similar
features, where two simple features are considered similar
if and only if they are based on the same predicate and its
arguments differ on one position only which in both instances
contains a constant. An example of a pair of such similar
features would be (cell 7 ? x) and (cell 7 7 0). A compound
feature built of those two simple components would, therefore,
calculate the difference in the count of  and o markers on
the board.

2) Features Analysis: Since building evaluation function
with the use of several thousand features (many of them
redundant or unimportant for the final score) is not feasible,
the next step of our algorithm involves some statistical analysis
of the features in order to allow selecting the most promising
ones and assigning weights to them.

The assessment is made by means of random simulations.
First, we generate a set of some number (typically 100) of
random short game-state sequences that will form the basis for
further analysis. Each sequence starts in a position generated
by randomly making a number of moves from the initial
position of the game. This initial depth is selected randomly
for each sequence from an interval depending on the expected
length of a game - estimated by random simulations as well.

Each random-play-generated sequence consists of 2 to 5
positions, either consecutive or almost consecutive (with a
distance of 2 or 3 plies). Once the sequences are generated,
up to 10 Monte Carlo rollouts are performed from the last
position of each of them. These allow an estimation of the
final scores of all the players for each sequence.

The data obtained so far serves as the basis for calculating
some typical statistics for all the features. These include their
average values, average absolute values, variance, minimum
and maximum values, etc. While these figures are useful for
some minor optimizations of the algorithm, two statistics are
crucial for the overall effectiveness of the features selection
process: correlation of the feature’s value with the scores of
each player and its stability. While the former is obvious (and
calculated on the basis of random rollouts mentioned earlier),
the latter requires some explanation.

Stability is intuitively defined as the ratio of the feature’s
variance across all game states to its average variance within
a single game (or, in our case, game subsequence). More
precisely, it is calculated according to the formula:

B TV
TV 4108V’

where TV denotes the total variance of the feature (across
all game states, in our implementations: initial states of all
generated sequences) and SV — the average variance within
sequences. Continuing with the Tic-Tac-Toe game example we
would expect the feature (cell 7 7 b) (the number of empty
squares) to have a low stability value, since it changes with
each and every ply. On the other hand, the feature (cell 2 2 z)
(x on the center square) would be characterized by relatively
high stability, as its value changes at most once per game.

We expect more stable features to be better candidates for
the usage in heuristic evaluation of game states. Low stability
due to high SV value would signal significant oscillations of
the feature value between successive positions and, therefore,
strong horizon effect (and, as a consequence, low prognostic
quality). Relatively low T'V, on the other hand, is typical for
features that remain constant or change slowly and are not
useful for distinguishing between even significantly different
states. Although some false negatives are in general possible,
we try to avoid using features with a low stability value.

3) Evaluation Function Generation: Once the set of candi-
date features is built and analyzed, it is time to define the
evaluation function. As mentioned earlier, it is constructed
as a linear combination of selected features. Two steps are
required to create it: selection of the most promising features
and assigning weights to them.

At the moment we employ a relatively simple strategy for
realization of these tasks. Although simplistic, it turned out
to be surprisingly robust and so far preliminary attempts at
using more advanced Cl-based approaches have not proven to
be superior.

The procedure relies on the statistics described in the
previous subsection, namely correlation with the expected
score of the player (c) and stability of the feature (s). We order
the features descending according to the minimum of absolute
value of their score correlations and stability (i.e. min(|c|, s))
and choose the first 30 of them as components of the evaluation
function. While those two values (|c| and s) are not directly
comparable, they both fall in the same range ([0, 1]) and
although in most cases absolute values of score correlations
are lower than stability, both of them actually influence the
choice, and the formula cannot be simplified to using one of
them only. The decision to have exactly 30 components in
each evaluation function was based on a number of preliminary
tests, which proved this size of the evaluation function to be
quite robust across several test games.

The weights assigned to the components are defined to be
equal to products of the score correlations and stabilities (i.e.
c - s). Note that, since stability value is always positive, the
sign of the resulting weight will always be the same as that
of the correlation.

Additionally, each evaluation function contains a special

S 2)
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constant component equal to the average score of a given role
in a game, whose value is calculated based on the simulations
performed during the features analysis phase. Its effect is
a shift in the expected value of the evaluation function. In
the case of a 2-player competitive game, if all the other
components evaluate to 0, thus they indicate no bias towards
any of the players, the evaluation value will be equal to the
average score expected for the player. Since the generated
weights of the components are relatively low, the value of the
evaluation function should rarely fall out of range of possible
scores. Simple automatic scaling of the function would fix this
problem, should the need arise, but it was not necessary in the
case of any of the selected games.

4) Implementation: During the experiments described in
this article we used an implementation without any time limit
for the evaluator generation. Two out of the three main parts
of the algorithm can easily be parallelized — especially, but
not exclusively, in a shared-memory model employed by our
solution. The time-consuming task of generating a pool of
random game sequences can easily be divided into independent
and parallel tasks of creating each of the sequences. Similarly,
once this pool is prepared, statistic calculations for each of
the features do not require almost any cooperation and can
safely be parallelized. Finally, while it would be possible to
at least partially parallelize the features’ generation phase, we
decided instead to run it in a single dedicated thread while
other processors were utilized for a game sequences pool
generation.

Overall, while obviously there is still place for optimization,
we assess our solution’s speed as more than satisfactory. On an
Intel Core i7 machine employed in our experiments, the whole
evaluation function generation phase would take from several
seconds for a simple game (e.g. Connect4), through up to half
a minute for a moderately sophisticated one (with Checkers
being the slowest here with the results of 26-31s) and up to
two minutes for Chess. In other words, we expect our approach
could operate within tournament-level time limits even on a
single machine. Further optimization and implementation in a
distributed environment is also possible so as to reduce time
requirements.

B. MTD(f) in GGP

In two-player turn-based adversarial games the most typical
method of using a state evaluation function is employing it
within the alpha-beta pruning algorithm or one of its modifi-
cations, or algorithms based on it (such as MTD(f) described
in section III-B).

GGP framework, however, is not limited to 2-player games.
While in this paper we restrict our experimentation to this
category, we aim at designing a solution that would be
applicable to any game that can be defined in GDL, including
games with simultaneous moves and any finite number of
players. While it is possible in such a case to perform a full
fixed-depth game tree analysis, it would be far too slow to be
practical.

Therefore, we decided to employ one of several possible
variations of alpha-beta algorithm for multi-player simultane-
ous move games. Namely, we took a paranoid approach [25],

which assumes that all other players form a coalition against us
(trying to minimize our final score) and in each state decide on
their actions after us (already knowing our not-yet-performed
move). This way we effectively transform the game into a
two-player one with twice the depth of the original one. While
this transformation is clearly not optimal for all games, it is
relatively simple and reasonable for most of the multi-player
games encountered at GGP tournaments.

As mentioned earlier, with the game transformed as de-
scribed above, we actually employ the time-constrained
MTD(f) instead of plain alpha-beta pruning algorithm. While
alpha-beta algorithm can be parallelized with, in some cases,
significant gains in efficiency, at the moment we rely on its
single-threaded implementation. Still, we find our solution
speed to be acceptable. In entry and near-entry game positions
we manage to perform a search with a depth ranging from 3-4
moves in Chess to 6 moves in Checkers and Connect4, within
a 10s time limit.

C. Guided UCT

Arguably an important advantage of the UCT algorithm is
that there is no need for an externally defined heuristic evalua-
tion function. Still, in many cases (e.g. Go [7], Amazons [15],
Lines of Action [29] and GGP itself [4], [26]) it seems that
the UCT can benefit from the introduction of some sort of an
additional, possibly game-specific, bias into the simulations.
Below, we discuss several possibilities of combining the UCT
with our automatically-inferred game-specific state evaluation
function into what we call Guided UCT (GUCT) algorithm.
While there are publications (e.g. aforementioned [29]) that
propose alternative solutions, we concentrate here on universal,
generally-effective approaches that seem especially well suited
for the GGP research framework.

We believe the evaluation function can be useful both in the
strict UCT phase (while traversing the graph of pre-generated
and stored game states) and during the Monte-Carlo random
rollouts. It is also worth noting that once a state evaluation
function F'(s) is available, it is relatively easy to construct a
state-action pair evaluation function F'(s,a). In our approach
we define its value to be the average value of F(s) across
the set D(s, a) of all states directly reachable from state s by
performing action a (there may be more than one such state,
because the state reached after performing a may also depend
on actions performed by other players), i.e.:

F(S,Cl) = AVGtc D(s,a) (F(t)) 3)

1) Evaluation function as part of Q(s,a): Firstly, the heuris-
tic evaluator can be employed by slightly modifying the state-
action pair assessment function (s, a) in (1), e.g. by defining
it as a combination of F(s,a) and the state-action value
Q) (s, a) defined by the rules of plain UCT. One straightforward
way to implement this idea, would be to preinitialize the action
values whenever a new node is added to the in-memory UCT
tree. All actions possible in such a new state would start with
some preset value of N(s,a) (proportional to the level of
trust in the evaluation function) and Q(s,a) values equal to
F(s,a). Afterwards, these values would be updated according
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to the standard UCT rules. This solution would make sure that
some, potentially biased, assessment of the moves is available
immediately and then gradually improved by averaging with,
hopefully less biased, results of random rollouts. With time the
influence of the heuristic evaluation function would gradually
diminish.

2) Evaluation function for move ordering: In the case of
less trust in the quality of the F' function, another, less invasive
approach could be used. In a typical UCT implementation,
whenever a new node is added to the tree, its actions are tested
in the simulations performed in random order. When time runs
out, there will obviously be game states left with some actions
not played even once. It would, hence, be advantageous to start
testing from the most promising actions and the evaluation
function could help achieve this goal by means of ordering the
moves according to their expected quality. An analogous move
ordering scheme, albeit useful for different reasons, is often
employed in alpha-beta algorithm implementations, e.g. by
means of history heuristic [22]. Incidentally, this last concept
has also proven useful in the context of UCT algorithm and
GGP agent [4].

3) Evaluation function in random rollouts: Alternatively,
the heuristic evaluation function can also be weaved into the
Monte-Carlo rollouts phase of the UCT algorithm. Following
the ideas presented, in a slightly different context, in [4], the
random selection of actions to perform can be replaced by
one in which each move’s selection probability depends in
some way on its evaluation by the F' function. The actual
selection would usually be implemented by means of either
Gibbs distribution or e-greedy policy.

4) Evaluation function as rollouts cutoff: While we per-
formed some initial experiments with the approaches presented
above, so far we have achieved the best results with yet
another method of introducing an evaluation function into the
Monte-Carlo phase of the UCT routine. Namely, in each node
encountered in the fully random simulations we introduce a
relatively minor (0.1 in the current experiments) probability
of stopping the rollout there and using the heuristic evaluation
function’s value as the rollout’s return value. In effect, the
longer the rollout, the higher the chance it will be stopped
and replaced by the value of the evaluation function in the last
node reached. The potential advantages of this approach are
two-fold. Firstly, there is a high chance we will cut short any
long and time-consuming simulation, resulting in time saving
that will allow us to perform more simulations than would
be otherwise possible. Secondly, the evaluation function will
typically be applied to states at least several moves down the
game tree from the last in-memory game tree position. It is
reasonable to assume that the closer to the end of the game the
state is, the easier it is to estimate the final score and, hence,
the more reliable the evaluation function’s value is.

As a final note, it should be stressed that the above-
mentioned four strategies can be safely mixed with one
another. Still, after some initial testing, we decided to use only
the last one in the experiments described herein.

V. EXPERIMENTS

In order to verify the quality of both the mechanism for
automatic generation of the evaluation function and our search
algorithm, we organized several tournaments, comparing our
GGP agents (the UCT-based and the MTD(f)-based) with the
one based on a plain UCT algorithm, as well as with each
other.

At this stage of research we decided to limit the experi-
ments to various 2-player games. We relied on the definitions
available on the Dresden GGP Server [9], selecting 13 games
based on real-world ones for the ease of intuitive assessment
of their complexity level and identification of their pertinent
features. After performing a set of simple experiments, we
chose 5 of those for further analysis, each for a reason:

1) Chess as the most sophisticated of all the games con-
sidered;

2) Checkers as a moderately sophisticated game in which
our agent is very successful;

3) Connect4 and ConnectS as games in which our agent
achieves mixed results;

4) Othello as the game in which our agent fares worst of
all the 13 games tested.

Apart from minor changes forced by limitations of GDL
(such as inability to efficiently define a draw by threefold
repetition rule in Chess), those games closely resemble their
original counterparts, with the exception of the Connect5
which, contrary to its name suggesting some modification of
Connect4, is simply a small-board variant of Gomoku.

In most of the tournaments described below (in sec-
tions V-A-V-C), more than 1000 matches were played for
each of the five aforementioned games. The actual number
of matches depended on the stability of results obtained. In
general we would not stop an experiment until a standard error
of mean of at most 6 percentage points (i.e. 3% of the range
of possible values) was achieved for each of the tested time
limits. In effect, the average standard error of the presented
results does not exceed Spp for any of the games and typically
it stays significantly below 4pp. Since our test regime caused
the experiments to be extremely time consuming (they spanned
several months of usage of 3-5 machines) and we are not, at
this point, interested in analysis of minute scores differences,
we feel that the data accuracy is satisfactory for our needs.

A. Guided UCT vs. Plain UCT

In our first test we tried to assess the level of play of
GUCT agent in relation to a plain UCT-based solution (with
no preparation phase before the first move). We, therefore, had
the two contesting agents repeatedly play against each other
with different time limits per move (from 1 to 60 seconds).
The GUCT player regenerated its evaluation function from
scratch before each play. Sides were swapped after each game
and the winner was awarded 1 point, while the loser -1 point.
Ties resulted in O points for both players.

Figure 4 presents the results for GUCT agent in each game
for each time limit. It is apparent that Guided UCT agent
decisively loses to UCT in one game (Othello), slightly loses
in another one (Connect5) and outperforms plain UCT in the
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remaining three — most notably in Chess, being the game with
the highest branching factor among all tested and difficult to
sample conclusively by the plain UCT algorithm. As far as
Chess is concerned, one can also easily observe a relatively
lower score for the time limit of 1 second per move. This stems
from the fact that it is hard for any of the players to achieve
a reasonable level of play with such a strict time regime and,
therefore, more games actually end in draws.

The results for Checkers (another game for which an ef-
fective evaluation function must have been generated), besides
showing a high level of play of the GUCT agent, also make an
interesting dependency visible. It seems that with the increase
in thinking time for the players, the advantage of GUCT over
UCT diminishes.

In order to verify that this is not a statistical flux, we have
performed a limited number of additional tests with higher
time limits. The net result is that with higher time limits, both
players begin to play more and more similarly. This effect is
to be expected, since a greater number of simulations naturally
improves the UCT method’s efficiency and weakens the total
influence of the evaluation function in GUCT. The same effect
may not be so visible for other games (with the exception of
Othello) because it can manifest itself at different move time
limits and/or can be dampened by other effects.

In the case of Connect4, our agent still clearly outperforms
plain UCT, however, with a much lower margin than in Chess
or Checkers. At the same time, Connect5 turns out to be a
somewhat more difficult game for GUCT. Additionally, in this
case, a very interesting dependence of the scores values on
time limits can be observed: GUCT agent’s score is very low
for short times and then raises significantly only to oscillate
above and below the zero point depending on the time limit.
At this point, we are not able to provide a full explanation of
this behavior. We speculate that it is caused by an intricate
interplay between the effects of random simulations and a
less-than-ideal but useful evaluation function, both assessing
similar states differently and urging the agent to employ dif-
ferent playing strategies. This may lead to confused decisions
depending on the strength of influence of each of the two
components.

Finally, after some inconclusive results with extremely low
time limits (probably due to the plain UCT’s inability to come
up with any reasonable strategy with very low simulation
counts), our GUCT agent decisively loses to plain UCT in
Othello with higher thinking times per move. It is obvious
that our method fails to properly identify the key positional
factors in Othello and generate at least a reasonable positional
strategy. Please remember, however, that Othello has been
included in our experiment precisely because of how difficult
it was for our agent.

B. Alpha-Beta Pruning vs. Plain UCT

In the second test, we analogically assessed the efficiency
of our MTD(f)-based player by pitting it against the plain
UCT agent. This time, however, another factor had to be
considered. While our UCT implementation was multithreaded
and capable of making good use of all 8 (virtual) cores of our

test machine, MTD(f) was implemented in its basic single-
threaded form. Therefore, we decided to actually perform
2 separate experiments. In the first one, the MTD(f) player
would face a single-threaded version of the UCT agent. This
comparison would be fair in that both players would have
exactly the same processing power at their disposal. In the
second one we would use a typical, multi-threaded imple-
mentation of UCT conceptually similar to the one presented
in [3]. Considering the fact that UCT can be parallelized much
more easily and possibly with much higher gains than alpha-
beta pruning algorithms, we expected the first experiment to
slightly favor the MTD(f) method and the second one — the
UCT algorithm.

The results of the tournaments are presented in figures 5
and 6, which make several interesting observations possible.
Firstly, for games with moderately sophisticated rules, lim-
ited branching factor and reasonable automatically generated
evaluation functions (as proven by the previous experiment),
MTD(f) seems to fare much better than GUCT did in the
previous tests, even facing a multi-threaded implementation
of UCT.

On the other hand, the MTD(f)-based agent fares surpris-
ingly badly in Chess, actually losing many of the games to the
multi-threaded UCT. It seems that a relatively high branching
factor and high cost of generating successive game states are
the two major factors here. Additionally, in figure 5 it can
be observed that, with low time limits per move (up to 10
seconds), all Chess games repeatedly end in draws, again with
none of the players being able to devise a winning strategy
within such a limited time. It seems that while the inferred
evaluation function is strong enough to significantly improve
the playing level with reasonable-depth searches, it is not
sufficient to guide the player on its own (with dramatically
limited search time). Such an effect could be expected even
with simpler, manually-defined Chess position evaluators. Our
agent simply requires a play clock of more than 10 seconds to
play chess-level game reasonably. Fortunately, one can safely
expect that any game of such complexity will be played with
a reasonably high time limit per move.

While Othello scores have improved compared to the first
tournament, the problem with generating efficient evaluation
function for this game is still visible.

As previously, the dependence between time limits and
scores in Connect5 remains the most specific one. With a strict
time regime the UCT level of play is clearly low enough for it
to be easily defeated by an alpha-beta player even with a non-
optimal evaluation function. As time limits grow, however, the
UCT algorithm quickly gains more than MTD(f) (which still
heavily relies on the evaluation function).

C. Alpha-Beta Pruning vs. Guided UCT

Finally, we decided to directly compare our two agents.
The results, presented in figures 7 and 8, are in line with the
previous experiments’ results. Alpha-beta pruning is a clear
winner in the case of Checkers and Connect4 - moderately
complicated games with, apparently, successful evaluation
functions. Chess, on the other hand, is clearly better suited
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TABLE I
GUCT vs GUCT WITH NULL HEURISTIC TOURNAMENT RESULTS (WITH
95% CONFIDENCE BOUNDS)

Ss 10s 30s
Chess 44% (£ 7%) | 44% (£ 8%) 54% (+ 12%)
Checkers | 85% (4 3%) | 94% (& 4%) 85% (+ 5%)
Othello 25% (+ 9%) | 14% (£ 9%) -11% (£ 11%)
Connectd | 56% (£ 8%) | 39% (£ 12%) | 36% (£ 10%)
Connect5 | 25% (£ 9%) | 30% (£ 9%) 43% (£ 10%)

for the use of GUCT rather than MTD(f) (at least in the case
of the time limits tested, and high cost of state transition due
to GDL-based encoding of rules). In the case of Othello, a
slightly better score of alpha-beta based player should not be
treated as significant due to a generally low level of play.
Connect5 scores, traditionally, depend significantly on the time
limits. Strict time regime leads to easy victories by the MTD(f)
method, while with higher time limits the chances are more
even.

D. Guided UCT vs. Null Heuristic

In some games, it may be worthwhile to cut long and
uninformative simulations short even without a reasonable
evaluation function - by simply assuming that they end in

a draw. This has been proven in the context of GGP in [5].
While the aforementioned approach included initial analysis
to intelligently decide which rollouts to stop early, it might be
possible that a similar effect could also be achieved for some
games by our probabilistic cut-off algorithm. If this effect was
dominant, the actual value of the evaluation function would not
matter as long as it remained close to a draw value.

In order to verify if this is the case we compared our
evaluation functions with a null one which returns a draw
for every game state. The results of such a comparison for
several typical time limits are presented in table 1. Each value
is based on at least 50 matches and the rules were identical
to those in other tournaments: sides were swapped after each
game, 1 point was awarded for a victory, -1 for a loss and
0 for a draw. To compensate for differences in match counts,
results in the table are presented as percentages (with 100%
representing GUCT victory in every game, and —100% its
loss in all matches). Based on these values, it can safely be
stated that, with a single possible exception of the Othello
evaluator, our evaluation functions are actually useful and the
results obtained in the previous experiments are not the effects
of early cut-offs only.

Copyright (c) 2014 |EEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



Thisisthe author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TCIAIG.2013.2286825

E. Results summary

We think that the results achieved so far are promising,
doubly so considering the simplified way of choosing the
evaluation function components and assigning weights to
them. Our method is obviously not equally successful in all
games, but that is only to be expected considering the broad
range of games that can be defined in GDL.

There are games, such as Othello, for which the usage of
an automatically generated evaluation function may in some
cases actually prove detrimental, but, please, bear in mind that
Othello was selected for our experiments specifically because
of this fact. Additionally, it is possible that it is not the game
itself that is problematic for our solution but the specific way
in which it was defined (the same game can be defined by
different GDL descriptions).

The quality of the proposed players depends heavily on the
amount of time available for each move. In the experiments
we performed tests with a range of limit values typical for
GGP tournaments held so far, thus proving the feasibility of
employing the proposed solution in a tournament environment.

The relative quality of the two game tree search algorithms
utilized in our application seems, additionally, to depend
heavily on the specifics of the game played and, to some
extent, the quality of the evaluation function. The alpha-beta
pruning based agent is generally better suited for games of
moderate complexity (and, hence, a relatively lower cost of
state expansions) and higher quality, more reliable evaluation
functions. GUCT algorithm has some potential to deal with
more biased evaluation functions and definitely copes better
with sophisticated games with higher branching factors and
more expensive rules processing.

Evaluation functions differ significantly from match to
match, since they are regenerated each time in a process based
on a randomly selected set of sample game positions. Addi-
tionally, the same value can often be calculated in multiple
ways, e.g. the piece count difference can be represented by
a single compound feature, separate features for each player
with opposite weights or a number of features calculating the
piece count for each row of the chessboard.

F. Sample evaluation functions

Sample evaluation functions for Checkers and Othello are
presented in the appendices. On a general note, we observe
that the majority of the components of the evaluation func-
tion have proper (i.e. consistent with human intuition) signs,
which means that advantageous features contribute positively
whereas disadvantageous ones have a negative contribution to
the overall position assessment.

In the case of Checkers, please notice that in the notation
used in this game definition, hl is a playable position while al
is not. It is clearly visible (and was discernible across all gen-
erated instances of the evaluation function) that the evaluators,
first of all, contain a general material-based features: their first
two components calculate the differences in pieces and kings
counts of the players. This rule would hold true for almost
all evaluation function instances (in more than 80% of the
analyzed cases). In rare exceptions these components would

typically be replaced by a functionally equivalent notation, e.g.
counting pieces and kings separately for each player, summing
pieces counts separately for each row, etc.

Further components form at least some attempt of positional
assessment. For instance, the evaluators (especially the first
one) apparently stress control of the h column, probably be-
cause pieces in these positions cannot be captured. At the same
time, there is also a lot of noise in the formula. For instance,
some of the compound expressions contain references to cells
a5 and h2 which will always remain empty.

Building an evaluation function for Othello proved to be
a much more difficult task. These functions contain quite a
lot of noise and apparently random components. Still, in most
of them at least some reasonable components are identifiable.
Simple piece counts are often present but are known to be not
very useful as part of an evaluator. The sample evaluation
function presented herein clearly shows that our algorithm
managed, at least to some extent, to identify the importance
of board borders and corners - unfortunately, in this case only
for one side of the board.

The last component of each function represents the bias
(autonomously developed by the method) whose role is to shift
the average expected value of the evaluation function to the
average expected value of the game.

VI. CONCLUSION AND FUTURE RESEARCH

We have described in detail our attempt at creating a
General Game Playing agent relying on an automatically
inferred heuristic state evaluation function. We also offered
two methods of employing this function in the context of GGP
based on two popular game tree search algorithms.

As stated earlier, we assess this attempt as successful,
especially considering that, at the moment, only very sim-
ple statistical methods for building evaluation function from
components generated by human-cognition-inspired processes
of generalization and specialization of the game rules are
employed. Further improvements in this part of our application
are one of our current research goals. One of the solutions we
are considering at the moment is to employ CI techniques
for this task, in particular the Layered Learning method [19],
[27]. We also plan to further tweak and improve the evaluation
function during the game (i.e. in the playing phase of the
match).

Additionally, our experiments show that the relative efficacy
of the game-tree analysis algorithms tested (MTD(f) and
GUCT) depends heavily on the characteristics of the game
played. Devising a method for the automatic selection of one
of the two approaches before the game begins (or perhaps even
switching them while playing) is therefore another interesting
research topic.

Finally, further analysis and a possible identification of the
class of games for which our approach is not successful would
probably allow methods to be designed for circumventing
such problems and gaining a more even level of play across
all games. Specifically, it can be clearly seen in the results
presented that Othello proved to be one such game and its
deeper analysis should provide important insight into this
issue.
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APPENDIX A

Sample automatically inferred evaluation functions for, re-
spectively, white and black Checkers players. wp, wk, bp,
bk denote white pawn, black pawn, white king, black king,
respectively. cell(x,y,z) denotes the fact that a piece z occupies
square (x,y). General interpretation of components used by
evaluation functions can be found in section IV.

0,33*(cell(?, ?, wp)-cell(?, 7, bp)) + 0,11*(cell(?, ?, wk)-
cell(?, ?, bk)) + -0,12%(cell(h, 3, bp)-cellth, 5, bp)) +
0,12*(cell(h, ?, wp)-cell(h, ?, bk)) + 0,14*(cell(h, 3, wp)-
cellth, 3, bp)) + 0,12%cell(th, ?, wp) + 0,11*(cellth, ?,
wp)-cell(h, ?, bp)) + -0,065%cell(h, 5, b) + 0,065*(cell(a,
5, b)-cell(h, 5, b)) + 0,065*(cell(c, 5, b)-cellth, 5, b)) +
0,065*(cell(e, 5, b)-cell(h, 5, b)) + 0,065%(cell(g, 5, b)-cell(h,
5, b)) + 0,065*(cell(h, 4, b)-cell(h, 5, b)) + -0,065*(cell(h,
5, b)-cell(h, 2, b)) + -0,065*(cell(h, 5, b)-cell(h, 6, b)) + -
0,065%(cell(h, 5, b)-cell(h, 8, b)) + 0,1*(cell(?, 3, wp)-cell(?,
3, bp)) + 0,061*(cell(h, 3, b)-cell(h, 5, b)) + -0,053*(cell(h,
5, b)-cellth, 5, bk)) + -0,13*cellth, 3, bp) + 0,13*(cell(a,
3, bp)-cell(h, 3, bp)) + 0,13*(cell(c, 3, bp)-cell(h, 3, bp)) +
0,13*(cell(e, 3, bp)-cell(h, 3, bp)) + 0,13*(cell(g, 3, bp)-cell(h,
3, bp)) + 0,13*(cell(h, 1, bp)-cell(h, 3, bp)) + -0,13*(cell(h,
3, bp)-cell(h, 3, wk)) + -0,13*(cell(h, 3, bp)-cell(h, 4, bp))
+ -0,13*(cell(h, 3, bp)-cell(h, 2, bp)) + -0,13*(cell(h, 3, bp)-
cell(h, 6, bp)) + -0,13*(cell(h, 3, bp)-cell(h, 8, bp)) + 48*1

-0,23%(cell(?, ?, wp)-cell(?, ?, bp)) + -0,12%(cell(?, ?,
wk)-cell(?, ?, bk)) + -0,12*(cell(h, 5, bp)-cell(h, 7, bp)) +
0,13*(cell(b, 5, bp)-cell(h, 5, bp)) + 0,14*(cellth, 3, bp)-
cellth, 5, bp)) + 0,067*(cell(c, 2, wp)-cell(c, 2, bk)) +
0,084*cell(c, 2, wp) + -0,084*(cell(b, 2, wp)-cell(c, 2, wp))
+ -0,084*(cell(c, 1, wp)-cell(c, 2, wp)) + -0,084*(cell(c, 3,
wp)-cell(c, 2, wp)) + -0,084*(cell(c, 5, wp)-cell(c, 2, wp))
+ -0,084*(cell(c, 7, wp)-cell(c, 2, wp)) + 0,084*(cell(c, 2,
wp)-cell(c, 2, wk)) + 0,084*(cell(c, 2, wp)-cell(c, 8, wp)) +
0,084*(cell(c, 2, wp)-cell(d, 2, wp)) + 0,084*(cell(c, 2, wp)-
cell(f, 2, wp)) + 0,084*(cell(c, 2, wp)-cell(h, 2, wp)) + -
0,16*(cell(a, 6, wp)-cell(a, 6, bp)) + -0,079*(cell(a, ?, wp)-
cell(a, ?, bp)) + -0,094*(cell(h, 7, wp)-cell(h, 7, bp)) + -
0,097*(cell(?, 6, wp)-cell(?, 6, bp)) + -0,06*(cell(f, 1, b)-cell(f,
1, bk)) + -0,072*(cell(a, 2, wp)-cell(c, 2, wp)) + 0,13*(cell(a,
6, bp)-cell(a, 6, wk)) + 0,074*(cell(h, 5, b)-cell(h, 7, b))
+ -0,057*(cell(g, ?, wp)-cell(g, ?, bp)) + 0,073*(cell(g, ?,
bp)-cell(g, ?, wk)) + -0,052*(cell(a, ?, wk)-cell(h, ?, wk))
+ 0,053*(cell(d, ?, bk)-cell(g, ?, bk)) + 0,08*(cell(b, ?, bp)-
cell(b, ?, wk)) + 59*1

APPENDIX B

Sample automatically inferred evaluation function for black
Othello player. cell(x,y,z) denotes the fact that a z-colored piece
occupies square (z,y).

-0,19%*cell(?, ?, red) + -0,22%*cell(8, ?, red) + -0,22*cell(?,
7, 7 + -0,08*cell(8, 8, red) + -0,076*cell(?, 8, red) + -
0,19*cell(8, 2, 7) + -0,17*cell(?, 8, 7) + -0,067*cell(8, 8, ?7)
+ 0,14%(cell(8, ?, black)-cell(8, ?, red)) + -0,052*cell(4, ?,
red) + 0,067*(cell(?, ?, black)-cell(?, ?, red)) + -0,095%cell(8,
4, red) + -0,042*%cell(5, ?, red) + -0,099*cell(8, 5, red) +
-0,11%*cell(4, ?, ?7) + -0,14%*cell(?, 4, 7) + -0,052*cell(?, 4,

red) + -0,13*cell(?, 5, ?) + -0,039*(cell(5, 8, black)-cell(5, 4,
black)) + -0,097*(cell(8, ?, ?)-cell(5, 2, 7)) + -0,047*(cell(8,
?, red)-cell(5, ?, red)) + -0,087*(cell(5, 8, 7)-cell(5, 4, 7)) +
-0,087*(cell(5, 8, ?)-cell(5, 5, 7)) + -0,087*cell(5, 8, ?) + -
0,035*(cell(8, 5, red)-cell(5, 5, red)) + -0,11%*cell(5, ?, ?) +
-0,085*(cell(8, ?, M-cell4, ?, 7)) + -0,036*cell(?, 5, red) +
0,028*(cell(?, 8, black)-cell(?, 8, red)) + -0,072*(cell(?, 8, ?)-
cell(?, 5, 7)) + 49*1
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