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Abstract—General Game Playing (GGP) aims at designing
autonomous agents capable of playing any game within a certain
genre, without human intervention. GGP agents accept the rules,
which are written in the logic-based Game Definition Language
(GDL) and unknown to them beforehand, at runtime. The state-
of-the-art players use Monte Carlo Tree Search (MCTS) together
with the Upper Confidence Bounds applied to Trees (UCT)
method.

In this paper, we discuss several enhancements to GGP
players geared towards more effective playing of single-player
games within the MCTS/UCT framework. The main proposed
improvements include introduction of a collection of light-weight
policies which can be used for guiding the MCTS and a GGP-
friendly way of using transposition tables. We have tested our
base player and a specialized version of it for single-player
games in a series of experiments using 10 single-player games of
various complexity. It is clear from the results that the optimized
version of the player achieves significantly better performance.
Furthermore, in the same set of tests against publicly available
version of CadiaPlayer, one of the strongest GGP agents, the
results are also favorable to the enhanced version of our player.

Keywords—General Game Playing, single-player games, Monte
Carlo Tree Search, state-space exploration.

I. INTRODUCTION

Making machines play games has been a fascinating re-
search topic since the dawn of Artificial Intelligence (AI),
which dates back to 1950s. The goal has not been limited
to creating sparring partners only, that humans could test their
skills against. It has been believed that making computers play
games will be a huge step towards making them actually think.
The first papers published in Board Game-AI were devoted
to Checkers [1] and Chess [2]. The game of Chess has even
been referred to as “The Drosophila of AI” mainly due to
its popularity and high intellectual appeal. Research related
to other board games such as Othello [3], Backgammon [4],
Scrabble [5], Pacman [6], Go [7], and more have surfaced,
too. Over the years, due to exponential increase in computing
speed, programs have surpassed humans in almost all popular
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games (the most notable exceptions being Go and Arimaa [8]),
mainly due to their advantage in state-space searching capabil-
ities. A typical scenario is that either the game is solved (e.g.
checkers [9], Connect-4 [10]) or such a strong computer player
is created (e.g. Deep Blue II [11] in Chess, Logistello [12] in
Othello and Maven [5] in Scrabble) that research interest in a
given game slowly fades.

Practically all top programs are carefully crafted to play
a specific game with the help of human experts and tens of
thousands of records of matches played by the most renowned
players. Furthermore, much of the value of these programs
stems from huge computational power of modern computers
and dedicated, often hardware-based (e.g. Deep Blue II),
implementation. In such an approach, there is not much space
left for benefiting from the CI/AI methods, especially in terms
of advancement towards the universal intelligence.

Many realized this fact and attempted to adapt more uni-
versal approaches [13], [14]. One of such trends, related
to multi-game playing, commenced with Jacques Pitrat’s re-
search [15], and was subsequently continued by Michael
Gherrity’s SAL [16], Susan Epstein’s Hoyle [17] and Bar-
ney Pell’s METAGAMER [18]. The latest realization of a
multi-game playing concept was proposed by Stanford Logic
Group [19] under the name General Game Playing (GGP). In
this paper, we refer to this particular embodiment of General
Game Playing. In order to encourage wider involvement from
around the world, the International General Game Playing
Competition has been held annually since 2005. The following
players have won the title so far: Cluneplayer (2005) [20],
Fluxplayer (2006) [21], CadiaPlayer (2007, 2008, 2012) [22],
Ary (2009, 2010) [23], TurboTurtle (2011, 2013), and Sancho
(2014). Since 2007, the winning agents use Monte Carlo simu-
lations backed up with the so-called Upper Confidence Bounds
Applied for Trees (UCT) [24], an algorithm designed to focus
simulations on the most promising paths in the state-space.
Our player, named MiNI-Player, was one of the contestants in
the years 2012 and 2013. Like majority of the top GGP agents
it relies on UCT-based simulations and similarly to many other
players makes a distinction between truly multi-player games
(with N > 1 players) and single-player ones (puzzles) with
N = 1. Separate instances of the MiNI-Player differing in their
underlying concepts is applied to each of the two cases. The
first case is addressed in [25] along with a detailed description
of MiNI-Player implementation. This paper is devoted to the
case of single-player games. The paper is organized as follows.
Section II extends the introduction by providing background
of General Game Playing. Section III points out the reasons
why single-player games should be handled separately from
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multi-player ones. In section IV a brief reference to the MiNI-
Player’s baseline routine, which is adapted to the case of
puzzles, is presented. Sections V and VI cover the changes
introduced by implementation of this adaptation. The next two
sections are the results and comments on the related work,
respectively. Section IX concludes the paper.

II. GENERAL GAME PLAYING

Games in GGP are described in a formal language called
Game Description Language (GDL) [26], which defines their
rules. In order to understand the rules at runtime, players must
use an inference engine. The GDL is a declarative, predicate
logic language based on Datalog, which is syntactically a
subset of Prolog. GDL allows to describe any game from
the genre of multiplayer, finite (number of players, states
and actions), deterministic, synchronous games. Although in
synchronous games, players perform moves simultaneously
and the next state in a game is a result of the combined moves
from all participants, it is possible to simulate turn-based
games in GDL due to the possibility of no-operation moves.
Compared to the plain Datalog, GDL introduces keywords,
a predefined set of clauses consisting of: role, init, legal,
does, next, true, goal, terminal and distinct. For the detailed
GDL description, please consult its specification [26] or an
on-line tutorial [27]. As an example we present below an
excerpt, containing only the major rules, from the GDL-based
description of a puzzle Hanoi.

(role player)
(init (on disc5 pillar1))
(init (on disc4 disc5))
(...)
(init (on disc1 disc2))
(init (clear disc1))
(init (clear pillar2))
(init (clear pillar3))
(init (step s0))

(<= (legal player (puton ?x ?y))
(true (clear ?x))
(true (clear ?y))
(smallerdisc ?x ?y))

(<= (next (step ?y))
(true (step ?x))
(successor ?x ?y))

(<= (next (on ?x ?y))
(does player (puton ?x ?y)))

(<= (next (on ?x ?y))
(true (on ?x ?y))
(not (put_on_any ?x)))

(<= (next (clear ?y))
(true (on ?x ?y))
(put_on_any ?x))

(<= (next (clear ?y))
(true (clear ?y))
(not (put_any_on ?y)))

(...)

(<= (goal player 100)
(tower pillar3 s5))

(<= (goal player 80)
(tower pillar3 s4))

(...) (<= (goal player 0)
(tower pillar3 ?height)
(smaller ?height s2))

(...)

(<= terminal
(true (step s31)))

(<= (tower ?x s0)
(true (clear ?x)))

(<= (tower ?x ?height)
(true (on ?y ?x))
(disc_or_pillar ?y)
(tower ?y ?height1)
(successor ?height1 ?height))

In GGP, the game rules are communicated to the players by
the Gamemaster (GM) as part of a START message. The GM
serves roles of an arbiter and communication hub in GGP. It
collects moves from the players and sends back an information
about all chosen actions. If a participant submits an illegal
move, the GM randomly chooses a legal one instead. There
are two time constraints in GGP: a START CLOCK and a
PLAY CLOCK. The first one defines time interval between the
start of a game and the first required action (an initial thinking
time), whereas the second one represents the time allotted for
each action (move generation). The clocks are related to the
messages START and PLAY, respectively. There is also a STOP
message, which is sent by a GM in a terminal state (which as
the name implies ends the game).

III. PUZZLES

The reader may wonder why we propose a different ap-
proach for puzzles from all other types of games. We justify
this decision and bring its motivation in this section. Firstly,
compared to other types of games, there are no opponents
in puzzles, hence there is no need for performing the oppo-
nents’ modeling (which is generally a crucial issue in GGP).
Secondly, puzzles are usually very hard to play well. For
example, in two-player games it is only necessary to play
better than the opponent in order to win. Sometimes a robust
search with a simple playing policy is sufficient, especially
when the opponent plays poorly or at the same level. In
one-player games, however, obtaining a maximal score means
solving the puzzle. The course of actions leading to a victory
is usually extremely difficult to find for non-trivial games. If
we play randomly, we are almost guaranteed to obtain the
lowest possible score. In other words, a full game tree usually
contains a few or only one path leading to the maximal score.
Therefore, a basic Monte Carlo Tree Search is not really well-
suited for such games and using some kind of heuristic-driven
search is inevitable. Thirdly, although it is difficult to find an
optimal solution, once a partial solution is found during the
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state-space search process, it is easy to reproduce. There are
no external factors such as the opponents or non-determinism
which could prevent us from reaching the state again once
visited. In particular, if we find a full solution, i.e. with a
maximal score, we can stop searching and just remember the
list of actions which lead to that solution.

Finally, please note that the number of players involved in
a game is easy to detect by counting the number of role facts
present in the game description.

IV. BASE-LINE APPROACH

Before focusing on the proposed modification tailored for
single-player games let us summarize the base-line approach.
Please, refer to [25] for the details.

A. Monte Carlo Tree Search
Monte Carlo algorithms have been successfully applied in

various domains such as statistical physics, computational
mathematics, numerical integration, finances or business. The
Monte Carlo Tree Search (MCTS) algorithm consists in
searching the game tree by means of performing random
simulations. The method proved to be successful in games for
which effective heuristics are not known (such as Go [7]) as
well as in imperfect information games (such as Magic The
Gathering [28]). MCTS is also the basis of the state-of-the-art
GGP solutions since 2007, which confirms its efficiency and
pertinence. There are four traits which contribute to the overall
high performance of MCTS in GGP. Namely, the method is:

1) Knowledge-free. No game-specific knowledge is
needed so the method is well-suited for generally de-
fined applications such as GGP. The only requirement
of the MCTS method is the knowledge of how to
simulate a game (traverse the game tree) while assuring
asymptotic convergence to an optimal play. This feature
is of particular importance when considering the fact
that a design of an algorithm capable of deriving
autonomously a suitable evaluation function in GGP (as
well as in any single, non-trivial game) without human
intervention is an open problem, still far from being
satisfactorily addressed.

2) Anytime. The method can be stopped at any time
and return the currently most promising continuation to
play. It is therefore appealing for scenarios with time
constraints imposed on action-taking. In addition, there
is no need to impose a limit on the search depth, which
is a non-trivial task in GGP as games have varying
branching factors and PLAY CLOCKs. In its underlying
concept the MCTS resembles a variant of an iterative
best-first search method.

3) Asymmetric. The game tree is built in asymmetric way
such that rewarding actions are chosen more frequently.

4) Scalable. Since simulations are performed in an inde-
pendent manner, the method can be efficiently paral-
lelized on multi-core systems or clusters.

The MCTS, as depicted in Figure 1, consists of four phases:
selection, expansion, simulation and back propagation.

Fig. 1. Monte Carlo Tree Search phases. The figure is reproduced from [29]

The goal of the method is to iteratively build a game tree by
adding new nodes and store the simulated average game result
(score) in each node. In the selection phase, an already-built
part of a tree is recurrently traversed starting from the root
until a leaf node is reached. At each level the most promising
child is selected. In the expansion phase, provided that a state
associated with the last visited (leaf) node is not terminal, N
new child nodes (typically N = 1) are allocated and states
associated to them are added to the tree. In the simulation
phase, as many as time permits, complete game-simulations
from the newly-added state(s) to terminal (end of game) states
are performed by means of a random move selection on
behalf of all the players. Each game result obtained in such
a simulation is propagated back to all nodes visited on the
playing path, up to the root node. In each node the cumulative
result, the average result and the number of visits to that node
are stored.

B. The UCT algorithm
The Upper Confidence Bounds Applied To Trees (UCT)

method [24] is a policy used in the selection phase in order
to select the most promising child node. It is a popular tree-
search algorithm applicable also beyond game domain. The
UCT maintains the ratio between the exploitation of higher-
rewarded nodes and the exploration of less visited ones. In
this method an action a∗ is selected according to the following
formula:

a∗ = arg max
a∈A(s)

{
Q(s, a) + C

√
ln [N(s)]

N(s, a)

}
(1)

where a - is an action; s - is the current state; A(s) - is a set
of actions available in state s; Q(s,a) - is an assessment value
of performing action a in state s; N(s) - is a number of previous
visits of state s; N(s,a) - is a number of times an action a has
been sampled in state s; C - is a coefficient defining a degree to
which the second component (exploration) is considered. The
action-selection scheme asymptotically converges to a min-
max/alpha-beta search [30].

C. Simulation Strategies
The main novelty of our method, compared to classical

UCT-MCTS implementation, lies in the introduction of the
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simulation strategies which are aimed at optimization of the
simulation (MCTS) phase. A strategy is assigned to a player
in each simulation and provides a rule according to which
their actions should be chosen. However, we would like to
avoid deterministic behavior since it would undermine the
idea of MCTS. For this reason, at each move (in each node),
there is a probability P of making a move according to the
assigned strategy, or randomly, otherwise. Parameter P is
tuned individually for each strategy and ranges from 0.7 to
0.95. Please refer to [25] for an exhaustive specification of the
strategies. Their brief description is presented below:

1) Random. Self-explanatory - actions have equal proba-
bility of being chosen. It is the simplest and the fastest
strategy. Effectively, when combined with the MCTS
simulations, it leads to a random search.

2) Approximate Goal Evaluation (AGE). We approxi-
mate the degree of truth of the goal relation. The goal
rules are filtered to leave only those which can produce
(make true) a fact with the highest obtainable score to
our role. The idea is to greedily take actions which
lead to states closer to this goal. We were inspired
by the method used in the Fluxplayer’s evaluation
function [21], but we do not use fuzzy logic norms
(t-norms and s-norms) as Fluxplayer does. In order to
compute a degree of fulfilment of the goal condition
we introduce a concept of the so-called OR-AND proof
trees, which are part of our GDL inference engine [31].
The procedure of computing the AGE value is recurrent
- it starts from the root but the actual values are back-
propagated from the leaves. Basically for each fact
we assign 1 or 0 depending on whether it holds in
the current state. For each rule (AND node) we count
how many conditions are true divided by how many
conditions are defined for the rule. When gathering
facts from all sources (OR nodes) we use maximum
over all values gathered from the AND nodes. When
the values are equal a simple tiebreaking procedure is
applied (see [25] or [31] for the details).

3) Statistical Symbols Counting (SSC). Here, we will
use the term relation as a container for facts which
share a common name - they can be produced by rules
or explicitly defined. For each relation, this strategy
monitors the average number of facts which are true
in a given state. Also, for a triplet (relation; index of
an argument in the relation; symbol from the domain
of the argument) the strategy monitors the number of
occurrences of the symbol. For example, if (cell11red)
denotes a fact in a game, the relation would count the
number of 1 symbols appearing as the first and the
second argument and red symbols as the third one.
The same goes for every other symbol in a domain.
Each computed value is tested for a correlation with
the results of the game. If such a correlation exists, the
respective symbol is assigned a specifically calculated
weight and becomes part of the evaluation function
which can be used since the first PLAY message. SSC
is the only strategy which involves a learning-phase

thus not being enabled from the very beginning (right
after the START message). For more information please
consult [32] or [25].

4) Mobility. The aim is to choose moves which maximize
the relative number of available actions compared to
the opponents’ actions counts. This strategy reflexes
the usually valid assumption that the more actions are
available to the player the better.

5) Exploration. The aim is to select actions leading to the
states which are different from those visited before.

6) History Heuristic. This is a popular heuristic in game
domain. It assumes that actions which proved to be
generally promising (strong) - regardless of the states
in which were played - are chosen more frequently.

7) Score. Used only if the GDL description. It follows a
typical pattern of defining scores for players and having
the higher score is a condition of goal rules. Actions
which greedily maximize the score for our player have
greater priority. This is a new strategy, not included
in [25].

If there are several actions tied for being best from the point of
view of a given strategy, a random one out of them is chosen. A
strategy is responsible for choosing actions during a simulation
but there is also a decision to be made at higher level, i.e.
which strategy should be assigned to a given simulation. We
tested a few mechanisms of such a selection and found the
Upper Confidence Bounds (UCB) formula [33] to be the
most effective. UCB is a flat variant of UCT, in which the
whole decision space can be restricted to only one level in
a tree. Chronologically, it was the UCT algorithm which was
proposed as an extension to UCB.

D. Modified formula for move selection
Among distinct features of MiNI-Player there are custom

inference engine, specific parallelization scheme and modified
move selection formula. The first two traits remain unchanged
for single-player games so they are of lesser importance to
the scope of the paper. Move selection formula is applied
in the actual game (during every PLAY-CLOCK time) and
should not be confused with actions performed during internal
simulations. A straightforward approach is to select action
leading to a state with the best average score (Q(s, a) in (1)).
Our action selection scheme is a bit more complex, based
on - what we call - an Effective Quality (EQ). In a given
decision context (node), let us define by Our - the number
of moves available to our role and by Total - the number
of all joint (tuple) moves available. In order to calculate EQ
value we distinguish four types of nodes among the next move
candidates (see Table I). For each child node of the root node
(i.e. each candidate move) we calculate its EQ according to
Table I. A node with the highest EQ value is chosen. If
more than one node is tied with this value we choose an
action having the highest History Heuristics (HH) value. Since
all strategies record their history, HH provides an additional
mechanism for the final move recommendation. If some nodes
are still tied, one of them is selected at random. When applying
the above procedure our agent analyzes not only the child
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TABLE I. EQ VALUE BASED ON THE ROOT CHILDREN node
PROPERTIES.

Condition in a node EQ formula

node.Terminal = True EQ = node.Q

Our = 1 EQ = mini=1...N (node.Child[i].Q)

1 < Our < Total EQ =
mini=1...N (node.Child[i].Q)+node.Q

2

Our = Total EQ = maxi=1...N (node.Child[i].Q)

nodes of the root but also their child nodes (grandchildren of
the root), so, effectively, the tree is searched one level deeper.

V. SIMULATION STRATEGY FOR PUZZLES

Adaptation of strategies on the basis of their average simula-
tion scores works very well for majority of multi-player games.
Therefore, at our first attempt, we applied the multi-player
games approach to single-player ones without introducing
any modifications. This solution, however, turned out to be
relatively weak. The reason is that for most, if not all, non-
trivial puzzles available in GDL repositories [34], [35], [36],
a common pattern of scores’ distribution can be observed.
The first portion of simulations end with zero scores, since no
(partial) solution is found. This early phase can be measured
in several thousands of Monte Carlo roll-outs or can even
last through the whole game in the case of the most complex
puzzles, i.e. no positive scores are ever achieved. Once the first
non-zero result of a simulation is added to the UCT tree, the
subsequent simulations are either able to repeat it by applying
the same line of play or continue to miss. However, if using
some strategies leads to the same score, these strategies are
indistinguishable by the strategy-selection rule and all them
are used evenly. As a result, since simulations are evenly split
among strategies, it is very likely that many of them are wasted
by using ineffective strategies.

Given enough time, presumably after thousands of simu-
lations, a new higher score is likely to be found. This is a
kind of pattern in which the scores start with the minimal
value and occasionally shift to a better one until the highest
possible score is found (which is not guaranteed to happen
in a reasonable amount of time). There is no variety in
such distributions which is probably caused by the lack of
tactical plays which are often part of multi-player games. In
puzzles, everything is down to finding the next (better partial
or complete) solution. Therefore, simulations should be geared
towards searching the states that are highly distinct from the
previously visited ones, so as to increase the chance of finding
a winning state. The Random strategy becomes a natural
candidate here, since it enables diverse and fast simulations
leading to various states being visited. We re-evaluated all the
strategies, used so-far in multi-player games, in the context of
puzzles and came to the following conclusions:

1) HH and SSC. These strategies rely on average scores
and, therefore are useless until any partial solution is
found. Furthermore, once such a solution is found, there
is no need to rely on its average score, because it

can easily be repeated at any time. Both strategies are
clearly not suitable for one-player games.

2) AGE and Score. These two strategies were discarded
as well. It seems that puzzles are to complex for those
rules to work. Both strategies are defined using a precise
rule which leads to “quite deterministic” playing where
many actions are frequently repeated.

3) Mobility. In puzzles, this is simplified to increasing the
number of available moves. In preliminary experiments
this approach appeared to be ineffective.

4) Exploration. This is the winning strategy - very well
suited for single-player games.

5) Random. A portion of purely random simulations is
desirable to be mixed with some kind of heuristic.
Random strategy fulfills the requirement of variety,
offering high performance speed as an added incentive.

Ultimately, the MiNI-Player version tuned for single-player
games uses the Random strategy and six variants of Explo-
ration strategy. These variants are discussed in the remainder
of this section.

Let us first introduce a basic notion of a difference between
any two game states S1 and S2:

diff(S2, S1) = |(S2 \ S1)|+ δ|(S1 \ S2)|, δ ∈
{
0, 1
}

(2)

A difference in (2) can be either symmetrical or non-
symmetrical depending on the value of delta. In a symmetrical
case, we sum up the number of state facts (predicates) which
belong to S1 and not to S2 and the number of facts which are
in S2 and not in S1. We would rather not use any values for
delta other than 0 and 1 since such choices would be lacking
natural intuitive interpretation. Any value between 0 and 1
would mean weighting the two differences (symmetric and
asymmetric). Instead of weighting, we prefer to keep them
separately, since one or the other may prove useful for a given
game depending on how the state logic is defined in a particular
GDL description.

It is worth recalling that a game state consists of GDL
atomic facts such as [cell 1 1 b] or [control xplayer]. Only
dynamic facts, i.e. those which are affected by init and next
keywords, count as the building-blocks of a state.

In the current state Sk, the algorithm, for each legal action
ai, computes the next state Si

k+1 = next(Sk, ai) which is the
state obtained by applying action ai. Now, for each Si

k+1 the
most similar one among the previous N states visited in the
simulation is found with the following formula:

minDiff(Si
k+1, N) = minkj=k−N+1diff(Sk+1, Sj) (3)

Finally, we choose an action which maximizes the minimal
difference measure over all possible next-states:

a = argmaxi(minDiff(S
i
k+1, N)) (4)

The minimal difference measure (minDiff(Si
k+1, N)) intro-

duced in equation (3) can be regarded as a difference between
a state and set of states. We do not aim at maximizing the
difference between a new state and the current state only,
i.e. applying a greedy approach. A motivation behind the
Exploration strategy is to search for states which are generally
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different from the recently visited states. A margin of only
one state, which can be obtained by assigning N = 1, is too
narrow and causes problems with falling into local minima. For
example, if two very different states are reachable one from
another, setting N = 1 would result in periodical visiting of
these two states.

Six variants of the Exploration Strategy come from various
settings of the parameters: N ∈

{
4, 6, 8

}
and δ ∈

{
0, 1
}

.
Together with a Random one, each strategy receives a seventh
simulation to perform.

VI. TREE CONSTRUCTION SCHEME FOR PUZZLES

In this section the key differences between multi-player and
single-player games in terms of building and expanding the
UCT tree are presented.

A. Selection Phase
One of the major changes related to one-player games is

modification of the UCT formula (1). In its original formula-
tion, UCT stores the average score of each possible action in
a node. This average is computed by dividing a cumulative
result propagated through this node by a number of times
the node was visited. This component represents an expected
outcome of applying action a in state s in (1). In single-player
games scenario, the average score is of no use since repeating
any simulation path previously traversed is a trivial task. We,
therefore, changed the formula so that it uses a maximum score
- MAX(s, a), instead:

a∗ = arg max
a∈A(s)

{
MAX(s, a) + C

√
ln [N(s)]

N(s, a)

}
(5)

B. Expansion Phase
The second change (considered by several other top players,

as well consists in keeping a local memory of performed ac-
tions in each simulation, in case a solution is found. We found
storing actions’ indices only a sufficiently efficient solution.
There is also a global maximum score MAX ∈ [0, 100] that
is being kept track upon. Every time a simulation finishes
with a better result than the previous value of MAX , the
UCT tree is expanded by adding the whole branch of states
visited during that simulation until a terminal state is reached.
If a complete solution, i.e. the one with the maximum score
is found, no more simulations are performed. This approach
works quite well with the so-called root parallelization [37].
The best solution so-far is inserted into a tree, so it can
be easily reproduced, action by action, without making any
adjustments to the root parallelization scheme.

C. State Transpositions
The third considered modification is the use of transposition

tables (TT) [38]. TT is a well-established optimization tech-
nique aimed at speeding up the search of the game tree and
reducing memory overhead by grouping states reachable from
more than one position. This approach performs particularly

well in single-game programs where a dedicated efficient state
representation is available. In GGP, however, TT impose an
overhead which in some games may lead to a slower overall
search than when they are not used. While in multi-player
games the answer whether it is worth using TT depends
mainly on a particular game being played, in puzzles it is
almost always beneficial to use this optimization. Most of
the single-player games are defined in such a way that there
are many ways of reaching a particular state ((including the
case of a state cycle of length 2, i.e. reaching two states A
and B alternately a number of times)), which makes such
games good candidates for using TT. There have been a
few efficient techniques for maintaining state transpositions
proposed in games literature. The most popular one is the
Zobrist hashing (ZH) [39], which is applied to chess-like board
games. However, there are several reasons why the ZH cannot
be applied in a general case of GGP games. Firstly, the method
assumes that the current state (the board) is defined by a single
structure. In GGP, however, there can be none, one or multiple
boards or any number of other/various structures. Secondly, an
efficient implementation of the ZH requires dimensions of the
structure to be known beforehand.

Therefore, instead of using ZH, we propose a multi-
resolution hash table to resolve state transpositions. In state
transpositions a typical task is to find a transposition for a
given state or return an answer that no transposition for the
given state has been visited yet. Instead of using a single-
key hashmap we use a multi-resolution hash table consisting
of five levels. Whenever we present a new state in the input,
five properties of that state are quickly computed. Each unique
combination of the values of these properties has its own
single-key hashmap representation. At the highest level, states
are grouped together into buckets based on their properties:
• Total number of legal actions in a state
• Total number of state facts a state is composed of
• A number of non-empty types of facts (a type such as

”cell” or ”step” is non-empty if it contains at least one
fact in the current state, e.g. (cell a 2 white)).

• A number of facts in each relation
• A vector of hash codes in each relation
The algorithm can be regarded as a decision tree. At each

level, in a non-leaf node, a decision which node to choose
based on the value of the property is made. At the leaf level,
the hashmaps with the actual keys are placed.

Hashing is implemented via C# Equals/GetHashCode in-
terface. Each fact is a vector of integers, since each symbol
is converted to a 16-bit integer number in our system. The
hashing function is presented in equation (6):

hash =
∑
r∈R

N∑
i=1

(2i ∗ I(ri)) (6)

where: R - denotes the set of groundings for a given relation;
r ∈ R - denotes a single grounding; N is the relation’s arity;
ri - is a symbol which appears at the i-th position (index) of
relation r; and I() is a coding function which converts symbols
to 16-bit integers.
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As long as two states differ in at least one out of these
five properties, it is guaranteed that there will be no collision
even if they get the same value from the hashing function.
This is due to the fact that such states belong to different
hashmaps. We have found that collisions are very rare in our
multiresolution approach at the cost of a slight computational
overhead. However, checking state transpositions is performed
only in the UCT part of the MCTS algorithm which takes
significantly less time than the Monte Carlo part. The latter is
still the bottle neck.

In the back propagation phase, we check for transposed
states in each visited node and if there are any, we also update
the score and visits count in them.

VII. EMPIRICAL RESULTS

In this section we present a summary of results divided
into three subsections. The first one of them is devoted
to comparison of the proposed approach with a baseline
MCTS/UCT player. The next subsection presents a discussion
on the issue of efficient calibration of the internal parameters of
the proposed search strategies. The main experimental results
are presented and discussed in Subsection VII-C, where we
compare our proposed approach with the baseline approach
(i.e. our player without the enhancements for single-player
games) and with CadiaPlayer - a three-time GGP Competition
winner. In this comparison the full matches are played, with
both START and PLAY clocks, in the spirit of the GGP
Competition protocol.

A. Long-time comparison and selection of strategies
Here, in each instance of the experiment, we run the tested

players for long time settings, up to 10 minutes, with the
START clock phase only. At certain timestamps, i.e. the first
second and every minute, we observed the highest score
obtained so far and the simulation strategy, if applicable,
which had found that score. The instance (single experiment)
was terminated if the maximum possible score was found
or the START clock expired. Each player in the experiment
played 100 instances of each game. For the sake of clarity
of the presentation and due to the lack of space the results
are presented for the selected timestamps only. For the same
reasons the exact confidence intervals are not provided in the
tables (on a general note, all of them were not greater than
±6).

In Table II, we compare four players over the 10-minute
timespan. The first two players are MAX and AVG - both
implementing the proposed solution, with 6 variants of Ex-
ploration strategy, differentiated only by application of the
maximum or average operators, respectively to the assessment
of Q(s, a) in the UCT formula. The ALL player uses the
above-mentioned 6 variants of Exploration strategy in addition
to all the remaining strategies introduced in Section IV-C. The
last player, R, is a plain MCTS/UCT approach with random
simulation strategy used in the Monte-Carlo phase. All players
except for the AVG apply the maximum operator in the UCT
formula. Since the MAX player is our proposed enhancement,
we are particularly interested in direct comparisons between

MAX and the other players. The results support the following
conclusions.
• MAX is slightly better than AVG. Generally speaking,

the results of MAX and AVG are very close. The only
significant advantages of MAX are observed in Hamilton
(for 1m time), Hanoi (3m) and Rubik’s Cube (10m). In
the remaining (game, time) pairs, these two approaches
are statistically indistinguishable.

• MAX is better than R. The random player performs
equally good to MAX in Buttons only, which turned out
to be the simplest game. In all other games, there exist
time frames where MAX is significantly stronger than
the random player and there are no time frames where
R is stronger than MAX. This property holds true in the
whole 10-minute interval.

• MAX is stronger than ALL. The MAX player out-
performs the player which uses all simulation strategies
in Circle Solitaire (1s), Eight Puzzle (1m), Hamilton
(1m), Hanoi (1-3m), Lights Out (3m), Rubik’s Cube
(3m+) and Untwisty Corridor (1-3m). The players are
comparably good in Buttons, Hunter and Knights Tour.
It is worth noting that for the longest time (10m) the
difference becomes statistically indistinguishable in all
games but Rubik’s Cube. This observation suggests that
the ALL player is simply converging slower due to the
computational burden imposed by using all strategies.

In addition, in order to justify the choice of the Exploration
strategy as the main one, we measured how many times a par-
ticular strategy was the highest score founder at the respective
time frame. These measurements, presented in Table III, were
performed using the ALL player. Since there are six variants
of Exploration, we present both the accumulated counts and
the average counts per each variant.

The results show that the Exploration strategy finds the
highest score the most frequently at higher time frames. At
lower time frames, however, the Approximate Goal Evaluation
(AGE) strategy is the winner. In such a complex scenario as
MCTS it is not clear whether frequent finding of the highest
score means that the simulation policy which found the score
is best-suited for a game. Since all strategies contribute to the
development and search of the same game tree, strong synergy
effects are highly possible (e.g. due to previous simulation
passes, a currently chosen strategy may have an advantage
of starting from a privileged state, located close to the goal
state). Nevertheless, the significant usage of the AGE in the
top score founders suggests that this strategy could have been
prematurely discarded by us. We will investigate incorporation
of AGE into the final solution (our competitive MiNI-Player
version) in the future.

B. Calibration of the Exploration Strategies
One of the critical parameters of the proposed method is

the selection of depths in the Exploration strategy. In the
preliminary simulations we found out that 8 is the greatest
feasible depth in terms of computational efficacy. It also turned
out that using two consecutive exploration depths results in
quite similar playouts and that the effects of using low values
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TABLE II. A COMPARISON OF THE HIGHEST SCORES ACHIEVED BY FOUR PLAYERS AT CHOSEN TIME FRAMES. THE MAX AND AVG PLAYERS ARE
THE PROPOSED SOLUTION DIFFERENTIATED ONLY BY THE OPERATOR (max AND average, RESPECTIVELY) WHICH IS APPLIED TO THE ASSESSMENT OF

Q(s, a) IN THE UCT FORMULA. THE ALL PLAYER, IN ADDITION TO THE PROPOSED 6 VARIANTS OF EXPLORATION, USES ALL THE REMAINING
SIMULATION STRATEGIES. R IS A PLAIN MCTS/UCT PLAYER USING ONLY RANDOM SIMULATIONS IN THE MCTS PHASE. THE SCORES WERE CAPTURED

AT SELECTED TIME FRAMES AND AVERAGED AFTER 100 REPETITIONS.

Time: 1s 1m 3m 10m
Game \ Player: MAX AVG ALL R MAX AVG ALL R MAX AVG ALL R MAX AVG ALL R

8-Puzzle 0 0 0 0 99 99 0 0 99.03 99.08 99 0 99.03 99.08 99.07 58.9
Buttons 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Circle Solitaire 99 100 48 0 100 100 100 100 100 100 100 100 100 100 100 100
Hamilton 0 0 0 0 98.8 91.67 90 56.9 100 100 97.49 90 100 100 100 97

Hanoi 0 0 0 0 60 59.8 34.4 36.4 79.8 60 55.6 59.6 80.4 78 80 70.4
Hunter 0 0 0 0 87 87 87 75 87 87 87 87 87 87 87 87

Knights Tour 0 0 0 0 90 90 90 70.8 98.84 95.4 95.58 71.13 99.44 99.01 99.43 72.63
Lights Out 0 0 0 0 0 0 0 0 100 100 0 0 100 100 100 22

Rubik’s Cube 0 0 0 0 0 0 0 0 17.85 18.85 3.2 0 42.2 37.05 27.9 9.95
Untwisty Corridor 0 0 0 0 10 9 0 0 96 97 90 62 100 100 100 99

TABLE III. A BREAKDOWN OF STRATEGIES BY THE NUMBER OF
TIMES THEY FOUND THE HIGHEST SCORE IN PARTICULAR TIME FRAMES.
THE DATA WAS CAPTURED DURING PLAYOUTS OF THE (ALL) PLAYER,

WHICH USES ALL DISCUSSED STRATEGIES INCLUDING THE 6 VARIANTS OF
EXPLORATION. FOR EACH PAIR (GAME, TIME) THE EXPERIMENT WAS RUN

100 TIMES.

Game 1s 1m 3m 5m 10m
No score found 852 400 169 101 0

Random 3 27 30 25 25
AGE 46 84 94 93 106

History Heuristic 4 43 68 70 74
Mobility 12 47 53 59 55

SSC 0 0 13 21 18
Score 5 9 21 26 33

Exploration Total 78 390 552 605 689
Exploration Average 13 65 92 100.8 114.8

1, 2 are similar to those of random simulations. Therefore, in
the final simulations we were inclined to use depths between
3 and 8 evenly scattered in this range. With these restrictions
in mind, we compared three versions of the Exploration-based
player. The first variant (EXP468) employed depths of 4,6 and
8, the second one (EXP357) employed depths of 3, 5 and 7,
whereas the last one (EXP1-8) employed all depths from 1 to
8.

The results are presented in Table IV. Using all depths from
1 to 8 proved to be suboptimal to the other variants, losing
in Circle Solitaire (1s), 8-Puzzle (1m), Hamilton (1m), Hanoi
(3m), Lights Out (3m), Rubik’s Cube (10m) and Untwisty
Corridor (1m). The EXP468 and EXP357 players achieved
equally good results within the statistical error margin, so
both could be applied. Our final (arbitrary) decision was to
use depths 4, 6 and 8 in the final experimental setup.

C. Final Results
In order to verify the efficacy of proposed solution and

to justify the choice of algorithms presented in this paper
a comparison among the three following players was made.
The first player, called Dedicated MINI-Player (DMP), is
the version of MiNI-Player introduced in this paper, i.e. the
one equipped with single-player games enhancements. The
second one, named Baseline MINI-Player (BMP) is a regular
MiNI-Player, i.e. a version dedicated to multi-player games.

This variant of MINI-Player does not use the enhancements
introduced in sections V and VI. The third contestant, is
a version of the CadiaPlayer (CP) - a three-times GGP
Competition winner - publicly available for download [40].
Players have been tested in a series of 10 games of various
complexity and three choices of (START, PLAY) clock pairs,
determining the time allotted for an initial preparation and for
making a move, respectively. The motivation was to provide
some insight into how fast the simulations performed by the
players may converge. Moreover, in a competition scenario,
the actual time for move is not known in advance. Games
definitions are available in GGP Internet repositories [35], [36],
[34].

The results, averaged over 100 trials in each game, are
shown in tables V, VI and VII for the (120, 30), (45, 15) and
(2, 1) (START, PLAY) clock pairs, respectively.

TABLE V. A COMPARISON OF THE PLAYERS UNDER THE LONGEST
CLOCK TIMES. THE START-CLOCK IS SET TO 120 SECONDS AND THE

PLAY-CLOCK IS EQUAL TO 30 SECONDS. EACH PLAYER WAS TESTED ON
100 INSTANCES OF EACH GAME.

Game Dedicated Baseline
MINI-Player MINI-Player CadiaPlayer

8-Puzzle 99.76 98.01 1.98
Buttons 100.00 100.00 100.00

Circle Solitaire 100.00 100.0 100.00
Hamilton 100.00 91.10 100.00

Hanoi 82.40 80.00 100.00
Hunter 87.00 87.00 87.00

Knights Tour 100.00 100.00 100.00
Lights Out 99.00 9.00 0.00

Rubik’s Cube 10.50 0.00 35.00
Untwisty Corridor 100.00 100.00 100.00

Average 87.86 76.51 72.40

8-Puzzle and Lights Out are complex enough games that
none of the players can find a positive score with the shortest
clocks’ settings. In longer-lasting experiments, DMP is supe-
rior to other players being the only one capable of achieving
the highest scores regularly. Please note that 8-Puzzle have
three scores defined: 0 - no solution was found; 99 - a
solution was found between steps 31 and 60; 100 - a solution
found in the optimal number of 30 steps. In this respect, the
difference between 99.00 and 99.74 in the average results
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TABLE IV. A COMPARISON OF THE HIGHEST SCORES ACHIEVED RESPECTIVELY BY THE PLAYER USING EXPLORATION STRATEGY WITH DEPTHS 4,6
AND 8 (EXP468) - THE PROPOSED SOLUTION, THE PLAYER WITH THE EXPLORATION DEPTHS EQUAL TO 3,5 AND 7 (EXP357) AND THE ONE WHICH USES

ALL DEPTHS FROM 1 TO 8 INCLUSIVE (EXP1-8). THE SCORES WERE CAPTURED AT SELECTED TIME FRAMES AND AVERAGED OVER 100 TRIALS.

Time: 1s 1m 3m 10m
Game \ Player: EXP468 EXP357 EXP1-8 EXP468 EXP357 EXP1-8 EXP468 EXP357 EXP1-8 EXP468 EXP357 EXP1-8

8-Puzzle 0 0 0 99 89 0 99.03 99.07 99 99.03 99.07 99.03
Buttons 100 100 100 100 100 100 100 100 100 100 100 100

Circle Solitaire 99 98.57 81 100 100 100 100 100 100 100 100 100
Hamilton 0 0 0 98.8 98.9 91.3 100 100 100 100 100 100

Hanoi 0 0 0 60 60 59.8 79.8 80 60 80.4 80.2 80
Hunter 0 0 0 87 87 87 87 87 87 87 87 87

Knights Tour 0 0 0 90 90 90 98.84 96 96 99.44 99.6 99.4
Lights Out 0 0 0 0 0 0 100 99 0 100 99 100

Rubik’s Cube 0 0 0 0 0 0 17.85 18 15.05 42.2 41.65 33.45
Untwisty Corridor 0 0 0 10 10 0 96 98 93 100 100 100

TABLE VI. A COMPARISON OF THE PLAYERS UNDER THE
MIDDLE-LENGTH CLOCK TIMES. THE START-CLOCK IS SET TO 45
SECONDS AND THE PLAY-CLOCK IS EQUAL TO 15 SECONDS. EACH

PLAYER WAS TESTED ON 100 INSTANCES OF EACH GAME.

Game Dedicated Baseline
MINI-Player MINI-Player CadiaPlayer

8-Puzzle 99.01 13.86 0.00
Buttons 100.00 100.00 100.00

Circle Solitaire 100.00 100.00 100.00
Hamilton 100.00 90.30 99.90

Hanoi 80.20 80.00 97.40
Hunter 87.00 87.00 87.00

Knights Tour 100.00 86.50 100.00
Lights Out 35.00 4.00 0.00

Rubik’s Cube 0.00 0.00 35.00
Untwisty Corridor 97.00 92.00 100.00

Average 79.82 65.37 71.93

TABLE VII. A COMPARISON OF THE PLAYERS UNDER THE SHORTEST
CLOCK TIMES. THE START-CLOCK IS SET TO 2 SECONDS AND THE

PLAY-CLOCK IS EQUAL TO 1 SECOND. EACH PLAYER WAS TESTED ON 100
INSTANCES OF EACH GAME.

Game Dedicated Baseline
MINI-Player MINI-Player CadiaPlayer

8-Puzzle 0.00 0.00 0.00
Buttons 100.00 100.00 100.00

Circle Solitaire 100.00 100.00 100.00
Hamilton 89.17 84.05 63.65

Hanoi 80.00 60.00 60.00
Hunter 87.00 75.12 84.60

Knights Tour 89.70 69.17 58.65
Lights Out 0.00 0.00 0.00

Rubik’s Cube 0.00 0.00 14.85
Untwisty Corridor 6.00 6.00 100.00

Average 55.19 49.53 58.18

is more meaningful than it actually looks like. Buttons and
Circle Solitaire turned out to be games simple enough that all
players were able to solve them. Knights Tour and Untwisty
Corridor can be fully solved by all three players under 120/30
time constraints, however the advantage of DMP could be
observed with shorter clocks. Hunter can only be solved
partially and in this game DMP gains advantage under the
shortest times. In Hanoi the proposed enhancements enable
DMP to find the second highest score - 80 - in the 2/1
clocks setup whereas BMP and CP can only reach the 60

points. However, when there is more time available, only CP
is capable to solve the game regularly. CP performs better in
Rubik’s Cube too, which is the only game in which our player
performs really poorly.

Generally speaking, we recommend applying a few low-
cost techniques which proved beneficial in our tests, i.e.
memorization of a path leading to the best solution found so
far, using the maximal instead of the average score in the UCT
formula and taking advantage of the transposition tables.

The first of the above-mentioned improvements is obviously
beneficial and there are no disadvantages related to its using.

The maximal score performed better in our experimental
comparison most probably due to the fact that in single-player
games most of the simulations end with the score of zero, so
the average values are also distributed near zero. Not only this
may cause the UCT algorithm to be numerically unstable but
can also make exploration to exploitation ratio hard to balance.

The only drawback of using transposition tables enhance-
ment is a computational overhead of matching the transposed
states. However, in GGP, the inference required to perform
simulations is already slow, so additional burden is relatively
insignificant. All of the enhancements can work together in
any combination.

The proposed simulation strategies work in a combination
and each strategy has some chance of finding a solution. The
more strategies used by the player, the higher probability that
some strategy will find a positive score in a given game.
However, as our simulation results show, using too many
strategies is usually not beneficial since relatively more time
is allotted (wasted) for the worse ones.

In general, our approach works well in games for which the
Monte-Carlo simulation-based approach is well suited. Intro-
duction of the proposed strategies helps the MCTS process find
the solutions much faster. The most favorable case seems to
be a game having multiple progressive goals, where achieving
consecutive goals drives the player monotonically towards the
best solution. Our approach is also well suited for games in
which it is easy to repeat a state, but the correct strategy is to
avoid repeating the states often (e.g. the Eight Puzzle).

In summary, MINI-Player’s version specialized for single-
player games accomplishes better average scores than its
competitors under longer time settings, whereas in the scenario
where the START and PLAY clocks are initialized with very
small values, CadiaPlayer performs slightly better.
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VIII. RELATED WORK

To the best of our knowledge, there is not much related work
dedicated to single-player games in GGP.

The most notable approach is Nested Monte Carlo Search
(NMCS) [41] which was first introduced to GGP by the authors
of Ary program [23]. The basic idea of NMCS is to perform
a principal playout with a bias on the selection of each move
based on the results of MCTS. The NMCS does not operate
on average scores in a tree but instead recurrently calls itself
for subsequent levels. Once it visits terminal nodes, the best
score found in terminal nodes is back-propagated and the max
function is applied in each node. Searches at the highest level
are repeatedly performed until the thinking time elapses. As
stated in [41], the complexity of NMCS search at level n equals
O(anhn+1), where a denotes the average branching factor and
h denotes the tree height.

The authors of Gamer [42], which is another GGP agent,
propose a mechanism of solving games based on symbolic
search and binary decision diagrams. However, many games
are too complex to be completely solved in a reasonable
amount of time. Moreover, the approach requires a complete
instantiation of all formulas in the GDL input which is
often infeasible. The authors show that promising results are
achieved for some of the puzzles, such as Hanoi or Lights Out.

Another work relies on applying the Answer Set Program-
ming (ASP) technique [43]. ASP is used for the purpose of
performing depth-restricted, complete forward search from the
current position so as to find a solution in the end-game phase.
One of the key ASP features is the requirement for mapping a
GDL specification onto the ASP program, which is not feasible
for every game. In [43] the author reports 4 games out of 13
tested which failed to be converted. Two games out of the
remaining 9, Eight Puzzle and KnightsTour, were also used
by us and the average solving times are similar. The ASP
techniques might work better that the UCT method for simpler
games in terms of the GDL description length and complexity
of rule dependencies. Answer Set Programming is also useful
for performing a complete search in the endgame, when the
remaining tree complexity is relatively low, to find the perfect
solution. Our method is based on exploration and simulation
and most probably better suited for games in which a solution
must be found with a bit of luck (is generally hard to find).
Furthermore, the simulation strategies that we employ speed-
up the convergence of the MCTS algorithm.

All the above-mentioned works differ from our approach in
a sense that they either rely on historical scores in terminal
states or, optimized, but still brute-force, complete state-space
search.

IX. CONCLUSION

In this paper a method of adapting a UCT-based General
Game Playing agent to single-player games is presented. The
proposed enhancements include: (1) six variants of the so-
called Exploration Strategy, which is a light-weight policy
used to guide Monte Carlo simulations, (2) an optimized UCT
formula, (3) a custom way of implementing state transpositions

and (4) a modified tree expansion scheme, among which the
enhancements (1) and (3) are entirely novel contributions.

A standard (baseline) version of our GGP agent - MiNI-
Player - and the one with the proposed enhancements were
compared based on the results in 10 puzzles, each solved 100
times, under 3 different time settings. Out of 30 experiments
(10 games x 3 clocks settings) the puzzle-dedicated player
dominated the baseline version by achieving a higher average
score in 15 trials and being tied for the score in the remaining
15 cases. In terms of an average score, our puzzle-dedicated
player is also better than CadiaPlayer but this result may be
affected by external factors, e.g. inference engine performance.

It is worth underlying that multi-player games generally
test adversarial or cooperative skills of the playing agents,
while puzzles can be rather regarded as constrained search
or optimization problems. The results proved that due to
the above-stated fundamental difference, single-player games
deserve separate attention.

Our current focus is on investigating the possibilities of com-
bining our solution with the ideas presented in section VIII,
since most of the enhancements are independent from each
other and potentially may lead to better results when applied
simultaneously. We also work on widening the repertoire of
simulation strategies used by MiNI-Player in the case of both
puzzles and multi-player games. One of the viable options is
the use of an explicit evaluation function, devised in another
GGP approach that we developed [44], [45], combined with
the soft-max policy of move selection.

Our long-term goal is to bring in some pattern-based en-
hancements to the simulation phase, therefore making the
solution a more cognitively plausible and human-like ap-
proach [46].
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[31] M. Świechowski and J. Mańdziuk, “Fast Interpreter for Logical
Reasoning in General Game Playing,” Journal of Logic and
Computation, 2014, DOI = 10.1093/logcom/exu058. [Online].
Available: http://logcom.oxfordjournals.org/content/early/
2014/10/01/logcom.exu058
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[44] K. Walȩdzik and J. Mańdziuk, “Multigame playing by means of UCT
enhanced with automatically generated evaluation functions,” in AGI11,



1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCIAIG.2015.2391232, IEEE Transactions on Computational Intelligence and AI in Games

12

ser. Lecture Notes in Artificial Intelligence, vol. 6830. Springer, 2011,
pp. 327–332.

[45] ——, “An Automatically-Generated Evaluation Function in General
Game Playing,” IEEE Transactions on Computational Intelligence and
AI in Games, vol. 6, no. 3, pp. 258–270, 2014.
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