
Review Article
Recent Advances in General Game Playing

Maciej Uwiechowski,1 HyunSoo Park,2 Jacek MaNdziuk,3 and Kyung-Joong Kim2

1Systems Research Institute, Polish Academy of Sciences, Ulica Newelska 6, 01-447 Warsaw, Poland
2Department of Computer Science and Engineering, Sejong University, Seoul, Republic of Korea
3Faculty of Mathematics and Information Science, Warsaw University of Technology, Ulica Koszykowa 75, 00-662 Warsaw, Poland

Correspondence should be addressed to Kyung-Joong Kim; kimkj@sejong.ac.kr

Received 1 January 2015; Revised 23 June 2015; Accepted 15 July 2015

Academic Editor: Billy Yu

Copyright © 2015 Maciej Świechowski et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The goal of General Game Playing (GGP) has been to develop computer programs that can performwell across various game types.
It is natural for human game players to transfer knowledge from games they already know how to play to other similar games. GGP
research attempts to design systems that work well across different game types, including unknown new games. In this review, we
present a survey of recent advances (2011 to 2014) in GGP for both traditional games and video games. It is notable that research on
GGP has been expanding into modern video games. Monte-Carlo Tree Search and its enhancements have been the most influential
techniques inGGP for both research domains. Additionally, international competitions have become important events that promote
and increase GGP research. Recently, a video GGP competition was launched. In this survey, we review recent progress in the most
challenging research areas of Artificial Intelligence (AI) related to universal game playing.

1. Introduction

Games have always been an important platform for research
onArtificial Intelligence (AI). Since the early days ofAI,many
popular board games, such as chess and checkers, have been
used to demonstrate the potential of emerging AI techniques
to solve combinatorial problems. Recently, some board games
were declared nearly or completely solved (i.e., there are
programs capable of playing a particular game optimally and
neither humans nor other computer programs can perform
better) [1, 2]. These programs are based on sophisticated
tree-based search algorithms with well-designed evaluation
functions, huge databases of game situations, and specially
designed hardware chips. Although these programs have
managed to reach world champion-level performance, it
remains questionable whether they can match human-level
game playing capabilities. In any event, the expansion from
traditional board games to other types of complex games will
continue to advance research on game AI problems.

Some research stresses the importance of human-style
game playing instead of simply unbeatable performance [3].
For example, given a certain board configuration, human

players usually do not check as many possible scenarios
as computer players. However, human players are good
at capturing patterns in very complex games, such as go
[4] or chess [5, 6]. Generally, the automatic detection of
meaningful shapes on boards is essential to successfully
play large-branching factor games. The use of computational
intelligence algorithms to filter out irrelevant paths at an early
stage of the search process is an important and challenging
research area. Finally, current research trends are attempting
to imitate the human learning process in game play.

General Game Playing (GGP) was introduced to design
game-playing systems with applicability to more than one
specific game [7]. Traditionally, it is assumed that game AI
programs need to play extremely well on a target game
without consideration for the AI’s General Game Playing
ability. As a result, a world-champion level chess program,
such as Deep Blue, has no idea how to play checkers or even
a board game that only slightly differs from chess. This is
quite opposite to humans’ game-playing mechanism, which
easily adapts to various types of games based on learning
the rules and playing experience. In the context of GGP,
the goal of an AI program is not to perfectly solve one

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2015, Article ID 986262, 22 pages
http://dx.doi.org/10.1155/2015/986262

http://dx.doi.org/10.1155/2015/986262


2 The Scientific World Journal

game but to perform well on a variety of different types
of games, including games that were previously unknown.
Such an approach requires a completely different research
approach, which, in turn, leads to new types of competitions
and general-purpose algorithms.

Unlike game-specific AI research, GGP assumes that
the AI program is not tightly coupled to a game and,
therefore, requires formal descriptions of games similar to
game manuals for human players. The formal description of
such games is Game Definition Language (GDL) [8]. It is a
text-based and logic-based description of game rules that can
be used to model a diverse array of games ranging from those
as simple as Tic-Tac-Toe to those as complex as chess. GGP
programs must be able to parse and understand the GDL file
of a given game. Using the GDL, it is possible to define new
games by slightly changing the widely used common rules.
This enables the definition of many games, a characteristic of
GDL that is essential for measuring the performance of GGP
programs. The use of GDL has become influential in GGP
research through the introduction of the GGP competition.
It has also led to a new definition of its video game extension,
Video Game Description Language (VGDL).

Traditionally, GGP has focused primarily on two-
dimensional board games inspired by chess or checkers,
although several new approaches for General Video Game
Playing (GVGP) have been recently introduced to expand the
territory of GGP [9].The goal of GVGP research is to develop
computer algorithms that perform well across different types
of video games. Compared with board games, video games
are characterized by uncertainty, continuous game and action
space, occasional real-time properties, and complex gaming
rules. Researchers involved in GVGP are beginning to define
their language, VGDL, which is equivalent to GDL in GGP
research [10]. Additionally, GVDL comes with a new type of
competition [11]. This is a new field of research that bridges
video game AI research and traditional GGP research.

Since its introduction, GGP research has continued to
progress.The AAAI GGP competition has provided an inter-
nationally acceptable venue for evaluating algorithms applied
to GGP [12]. Based on the results of the competition, the
progress in this research domain can be measured, and many
promising techniques have emerged from the competition.
Specifically, the use of the Monte-Carlo Tree Search (MCTS)
has beenwidely adopted inGGP research [13]. Recently, GGP
has expanded to other video games, including grid-style two-
dimensional video games and Atari video games. For this
review, we will focus on advances in GGP research since 2011.

This paper is organized as follows. Section 2 describes
advances in the MCTS method, the state-of-the-art GGP
approach, with particular focus on Monte-Carlo (MC) sim-
ulation control mechanisms. The MCTS algorithm is very
well suited to the GGP domain due to its general applicability
because various games can be encountered during GGP
tournaments. However, the main disadvantage of MCTS is
that it makes very limited use of game-related knowledge,
which may be inferred from a game description. Section 3
addresses methods that are rooted in AI and take advantage
of game-specific information. In Section 4, recent advances in
game rules representations and parallelization ofMCTS, both

of which are critical aspects of building efficient tournament-
level players are described. In Section 5, the use of GGP tech-
niques for video games is introduced and promising research
platforms are discussed. Section 6 reviews the acceleration
of GGP research through international competitions. Finally,
the paper is concludedwith a discussion about challenges and
future directions.

2. GGP-Related Advances in MCTS

2.1. MCTS Overview. Monte-Carlo Tree Search (MCTS) is
the algorithm of choice by the most competitive General
Game Playing agents. For a survey about the MCTS, please
consult [13]. The authors of the survey aimed to embed an
exhaustive knowledge about the algorithm including origins,
mathematical foundations, the structure of the method, and
numerous enhancements. A simple description of how the
MCTS is applied by GGP players can be found in [14] for a
player named Gamer. The algorithm iteratively searches the
game tree starting from the current state in series of iterations
until the allotted time runs out. An iteration consists of the
following four steps: selection, expansion, simulation, and
back-propagation depicted in Figure 1.

(1) Selection Step. The algorithm starts from a root of the
game-tree and chooses a node within an already built
part of the tree based on the nodes’ statistics. Actions,
which have been performing better so far, are tested
more frequently. Typically, some kind of a confidence
algorithm such as Upper Confidence Bounds applied
for Trees (UCT) is used as shown in (1). The UCT
algorithm is an extension to the flatUpperConfidence
Bounds (UCB). Consider

𝑎
∗

= arg max
𝑎∈𝐴(𝑠)

{𝑄 (𝑠, 𝑎) + 𝐶√
ln ⌊𝑁 (𝑠)⌋

𝑁 (𝑠, 𝑎)

} , (1)

where 𝑠 is the current state, 𝑎 is an action in this state,
𝐴(𝑠) is a set of actions available in state 𝑠, 𝑄(𝑠, 𝑎) is
an assessment of performing action 𝑎 in state 𝑠,𝑁(𝑠)

is a number of previous visits of state 𝑠, 𝑁(𝑠, 𝑎) is a
number of times an action 𝑎 has been sampled in state
𝑠, and 𝐶 is the exploration ratio constant.

(2) Expansion Step. It means extending the tree by a new
node with the first unvisited state so far, that is, the
first state found after leaving the tree.

(3) Simulation Step. After leaving the stored fragment of
the tree, a random simulation is performed until a
game termination is reached.

(4) Back-Propagation Step. The scores obtained by all
players in the ended game are fetched and back-
propagated (back-propagation) to all nodes visited in
the selection and expansion steps.

Because the origins of Monte-Carlo methods are in statistical
physics and for the UCT selection algorithm in optimization
of a multiarm bandit payoff (gambling math), the success of
this approach in games has been surprising. There have been



The Scientific World Journal 3

Selection Expansion Simulation Back-propagation

Run continuously in the allotted time

Figure 1: Four steps of the Monte-Carlo Tree Search algorithm.

significant amount of publications in the area ofMCTS, but in
this section we will focus only on papers related to the GGP.
The main reason why this method has been so successful in
a domain of universal game-playing programs is that it does
not require any game-specific knowledge such as heuristic
evaluation function for the assessment of position. The only
requirement is to be able to simulate a game and read the
results. Moreover, the MCTS is an anytime algorithm that
can be stopped at any time and return the best move so
far. It parallelizes and scales well as opposed to alpha-beta-
like methods, which provide only linear improvement with
exponential growth of the tree. A link between game-tree
properties and performance of the MCTS can be found in
[15]. The authors analyze such properties as follows:

(i) Branching factor: the average number of possible
moves in a state impacting the tree width.

(ii) Tree depth: connected to the average length of a
simulation from the beginning of a game to the end.

(iii) Progression towards a natural termination: each move
that naturally brings the state closer to a terminal
one. Examples of naturally progressive games given
in the paper are Connect 4, Othello, and Quarto.
Often, a natural termination is featured in games,
where players fill a board and pieces once placed
do not disappear; therefore the board eventually fills
up completely. On the other hand, games without
a natural termination often could go infinitely long
without an artificial termination condition such as a
maximum number of steps or a maximum number of
state repetitions. Examples of such games are Chess,
Skirmish, and Bomberman.

(iv) Existence of optimistic moves: moves which are imme-
diately good, that is, win a game or give a good result
for the player in a few number of steps, provided that
the opponent does not see a proper response (thus
optimistic). However, if the opponent makes the right
response, it usually puts him ahead of the player who
made the optimistic move. Optimistic moves usually
exist in games, where it takes lots of simulations to

calculate the response compared to finding the good
moves.

It was found out in [15] that comparing branching factor
versus tree depth, there is no factor out of these two which
influences the MCTS performance more. It depends more
on the actual rules of a game being played. Both the larger
branching factor and the deeper tree slow down the process
and render the MCTS assessment less accurate. Progression
towards a natural termination increases whereas existence of
optimistic moves decreases the performance of the MCTS.

2.2. Reducing the Combinatorial Complexity. The UCB algo-
rithm was designed to work with bandits giving payoff
stochastically according to some unknown distribution. The
payoff function is continuouswithin certain bounds. InGDL-
I, while there is still randomness by means of uncertainty
of what actions the other players will chose, the games are
deterministic by structure.

2.2.1. Sufficiency Threshold. In [16], the authors propose two
optimizations known as moving average return function and
sufficiency threshold to exploit the nature of games in GGP
which are characterized determinism and a fixed number of
scores available in every game. The general idea is to allocate
more simulations to actions which evaluation is not clearly
converging to a score defined in the game. A second idea
is presented to distinguish between two similarly evaluated
best moves. In such case, it is beneficial to allocate the whole
budget to just one of these two moves. If the estimation stays
high or even increases, then the move should be played.
Otherwise, the second, not well-simulated one, should be
played. The sufficiency threshold has been introduced by the
same authors both in [16, 17] to optimize the allocation of
simulations and tackle the issue of liability of the MCTS
technique to choosing optimistic moves. It is defined as a
parameter 𝛼, which affects the exploration parameter𝐶 in the
UCT formula introduced in (1):

𝐶 =

{

{

{

𝐶, when all𝑄 (𝑠, 𝑎) ≤ 𝛼,

0, when any𝑄 (𝑠, 𝑎) > 𝛼.

(2)



4 The Scientific World Journal

if not useEarlyCutoff then
return false

end if
if playoutSteps <minimumSteps then

return false
end if
if IsGoalStable() then

// Cutoff point has been calculated as:
// cut← firstGoalChange + numPlayers
return playoutSteps ≥ cut

end if
if hasTerminalInterval() then

// Cutoff point has been calculated as:
// cut← firstTerminal + 0.33 ∗ terminalInterval
return playoutSteps ≥ cut

end if

Algorithm 1: Pseudo-code for deciding cuts for the early cutoff
extension. It was taken from [18].

2.2.2. Move Average Return Function. Move Average Return
Function, introduced in [16], increases importance of newer
simulation results as performed with more information and
being more accurate of how the match can unfold. Let 𝑟
denote the result from a simulation and 𝜆 be inverse to the
number of simulations for small number of simulations and
an arbitrary constant after reaching that threshold. The score
update function becomes

𝑄 (𝑠, 𝑎) = 𝑄old (𝑠, 𝑎) + 𝜆 (𝑟 − 𝑄old (𝑠, 𝑎)) . (3)

2.2.3. Early Cutoff. The paper [18] brings two new extensions
to the MCTS. The first one is applied in the simulation step
and it is called early cutoff. The idea is to terminate a simu-
lation earlier, as opposed to running it till the end, in order
to save computation time and perform more simulations.
The cutoff is based on two conditions: the depth from the
starting state and goal stability. The goal is stable if it can be
computed in nonterminal states, changes with low variance,
and is correlated with the situation in the game. The notion
of the goal stability was borrowed from earlier papers in GGP
[19].The pseudo-code for the early cutoff is as in Algorithm 1.

2.2.4. Unexplored Action Urgency. The second one is Unex-
plored Action Urgency in which there is no longer a require-
ment to select each action at least once. An urgency of an
action is defined as follows:

urgency = 50 + 𝐶√ln𝑁(𝑠) ∗ discount, (4)

where 𝑁(𝑠) is the number of visits to a state and discount is
the number of unexplored actions divided by the number of
total actions available in the state.

Now if any action’s UCT value is higher or equal to the
urgency value, that action is chosen. Otherwise, the first
unexplored action is chosen instead. The idea is to have the
MCTS fringe simulated better than in a regular algorithm.

The enhancements of Early Cutoff andUnexplored Action
Urgency, introduced in [18], were further included in the PhD

thesis [19]. This thesis is also a rich source of information
about CadiaPlayer.

2.3. Simulation Control Enhancements. Most of the original
contributions to the MCTS can be divided into three cate-
gories based on the areawhere they are applied: selection step,
simulation step, or both.The last category was investigated by
[20] by the authors of CadiaPlayer.

2.3.1. RAVE. The RAVE method stands for Rapid Value
Action Estimation. It was first proposed in 2007 for Go, but
it was included in the CadiaPlayer’s authors paper [20] for
comparison and synergy purposes when it is be combined
with other methods in GGP. A recent paper about RAVE
which the GGP agents stem from is [21]. The aim of applying
RAVE is to make the learning process faster, especially at the
beginning when the tree exploration is more chaotic. In this
method, every action in a tree keeps an additional RAVE
value 𝑄RAVE which is updated every time the same action
was played inside a simulation (not necessarily in the same
state) and propagated up the tree like in the main method. In
contrast to the main method, here many action have chance
to propagate their values, not only the one which started
a simulation. The obtained RAVE evaluations are linearly
weighted in the UCT formula with the regular assessment as
follows:

𝛽 (𝑠) × 𝑄RAVE (𝑠, 𝑎) + (1 − 𝛽 (𝑠)) × 𝑄 (𝑠, 𝑎) ,

𝛽 (𝑠) = √
𝑘

3 × 𝑁 (𝑠) + 𝑘

,

(5)

where 𝑁(𝑠) is the number of visits to a state and 𝑘 is the
equivalence parameter constant.

The RAVE enhancements increases results slightly or
significantly in 8 of 9 tested games with the exception of
Skirmish.

An interesting idea for an incremental improvement of
the search algorithm is presented in [22]. The authors revisit
the concept of Rapid Action Value Estimation which is very
game-dependent in terms of efficiency. They show that with
the RAVE turned on the results of games are shifted in a
nearly linear way. In some games, for which RAVE is suitable,
the shift is beneficial, whereas for others it is detrimental.
The solution is to detect online whether it is worth using
RAVE. Details of the algorithm are not included. However,
the idea is to use RAVE only in subtrees of nodes where
there is correlation between the non-RAVE scores and RAVE
predictions.The RAVE value must fall into margin outside of
which moves are considered as being too optimistic or too
pessimistic.

2.3.2. MAST, TO-MAST, PAST, and FAST. Four enhance-
ments under the category of “simulation control” are inves-
tigated in the article [20] and the PhD thesis of one of the
authors in [19].

The enhancements are as follows:
(i) Move-Average Sampling Technique (MAST): a stan-

dard UCT plus a lookup table of actions assessment



The Scientific World Journal 5

stored independently of the state they were played in
during simulations. This enhancement is called His-
tory Heuristic. In [20], historically good actions bias
future simulations according to the Gibbs Sampling
(or Boltzmann distribution).

(ii) Tree-Only MAST (TO-MAST): the same as MAST,
but updates statistics only for actions within the
constructed part of the UCT tree.

(iii) Predicate-Average Sampling Technique (PAST): the
same as MAST, but here the statistics are gathered
and used not only for actions but also for the pairs
⟨predicate,action⟩ where predicates build the game
states.The evaluation of a state is aggregated using the
max operator over all the contained predicates.

(iv) Features-to-Action Sampling Technique (FAST): a tem-
plate for the most typical way of encoding cells and
pieces in the GDL games is used. If it successfully
detects that such objects are present in a game then
the system learns the importance of particular pieces
and cells using the TD(𝜆) algorithm.Then an evalua-
tion function based on a linear weighting of features
and their corresponding importance is constructed.
The function is used in a similar fashion as actions in
MAST (evaluates actions by their resulting states) to
bias the simulation according to the Gibbs Sampling.

All the proposed optimizations are empirically tested with
and without usage of RAVE. It is shown that various com-
binations provide significant benefits for certain games. The
results of RAVE/MAST and RAVE/PAST were identified as
the most promising ones.

2.3.3. N-Grams and Last-Good Reply Policy. Another couple
of enhancements to the MCTS selection phase are described
in [23]. The first one is N-grams Selection Technique (NST)
which extends MAST. The average players’ rewards and the
number of visits are here stored not just for actions but
for longer sequences of actions called N-grams. During a
game, the authors maintain sequences of lengths 1, 2, and
3 with their respective statistics. Sequence of 1 is equivalent
to the regular history heuristic. Due to maintaining longer
sequences, actions are evaluated in specific contexts. The
statistics are used during a playout, where the simulated
player checks the database of stored sequences (starting
from those of length = 3) for possibility of reconstructing
a particular sequence after choosing a candidate action.
Actions leading to the best evaluated sequence are chosen
more often. Both Gibbs Sampling and 𝜀-greedy methods are
tested. The latter outperformed the first one in the empirical
experiments. Only such sequences of actions, which appear
at least 𝑘 times, affect the simulation phase to minimize
randomly occurring noise. The authors chose 𝑘 = 7 in the
experiments. The second enhancement presented in [23]
is Last-Good Reply Policy (LGRP) which had already been
successful in Go and Havannah. The idea is store the best
countermove for a preceding move. The best countermove is
defined as resulting in the highest reward among all players.
For each move, only one best-reply move is stored and every

new one overwrites the existing one. The LGRP policy is
used to rank the unexplored actions in the selection step
and the simulation step. Both enhancements were tested
independently and in combination with other enhancements
using a number of games. The best players were using either
NST or LGRwith NST as the fallback strategy. Both enhance-
ments improve the performance of the baseline CadiaPlayer
in certain games.

2.3.4. Decaying Strategies. The two mentioned simulation-
control strategies, that is, N-gram Selection Technique and
the Move-Average Sampling Technique, were further opti-
mized by using them with a certain decay factor [24]. Decay
is a process of decreasing importance of the older statistics
with the assumption that they are more likely outdated or
gathered not in the most current area of exploration in the
UCT tree. The results are simply multiplied by a factor of
𝛾 ∈ [0, 1]. Three decaying methods were investigated called
Move Decay (after a move is made in the game), Batch Decay
(after a fixed number of simulations), and Simulation (after
each simulation, but only forN-grams and Last-GoodReplies
which occurred in the simulation). The authors also tested
a combination of Move Decay with Simulation Decay. All of
them improved the performance of the respective simulation-
control strategies and Move Decay with 𝛾 =0.4 and 𝛾 =0.6
was the best, in overall, for the games designated in this
experiment.

2.3.5. Simulation Heuristics. An approach to optimizing the
simulation phase by adopting various light-weight heuristics
is investigated in MINI-Player [25]. The authors propose six
policies, called strategies in the paper, which are used with
certain probability at each step of a simulation to pick moves
for players. Each simulation is driven by exactly one strategy
(per player). The following simulation-based heuristics are
proposed:

(i) Random (R): the baseline MCTS policy is fast and
unbiased.

(ii) History Heuristic (HH): an established enhancement
to the MCTS is used here as a stand-alone simula-
tion heuristic. Actions which are globally good (i.e.,
independent of a particular state) are chosen more
frequently. The action-score statistics are updated
after each simulation (not only those driven by HH).

(iii) Mobility (M): actions leading to states in which our
player has more move options relatively to other
players are favored.

(iv) Approximate Goal Evaluation (AGE): the authors
propose a way of calculating a partial degree of
satisfaction of a GDL goal rule. The idea is based
on traversing a proof-tree, called the AND-OR tree,
in a recursive manner. Two types of values, the
actual degree of satisfaction and the tiebreaker, are
calculated and propagated bottom-up in the tree.The
formula is applied to all goal rules with the highest
score available to each player. AGE will choose the
action which leads to a state maximizing the goal



6 The Scientific World Journal

score. The idea of AGE was inspired by FluxPlayer
[26], but in [25] the realization is vastly different on
both conceptual and technical levels.

(v) Exploration (E): this strategy introduces a measure of
similarity and thus difference between any two game
states. First, for each action, the E strategy will look
at its after-state and pick the most similar state to
that after-state among the states visited before. Then,
the chosen action will be the one that maximizes
a difference between those two states among all
available actions.

(vi) Statistical Symbol Counting (SSC): this strategy relies
on building a simple evaluation function during the
START CLOCK. The number of facts of each type
and the quantities of each symbol appearing at a
certain position index in the facts are the building
blocks of the evaluation function. All these quantities
are tested for correlation with the game score and
assigned proportional weights. Quantities which do
not change are discarded. The strategy is a simplified
version of a stand-alone player discussed in [27].

The strategies are evaluated online, independently for each
player, in such a way that the ones which perform statistically
better have a higher probability to be chosen in subsequent
simulations. Three methods for heuristic evaluation were
tested and the UCB algorithm was concluded to be the most
suitable one.

Another contribution of [25] was a modified formula
for choosing an action to play. A move is decided based
on statistics gathered in the top two levels in the tree. The
formula resembles a shallow min-max if our player has only
one available move (min case) or each of the opponents has
exactly one available move (max case). For the remaining
cases, the quality of an action is computed by a linear
interpolation, with 𝛼 = 0.5, between its regular score 𝑄 and
the minimal score of the action’s child nodes. Actions leading
to terminal states, for which there are no more nodes in the
tree, have their average score 𝑄multiplied by 1.01.

Although using heavier playouts results in smaller num-
ber of simulations per second, the approach has improved the
baseline performance of the player performing only random
simulations in 7 out of 9 games tested in [25]. Moreover,
the agent equipped with the simulation heuristics achieves a
higher average score across the domain of tested games.

2.4. Simultaneous Moves. While realization of a MCTS agent
for the case of alternate-turn games is straightforward, things
are getting more complicated for truly simultaneous games.
In such games, the algorithm has to choose during the
selection phase actions for each player and more than one
player can have more than one action in a state. This can be
seen as a multicriteria optimization. In addition, such games
are usually much more complex due to the higher effective
branching factor, which comes from multiplication of the
average numbers of legal actions for each player.This problem
was undertaken in [28] where the following methods were
tested to deal with simultaneous moves in the MCTS/UCT:

(i) Decoupled UCT (DUCT): each player stores separate
rewards and visit counts for their tree. Actions are
chosen as if there was no move joint dependency.

(ii) Exp3: each player stores rewards and visit counts for
their own moves but the score of each move is scaled
by the probability of it having been sampled.

(iii) RegretMatching: a regretmatrix ismaintained by each
player storing cumulative regrets for playing an action
instead of another one. The chosen move minimizes
the regret.

(iv) Sequential UCT (SUCT): the game is virtually trans-
formed into a sequential one where players choose
actions one after another and the preceding choices
are known to the subsequent players so they can
respond accordingly.

The authors conclude that DUCT winning in 68% of games
seems to be the safest choice but the SUCTwith 63%win ratio
is not far behind. Regret Matching is not performing well in
general, but there is a game identified, where it outperforms
other methods significantly.

2.5. Alternatives to UCT

2.5.1. Roulette Wheel Selection. The possibility of replacing
the UCT algorithm in the selection phase by a roulette
wheel selection was investigated in the master thesis [29].
The roulette wheel selector is applied there in the most
straightforward way. First the total score from all the average
scores of actions is computed.Then each action 𝑎, in the order
of appearance, is assigned an subinterval from [0, 1] starting
in the end of the previous action interval of length equal to the
score of 𝑎 divided by the total score. As an example, consider
five actions from 𝑎1 to 𝑎5 with their respective intervals:

{𝑎1[0, 0.05], 𝑎2[0.05, 0.2], 𝑎3[0.2, 0.25], 𝑎4[0.25, 0.5],
𝑎5[0.5, 1.0]}.

Next, a number calledMoveSelector from 0 to 1.0 is randomly
generated. Finally, the first actionwith left-value of its interval
greater than or equal to the generatedMoveSelector is chosen.

In addition, one-move wins and losses are handled
separately. A one-move is preferred over the roulette selection
and in the case of one-move loss a random move is chosen
instead (probably to avoid a division by zero).This alternative
approach to balance the exploration versus exploitation ratio
was tested only in two simple games: Tic-Tac-Toe and Nim.
The resulting player was not significantly better or worse than
the UCT one.

2.5.2. TD-UCT. Oneof the recent publications [30], concerns
combining the UCT score with an evaluation obtained
from a Temporal Difference (TD) algorithm. Three ways of
aggregation of the TD values are proposed:

(i) TD-UCT Single Backup: the algorithm omits boot-
strapping and updates the TD values in the back-
propagation phase only from the selected leaf node



The Scientific World Journal 7

up to the root. There are two weighting parameters:
distance to the selected leaf node and distance to the
terminal state of the performed simulation.

(ii) TD-UCT Weighted Rewards: the simplest variant in
which the TD evaluation completely replaces the
𝑄 evaluation in the UCT algorithm. Rewards are
weighted by the number of steps to the terminal state.

(iii) TD-UCT Merged Bootstrapping: it is the most com-
plex variant. It combines the TD-UCT Single Backup
with fully fledged bootstrapping (updating states
according to the value of the next state).

The authors chose two variants of Gomoku and three other
games and report improvement of the plain UCT perfor-
mance in all the tested variants. However, the first two
variants do not performwell when combinedwith other well-
known UCT enhancements such as RAVE or AMAF. The
third variant, TD-UCTMerged Bootstrapping, is shown that
it can be successfully combined leading to even better results.

3. AI-Based approaches

3.1. Overview. The competitive side of General Game Playing
has been dominated by the Monte-Carlo Tree Search and
its optimizations but it does not mean that methods having
roots in the more classical AI were given up. We start our
survey on this topic with a summary of achievements related
to computational intelligence inGGP [31].This work includes
historical overview of four pre-GGP attempts to create
multipurpose playing programs. A summary of the first three
GGP competition winners is as follows: ClunePlayer [19],
FluxPlayer [26], and CadiaPlayer [20]. The paper contains
some remarks about possibility of adopting CI methods to
GGP as well as the authors recent work of constructing a
general state evaluation function. The approach is largely
based on [32] and extended in [33], so we will devote a
separate paragraph for it.

3.2. GDL and Features. When designing programs to play
a specific game, one of the common aspects is to identify
characteristic features of the game. Features can encode
higher level properties of a state or can be building blocks
which the game state is composed of. Such features help to
determine whether a state is good or bad and usually are
used by top players in their playing. InGeneral GamePlaying,
no universal high level features exist and therefore they have
to be learned online. Several articles have been published
to tackle this issue. The approach is largely based on [34]
how typically certain game-elements are encoded inGDL and
what the features of a heuristic evaluation function derived
from those GDL expression can be. The considered features
are as follows:

(i) Solution cardinality: for example, if there are more
than 0 elements.

(ii) Ordered domains: for example, points.
(iii) Relative distances: for example, capture when having

the same location.

(iv) Distances to a fixed fluent: for example, timeout-
termination step.

(v) Persistence: for example, fluents which once become
true never change.

3.3. Feature-Based Evaluation Functions

3.3.1. Game Independent Feature Learning. The paper [35]
presents a robust approach to feature learning named Game
Independent Feature Learning (GIFL) (Figure 2). The idea is
to perform random simulations and build a small tree around
a terminal state, shown in Figure 1, when the simulation ends.

Next, differences between two consecutive states encoded
in GDL are extracted as a set of predicates. The features are
identified as offensive and defensive depending on whether
they lead to victory or prevent loss. A database of features is
finally used to guide theUCT simulations. First, all applicable
features are fetched based on the predicate matching with the
current and the next states. Features with a value of 100 are
taken immediately. If no such features exist, the applicable
ones are chosen according to the probabilities computed by
the Boltzmann distribution:

𝑝 (𝑎) =

𝑒
𝑉(𝑎)/𝜏

∑
𝑛

𝑏=1
(𝑒
𝑉(𝑏)/𝜏

)

, (6)

where 𝑝(𝑎) is probability of choosing action 𝑎, 𝑉(𝑎) is the
value of the feature corresponding to action 𝑎, 𝑛 is the number
of actions, and the parameter 𝜏 was set to 0.5.

The approach was tested in 15 games. A significant gain
was reported in 6 or 7 games depending on the time controls
for moves.

3.3.2. Decision Tree Learning. Identification of predicates as
features is also presented in [36]. Here, the concept of a
feature is simplified to a single fully grounded GDL predicate
such as (cell 2 2 x). The statistics of features such as the
average score, number of occurrences, mean, and high and
low bound for the score are gathered during a self-play.
Predicates which are more positively correlated with the win
are called subgoals. In their previous work (beyond the scope
of this survey), the authors were using a weighted linear
combination of the features to construct a state evaluation
function. Later, they switched to Decision Tree Learning.
A Decision Tree is a widely adopted classifier in machine
learning.The learning algorithm of choice was ID3.The agent
performs random simulations and feeds the Decision Tree.
There are some optimizations proposed to avoid creation
of too many classes and overfitting. During the playout,
the agent computes the next state for each available action
and projects the resulting state to the decision tree. The
state is decomposed into features (predicates) in order to
determine which class it belongs to. The score of the class is
the assessment of the state.

3.3.3. General Dynamic Evaluation Function. Another
approach to constructing an evaluation function dynamically
was introduced in [32] and extended in [33]. The idea draws



8 The Scientific World Journal

(a)

(b) (c)

(e)(d) (f)

Predicates Action Value
(cell 1 1 x)
(cell 3 3 x) 100

Feature learning example

State Action

(mark 2 2 x)

(mark 2 2 x)

Terminal?

x

x

o

x

x

o
x

x

oo o

x

x

oo
x
xx

x

oo
x

x

oo

x

x

x

oo

Test

Figure 2: Game Independent Feature Learning. The figure was reproduced based on [35].

Table 1

Example predicate
from the rules

New predicates after
generalization

New predicates after
specialization

(cell 1 1 ?)

(cell ? ? ?)

(cell 1 ? ?)

(cell ? 1 ?)

(cell 1 1 x)

(cell 1 1 o)

(cell 1 1 b)

from the common and previous state-of-the-art work.
Features are again predicates which are detected directly
from a game description. Next, the predicates are generalized
(by replacing symbols with variables) and also specialized
(by replacing variables by symbols within the respective
domains). Domains are detected via traversing dependency
graphs of GDL fluents and variables. Table 1 presents a
possible predicate.

The features are analyzed in terms of their stability which
is a function of the variance 𝑆𝑉 during game sequence
(vertical) and variance 𝑇𝑉 between games (horizontal).
Consider

𝑆 =

𝑇𝑉

(𝑇𝑉 + 10𝑆𝑉)

. (7)

A linear combination of the top 30 features by the average
score is introduced. The features are weighted by a product
of their stability and correlation with the game score. Such
a constructed evaluation function is used in two variants:
with the MTD(f) algorithm and the so-called Guided UCT
method. The latter case involves early termination of the
Monte-Carlo simulation with probability 𝑝 = 0.1. In case of
an early termination, the evaluation function provides scores
for the players. While the approach is not yet robust enough
for winning the GGP competition, in some games such as
Checkers the results are very promising.

3.4. Distance to Features. Two papers [37, 38] investigate the
concept of distance between features. In this case, the features

are called GDL expression for state predicates either fully
instantiated or containing variables. In earlier work, distances
between twopredicates required a prior recognition of board-
like elements and Cartesian board-like structures with totally
ordered coordinates. In the mentioned articles, the authors
show a procedure for detecting admissible distance between
two features by means of a number of steps required to make
a certain feature true starting from a state when the other
feature is true. Figure 3 presents an excerpt from the game
Breakthrough.

The method involves constructing a Fluent Graph from
rules in a Disjunctive Normal Form (DNF) which is not
feasible for all the games due to the rules complexity.
Once distances are calculated, they are used inside a fuzzy
evaluation of the degree to which goal rules are satisfied.
The function operates on DNF forms of the goal rules,
takes the current state as the input, and returns a numerical
assessment in the [0, 1] interval as the output. Conjunctions
are transformed to 𝑡-norms and disjunctions are transformed
to 𝑠-norms whereas true(P) conditions are computed based
on a closest distance from the current state to the predicate
𝑃.

The paper identifies applicable games for which the
improvement is significant. Out of 19 tested games, the
method works particularly well in 3 games, slightly above
average in the next 3 games, no gain is observed in 9 games,
and 4 games are underperforming with the inclusion of the
distance heuristics.

3.5. Survey-Like Papers on Knowledge-Based Methods. The
dissertation [26] presents several knowledge-based methods
for GGP which are as follows: (A) automatically generated
state evaluation function which uses fuzzy logic to approx-
imate degree of truth of goal conditions in nonterminal
states; (B) construction of a neural network to optimize
the introduced evaluation function; (C) construction of
new propositions as well as solving games using automated



The Scientific World Journal 9

Cellholds (8, 8, black)

Cellholds (8, 7, black)

Cellholds (8, 1, black) Cellholds (7, 1, black) Cellholds (1, 1, black)

Cellholds (7, 7, black) Cellholds (1, 7, black)

Cellholds (1, 8, black)Cellholds (7, 8, black) · · ·

· · ·

· · ·

· · ·· · ·· · ·

Figure 3: Distances between fluents in Breakthrough. The figure was reproduced based on [37].

theorem proving techniques; (D) detection of symmetry in
games; (E) factoring of composite games. This PhD thesis
is also an exhaustive source of information about a player
named FluxPlayer. Because of the huge volume of this source
(161 pages), we are unable to go into details like in the case of
shorter articles.

Another PhD dissertation [39] presents a systematic
analysis for methods for creating evaluation functions. Many
overlapping concepts with [35, 37, 38] are shared. This work
contains classification of approaches by a method of aggrega-
tion, performance, and the source features come from. Some
theoretical divagations are included.

Neural Networks. In [40], the authors show how to transform
a propositional logic of the GDL rules into a neural network.
The rules of interest are goal rules to then perform approxi-
mation of a goal in nonterminal states.This concept has been
very popular in General Game Playing. For this purpose, a
generalization of the 𝐶-𝐼𝐿2𝑃 derives from the area of Neuro-
Symbolic Integration (NSI). The algorithm correctly maps
propositions to neurons which result in some kind of fuzzy
inference engine with learning capabilities. The algorithm is
described to transform rules of the form

𝑞 ⇐󳨐 ⨂

1≤𝑖≤𝑘

𝑝
𝑖

with⊗ ∈ {∨, ∧} , (8)

where 𝑞 is an atom and the𝑝
𝑖
are literals. A rule is represented

by 𝑘+1 neurons where one neuron is the head of the rule and
the rest 𝑘 neurons are denoted by literals connected to the
head. If the propositional value (e.g., head of the rule) is true,
then the neuron representing the proposition responds with
an output value of [𝐴MIN, 1] whereas output of [−1, 𝐴MAX] is
interpreted as false. In thework, a standardmodel of neuron is
defined with real weights, bias, unbiased and biased outputs,
a bipolar activation function, and the real output.

The authors tested if the mapping can be performed for
the rules of 197 games. For 36 games, no network could be
constructed. In 81 games, the proposed approach has led
to a higher state resolution than when a straightforward,
nongeneralized 𝐶-𝐼𝐿2𝑃 algorithm was used. Unfortunately,
there was no GGP player built on top of this algorithm and
therefore there are no results of playing strength.

3.6. Transfer Learning. An interesting quality attributed to
human-like playing is transfer learning. Itmeans that humans
can generalize once learned knowledge about a game and
use it in similar context if they appear in different games.
Knowledge transfer is extremely difficult in General Game
Playing, not only because the variety of games is practically
unlimited but also because the description language is low-
level andpurely universal. Please recall that players inGeneral
Game Playing start from scratch and there is no formally
provided metainformation about what game is being played
or which players are involved in the game. The article [41],
which uses GGP as the testing framework, concerns transfer
analogy in games. The analogy is tested by comparing GDL
descriptions. Two algorithms of discovering an analogy,mini-
mal ascension andmetamapping, are introduced.The first one
is related to small structural changes between the descriptions
(near learning) whereas the latter is responsible for matching
more complex changes (far learning). Both methods apply
static analysis of the GDL and dynamic analysis as the
review during game play. The authors tested games within
the same domain (prone to transfer) and with completely
different domains. The approach has successfully identified
some common scenarios, but in general, the authors conclude
that there are still many limitations of the transfer learning.
We will not go into details here, since transfer learning is not
a part of the GGP competition protocol.

4. Rules Representation and Parallelization

4.1. Overview. In this section, we focus on dealing with the
rules of GGP games and distributing computations. This
includes design of inference engines for reasoning in GDL.
We limit the scope to the default version (GDL-I) which has
been used in all Stanford’s competitions so far. In 2010, an
extended specification was proposed (GDL-II) [42] which
allows nondeterminism and hidden information. There are
many viable ways that operate with the GDL rules such
as Prolog, a custom GDL interpreter, or translation to a
different representation (Table 2). A comparison between the
first and the second approach is discussed in details in [43].
An overview of a few available GDL reasoners is contained in
[44]. In summary, a Prolog-based engine is relatively slow.



10 The Scientific World Journal

Table 2

Approach Feasibility Speed
Full instantiation of all states ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Propositional network ⋆ ⋆ ⋆ ⋆ ⋆ ⋆⋆

Custom GDL interpreter ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Prolog interpreter ⋆ ⋆ ⋆ ⋆ ⋆ ⋆⋆

GGP Base Java Package ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Another representation ? ?

Because the topics in this section are mostly implementa-
tion oriented, we will focus on the general report on what has
been published here.

4.2. Instantiation. Instantiation of game description means
elimination of all variables. Such descriptions can be used
for many purposes such as solving games or inferring game
states in a more robust form. The paper [45] comes with two
techniques of instantiation: Prolog-based and a manual one
using dependency graphs. A top view of the algorithm is
summarized as follows:

(1) Parse the GDL input.
(2) Create the DNF form of the bodies and all formulas.
(3) Eliminate negated atoms (in the Prolog case).
(4) Instantiate all formulas.
(5) Find groups of mutually exclusive atoms.
(6) Remove the axioms (by applying them in topological

order).
(7) Generate the instantiated GDL output.

The authors were able to instantiate 96 of the 171 enabled
games from the Dresden GGP repository using Prolog and
90 using the dependency graphs.

4.3. Propositional Net GDL Interpreter. A highly optimized
custom interpreter for GDL can be created using a forward
chaining technique [46, 47]. In this approach the rules are
first converted to a disjunctive normal form (DNF), stratified,
and ordered using a sophisticated ordering strategy based on
statistics. Next, rules are assigned efficient structures which
process inputs (conditions) to outputs (rule instantiations).
Memory-efficient Reference Tables are designed for this task.
The forward chaining means starting with the available
ground data and traverses the rule base in an inverted fashion
compared to the original GDL to get the results satisfying
the required rules such as legal or goal. The predecessor
article [47] is focused on the main algorithm and automatic
generation of OCAML functions whereas [47] introduces
later optimizations.

4.4. Classical GDL Interpreter. Two GDL reasoners [48, 49]
approach the problem in a more classical way, that is, by
determining results of rules from the definition, without full
instantiation or elimination of variables, with unification of
variables as they appear. Some common features of the two

systems include flattening a GDL description by removing
all nested arguments, compilation to 𝐶++, tree-like repre-
sentations to perform the resolution, single-pass method by
means of visiting each tree node only once, and optimized
data structures for containers for the output produced by
rules for conditions. For the containers, in the first approach
trie-composed and tree-composed structures are used [48]
whereas in the second one [49] the results are stored in
memory in a linear fashion (native pointers) with dynamic
hashingwhere it is beneficial. Other differences are in the way
how the results are gathered and merged together and how
unification is performed along the path of resolution or in
dealing with negation and recursion.

4.5. Factorization and Decomposition. When having a net-
based reasoning system, where each input node feeds data to
an output node, it is very beneficial to decompose the graph
into subgraphs to avoid unnecessary data processing. Such
decomposition can be also beneficial to detect independent
factors and thus reduce the complexity of the game tree. An
approach to decomposition based onmodel checking and the
Answer Set Programming (ASP) can be found [50].

Another investigated optimization is based on solving
the inferential frame problem that is extracting the exact
translation function from one state to another. Normally,
all state predicates are cleared during the update and the
GDL specifies which predicates become true after the update.
A more intuitive transformation from certain predicates to
certain predicates which not only illustrates how the state
evolves in time but also can vastly improve the reasoning
speed is presented in [51]. A related work to perform only
the necessary transition from one state to another without
recomputing the whole state is [52]. Like in [47], the rules are
stratified and ordered. Then the so-called numerical model of
a stratified program is constructed. Whenever a move update
is performed, only the potentially affected rules are marked
as “needing recomputing.” The authors report an order of
magnitude improvement in Connect Four.

4.6. Translation of the GDL to a Different Representation

4.6.1. Toss. Thenext concept under this category that wewant
to address is translation to a different representation. The
GDL description can be translated to the so-called structure
rewriting rules based on first-order logic with counting [53].
It allows capturing a dynamismof howpredicates evolve in an
automata-like graph. The method is part of the Toss system
[54] which makes use of this structure to develop simple
heuristics. Toss requires transformation of theGDL rules into
type normal form (TNF) and like all of the players using some
kind of normal form or instantiation is not suitable for too
complicated game descriptions.

4.6.2. Action Language. The paper [55] presents a formula of
embedding GDL into an action language called C+. As the
name implies, moves performed by players make the central
point for action formalisms. The main result from the paper
is the algorithm of building causal laws from GDL rules.



The Scientific World Journal 11

The translation is proven to be always correct so it is a nice
starting point for developing action-based heuristics.

4.6.3. Planning Domain Definition Language. While in mul-
tiplayer games solving the game is possible only for trivial
and let us say uninteresting cases such as Tic-Tac-Toe; in
single-player games the goal is actually to solve the game at
least weakly.The article [56] introduces a method to translate
a given GDL description into Planning Domain Definition
Language in order to use methods dedicated for planning to
generate a solution to a game.

4.7. Parallelization. There are various reasons standing
behind parallelization of General Game Playing programs
such as pushing the envelope as far as possible, exploiting the
parallel nature of Monte-Carlo simulations which are part of
state of the art or the ultimate goal of winning the official GGP
Competition. However, there have not been many articles
related to parallelization in General Game Playing which is
probably due to the fact that there had been already existing
work tackling the parallelization in Go. To our knowledge,
there are two articles [57, 58] on distributed computations
strictly connected to GGP.

4.7.1. Root Parallelization. In the first one, a root paralleliza-
tion scheme is proposed which involvesmaintaining separate
instances of the game tree on different machines. Statistics of
nodes near the root are aggregated with certain frequency,
once per move in this case. The authors investigate four
techniques of such an aggregation known as Best (select the
best evaluated move from a distributed node), Sum (sum of
total scores and total visits), Sum10 (Sum performed only
for the top ten best evaluated moves), and Raw (send only
average scores of moves from nodes without weighting by the
number of total visits). The best algorithms are obtained for
Sum and Sum10 and are very close. The parallelization works
well for each but one tested game.

4.7.2. Tree Parallelization. In the second article [58] the
authors switch to Tree Parallelism, where only one master
node has access to a game tree and delegates work to sub-
players.The subplayers perform one or more simulations and
send the result immediately. According to the article, Root
Paralellism works better with small number of subplayers
(less than 5) whereas Tree Parallelism scales better up to
16 distributed nodes. It becomes detrimental for a higher
number of nodes in almost all tested games.

4.7.3. Centurio. The last work we mention in this section is
about a player named Centurio [59]. It uses the Monte-Carlo
Tree Search algorithm but the realization is pretty standard,
so it is not included in Section 2. Essentially, this work is a
report of what is Centurio about without any novel contri-
butions. In the case of single-player games, GDL program is
translated to the ASP program in the case of solving single-
player games. The authors chose an existing third-party ASP
engine. Considerate part is also dedicated to parallelization

on a cluster using an open-source dedicated software offering
a Network-Attached Memory (NAM) implementation.

5. General Video Game Playing

Recently, GVGP has been proposed as a new research topic in
the field of computational intelligence [60]. Although its for-
mulation is very similar to GGP, its target has changed from
traditional board games to video games. The introduction of
GVGP has raised several new challenges related to the unique
properties of video games. For example, video games usually
do not allow very much time for players to make decisions,
and this situation is exacerbated in real-time strategy games
(16 to 50ms to react). This significantly affects the possibility
of using computationally expensive search techniques for
GVGP. Moreover, video games typically have enemies and
nonplayer characters (NPCs) that are continuously moving,
and a delay in decision-making can result in significant losses
within a game. Additionally, video game settings are often
more closely related to real-world situations than those of
board games.

Similar to GGP, algorithms applied to GVGP also need
to be tested against a large number of video games. As it
can be a huge burden to use many types of video games in
GVGP research, the use of open game platforms is essential
to increasing the speed of research. Such platforms include
various video games with an API (Application Programming
Interface) for the AI program. Initially, the open platforms
were based on well-known emulators of early-generation
console devices (Atari 2600). Because these platforms were
not designed with VGDL in mind [10, 61], it was not easy
to add new games to the platform, and the AI controller
usually had little idea of the representation of video games
on standard platforms.Themost famous open game platform
is ALE (Arcade Learning Environment) [62], which is based
on an Atari 2600 emulator (Stella) [63]. It supports various
classic Atari games, including Freeway and Ms. Pac-Man.
On the other hand, GVG-AI platforms used for the IEEE
Computational Intelligence in Games (CIG) 2014 GVGP
competition were designed to support VGDL [11]. Moreover,
the game description language (GDL) is poorly suited for
video game environments because of several factors [64]:

(i) Nondeterministic behaviors by NPCs or elements of
chance.

(ii) Simultaneous decision making by players and NPCs
at any given step of the game.

(iii) Dynamics (physics, continuous, or temporal effects,
collisions, and interactions).

(iv) Large environments.

Although GVGP research has a relatively short history, many
researchers have already applied various techniques to solve
GVGP problems. These solutions have been inspired by
GGP, game AI, and reinforcement learning. In this section,
we will divide the GVGP problem into five subproblems:
(1) search/planning algorithms, (2) learning and adaptation,
(3) game state representation, (4) feature extraction and



12 The Scientific World Journal

Game world AI player

Actuator

Update Sensor Preprocessing

Next action

Learning

(i) Objects
(ii) Video
(iii) Memory
(iv) etc.

(i) Game state 
representation

(i) Dimension reduction
(ii) Feature extraction

(i) Reinforce 
learning

(ii) Supervised 
learning

(iii) Evolutionary 
computation

(iv) etc.
(i) Search/planning
(ii) Generative model

(i) Key input

Update every game frame

Figure 4: Overview of the GVGP decision process and research areas.

dimension reduction, and (5) objective functions. We will
also discuss recent research on each of the respective sub-
problems. Figure 4 presents an overview of GVGP research
areas and their flow of information processing.

5.1. Characteristics of GVGP Problems. First, most video
games are played in real time. In contrast, traditional board
games are based on turn-based playing, and two players
typically have a few seconds to a few minutes for their turn.
Naturally, AI players are also allowed to have some amount
of time for the decision process. However, unlike board
games, video games are based on the real-time processing
of user inputs, and AI processing is accomplished between
rendering frames. Although the number of frames per second
(fps) varies between games, it is typically faster than 15 fps,
with a 60 fps maximum, to provide gamers with seamless
interactions. As a result, the AI may have only 16 to 70ms
per single frame, assuming that it can employ all of its
computational resources. In a multithreading environment,
the AI can work independently of the rendering engine;
however, game contexts change dynamically during the AI’s
thinking time, forcing the decision to be quickly performed.
This means time is one of the most important constraints in
the context of GVGP problems. Like in GGP,MCTS has been
widely adopted for GVGP; however it is characterized by a
very limited number of simulations and depth, which causes
a horizon effect [65].

Second, it is not easy to predict future states in video
games. In traditional board games, most information is open
to both players, and there are a finite number of valid moves
for each piece. These characteristics make it possible to
attempt to predict players’ behaviors in a board game. Alter-
natively, video games have two significant challenges related
to predicting the future outcome of the game. First, they use
randomness to determine the appearance of obstacles and
for NPC behavior [66]. Because the game environment is
changing over time in a random fashion, it is difficult to
predict future states from the current game context. Second,

the number of possible actions per move is often infinite
because the players are able to control units in any direction.
Furthermore, similar to poker games, a part of the opponent’s
information may be hidden. For example, a fog-of-war is
common in many real-time strategy games, and the vision of
players is limited to the areas around allied units. As a result,
a forward model to simulate games can suffer from inherent
inaccuracy.

Finally, the general definition and acquisition of relevant
features for GVGP are not trivial because each game has a
variety of different game objects, whereas the observation
of objects can change with the viewpoint settings. In board
games, the game space is bound to the board and all
the information on the board is open to both players. In
video games, there are many different types of game objects
including, but not limited to, animals, monsters, items, and
natural objects. It is not easy to convert the game objects
in each game scene into vectors of numbers for evaluation
functions. Additionally, there are many different techniques
to support the generation of diverse views of game scenes. For
example, there can be a third-person perspective, zooming
in and out, and so on. Moreover, in some video games
(in particular those protected by commercial laws), the
acquisition of gaming events is not allowed. In this case,
researchers often use screen-capture-based image processing
and direct memory data access to extract information from
scenes.

5.2. GVGP Platforms. Because GVGP is a relatively new
research topic, there are a small number of available plat-
forms for benchmarking purposes. The oldest platform is
ALE (Arcade Learning Environment), which was proposed
by the Alberta games group and uses Atari 2600 games
[62]. Recently, D. Perez et al. developed a GVG-AI plat-
form inspired by ALE, and this platform was used at the
GVGP competition held at the IEEE CIG conference [11]. In
addition, there are open-source platforms such as Learnfun
& Playfun (L&P) [67] and Piglet [68] that use software



The Scientific World Journal 13

(a) Chopper Command (b) Freeway (c) Ms. Pac-Man

Figure 5: Examples of games in the Arcade Learning Environment.

emulators. Although these two platforms have yet to be
described in the literature, their design is similar to that of
ALE.

5.2.1. Arcade Learning Environment. ALE is an open GVGP
platform developed by the Atari 2600 game group in Alberta
(http://www.arcadelearningenvironment.org/). It is based on
Stellar, an Atari 2600 emulator, and, most importantly, AI
programs can be developed for this platform. Atari 2600
was a home video game console released in 1977 and has
more than 500 available games. Among these are traditional
games such as Pac-Man and Space Invaders (Figure 5). The
main advantage of the platform is that it supports older
games released in the early days of the video game industry.
Due to the variety of supported games, ALE is a good
platform for GVGP research. In addition, games can be
simulated by storing the emulator’s memory, registers, and
states. For these reasons, ALE has been used extensively in
GVGP and reinforcement learning research [62, 69–72] and
can be used for search/planning with MCTS and model-
based reinforcement learning. Additionally, the system in this
platform receives 18 action inputs by emulating a joystickwith
one push button. Finally, the AI developer can have video
outputs and memory states from the emulator.

Because the ALE platform is based on an emulator,
there are some restrictions on the interface between the AI
and the console game. Although, there is no restriction on
emulating the inputs, the gaming events themselves must be
interpreted from the raw data, including visual output and
memory data. Image processing (or vision) algorithms can
be applied to a captured two-dimensional screen image to
identify objects and backgrounds. Because this processing
takes time, sophisticated vision algorithms cannot be used to
enhance the accuracy of recognition. As a result, the game-
state data from a console game is uncertain and is of low
resolution with less structured forms.

5.2.2. GVG-AI Competition Platform. The GVG-AI platform
was developed to promote ALE-inspired GVGP. ALE sup-
ports diverse games from Atari 2600, and there have been
successful research initiatives using the platform. However,
successful ALE-based GVGP research is hindered by the
difficulty in extracting game-state data from the raw data.
This was an inevitable problem for the ALE platform because

it was based on game emulation. Although performing
GVGP with raw data is similar to human-like game play,
it significantly increases the problem complexity. On the
other hand, the GVG-AI platform can collect information
on the current game state, such as object instances and
validity checks of actions. Taken together, this allows for
game simulation based on forward models. In this way, this
platform avoids the technical problems of emulator-based
systems and allows researchers to focus primarily on solving
GVGP issues.

In contrast to ALE, GVG-AI utilizes VGDL, which is
similar to the GDL used in GGP [10, 61]. In GGP, GDL is used
to define game rules. Similarly, VGDL can define the rules of
two-dimensional video games. Each VGDL description can
be translated into a game in the GVG-AI platform. Inside
the platform, a VGDL description contains the game logic
required to run the game and all the computational resources
are available to the AI developer, regardless of the VGDL
definition. Specifically, the GVG-AI platform uses a VGDL
JAVA programming language port of the initial PyVGDL
format that was designed as a subset of Python.

The limitations of the GVG-AI platform are that it
supports a limited number of games and that there are some
restrictions on the creation of games. Although it is easy to
define video games using VGDL, there were only 20 such
games available at the 2014 IEEE CIG competition. Relative
to ALE, this is a small number of games that does not cover
the plethora of game genres (Figure 6). To overcome these
shortcomings, there have been efforts to automate game-level
generation using PuzzleScript, which is similar toVGDL [73].
Because VGDL is designed to automatically create games and
generate procedural content, it is expected that the GVG-AI
platform will have more games in the near future [74]. At this
moment, however, VGDL supports only a two-dimensional
grid-style game environment, which hinders the creation
of new types of games. Recent projects have focused on
extending the original VGDL to first-person shooting games
[10].

5.2.3. Learnfun & Playfun and Piglet. There are two addi-
tional platforms, L&P [67] and Piglet [68], which were
developed independently. However, they were not developed
specifically for GVGP or game AI research and are not well-
represented at academic conferences or in journals (although



14 The Scientific World Journal

(a) Alien (b) Butterflies

(c) Frogs

Figure 6: Examples of types of games in the GVG-AI competition platform.

(a) Super Mario Bros (b) Karate Kid (c) Pac-Man

Figure 7: Examples of games available in the Learnfun & Playfun platform.

L&P is partially described in [75]). Instead, these two plat-
forms have been posted on personal blogs, GitHub, and
YouTube. The authors have made the platforms available for
GVGP research, although there is little connection between
them and the foci of academic GVGP research.

Learnfun & Playfun was implemented using a Nintendo
Entertainment System (NES) emulator. The primary goal of
the creator was to design software to play games without
human intervention. As a result, L&P was designed to learn
how to play a game using game-play data without the need for
game-specific knowledge. Although this learning process is
time-intensive, the trainedAI can eventually successfully play
many different types of games. Additionally, L&P automati-
cally determines which variables are consistently increasing
in the memory of the learned data and uses this as a target
function. For instance, although software may be designed
for Super Mario Bros, it is possible that it can also play
other games, includingHudson’s Adventure Island, Pac-Man,

Karate Kid, and Bubble Bobble without significant changes in
the code (Figure 7).

Piglet, which is similar to L&P, is based on a Gameboy
emulator (Figure 8). Its author noted that he referred to the
L&P work while developing Piglet. The main difference is
that the target function in Piglet is based on curiosity and
novelty. Although L&P was designed to increase numbers
corresponding to item counts, scores, and positions to rank
variables for the target function, Piglet plays games in such a
way as to maximize the number of changes in the memory.
This curiosity-based approach (seeking novelty) has been
used to solve deceptive problems [76–79].

5.3. Algorithms for GVGP. In video game AI, the controller
can be seen as an agent with sensors and actuators [65]. It
continuously collects data from the game environment using
logical sensors and makes decisions for actuators. Although
many techniques have been developed for game AI, they



The Scientific World Journal 15

(a) Legend of Zelda (b) Super Mario

Figure 8: Examples of games available in the Piglet platform.

are usually coupled to predetermined target games, making
them more or less game-specific. Because video game AI is
highly dependent on game-specific knowledge, it does not
generalize well to other games without major revisions. This
means that successful techniques used in conventional video
gameAI design are likely to fail when used for GVGPwithout
consideration of “generalization.” As in GGP, it is desirable to
use domain-free knowledge (less dependent on game-specific
knowledge) to train algorithms capable of automatic game
analysis. From this perspective, we can divide the GVGP
problem into three subparts. In this section, we will describe
each subproblem with related works:

(i) Feature extraction and dimension-reduction tech-
niques to improve learning efficiency.

(ii) Search/planning algorithms independent of any
domain knowledge.

(iii) Efficient learning algorithms that can learn new envi-
ronments.

5.3.1. Inputs and Feature Extraction/Reduction. There are dif-
ferent types of inputs available in the GVGP platform. In the
GVG-AI platform, inputs are represented as structured game
objects [80]. These provide an API to the information on
gaming objects, with some restrictions in competition mode.
In this platform, the AI can determine the position, speed,
number of items, number of enemies, and player position
if allowed by the API. Unlike the GVG-AI platform, the
ALE platform is based on emulators and therefore provides
strikingly different inputs: a computer screen image (color
values of pixels) andmemory data. Although this is more like
human visual processing by way of raw-level inputs [81], it
significantly increases the complexity of preprocessing. The
computer screen image input requires a vision algorithm to
segment the gaming object from backgrounds and tricks to
identify the different types of objects (e.g., mines or enemies)
[82]. In addition to the screen inputs, raw memory data
from emulators can be used as an input because they contain
different types of information about the current game state.
One way to evaluate the informative memory is to use the
lexicographic order [67].

The size of the inputs in ALE (i.e., screen images and
memory) is relatively large: the screen resolution is 160 × 210

(33,600 pixels) and thememory has 1024 bits. Because the raw
data is so large, the detection of game objects in this search
space is not a trivial problem. For example, to locate the player
avatar, feature sets are generated by exhaustively enumerating
all single patterns of sizes 1 × 1, 2 × 2, and 3 × 3 [69].
This produces 569,856,000 different feature sets. To address
this complexity problem, researchers have used a tug-of-war
hashing algorithm to reduce the dimensions of the input data.
Alternatively, a different study [70] proposed that the “con-
tingency awareness” concept drawn from cognitive science
to be applied to GVGP. The contingency awareness concept
rests on the premise that the ability to know some aspects of
future observation is under the agent’s control, whereas other
aspects are determined solely by the environment. This is
important in GVGP because it helps identify important areas
of interest, which are defined as contingency revisions by the
authors. This approach was tested using 46 games in ALE
and involved segmenting the input space into several regions,
thereby reducing the amount of information processing.
Similarly, in [71], a large observational spacewas decomposed
into a number of smaller, more manageable subproblems
by factoring the raw inputs using 20 different Atari 2600
games. Recently, Mnih et al. [72] showed promising results
for ALE platform games using deep learning techniques and
the automatic feature extraction of high-dimensional inputs.

5.3.2. Search/Planning Methods. Similar to GGP, MCTS is
one of the most promising techniques in GVGP research.
The GVGP competition, hosted at IEEE CIG 2014, showed
that MCTS is also one of the most popular techniques in
GVGP. In [62], the authors reported that MCTS performed
significantly better than a breadth-first search on the ALE
platform. It is not an easy task to achieve good performance
without domain-specific knowledge. Perez et al. proposed
using a knowledge-based (KB) enhancement of MCTS called
KB Fast-Evo MCTS, which takes advantage of past experi-
ences [80]. They reported that the use of a KB significantly
improved the performance of the algorithm on the GVG-
AI platform. Alternatively, Vafadost developed techniques for
temporal abstraction inside MCTS for the effective construc-
tion of medium/long-term plans on the ALE platform [83].
In this study, the Variable Time Scale (VTS) was shown to be



16 The Scientific World Journal

a promising technique for determining the optimal time scale
for taking each action.

There are several problems with the use of MCTS in
GVGP. The main difficulty is the limitation on the number
of simulations per frame. In the GVG-AI framework, the
controller has approximately 40ms between each frame.
Because the game state is updated at each frame, it is not
practical to wait for multiple time frames to engage in long-
term planning, as it is necessary to respond with one action
per frame. Additionally, waiting increases the inaccuracy of
simulations because the game state is likely changing while
the simulation is running. Another difficulty when applying
MCTS to the GVG-AI framework is the randomness of NPCs
and enemies. Because theMCTS algorithm is based on a large
number of simulations derived from the current game state,
it is essential to have an accurate prediction of future game
states after a finite number of actions. However, there is no
way to accurately predict the future positions of game objects
in video games with regard to randomness (e.g., related to
NPCs andmovement). As a result, MCTSmust use uncertain
predictions for future game states. Finally, the search space of
games is usually extremely high. In traditional board games,
the number of possible game states after a finite number of
actions is determined by the possible valid actions per each
player move (defined as a branching factor). Although the
GVGP platform is based on two-dimensional games, which
have a limited number of valid actions per time frame, the
game states are also being affected by the positions and states
of NPCs and enemies. Moreover, the number of movable
gaming objects per frame is not small (as shown in Figure 6),
and it compounds to cause an exponential growth of possible
states.

Although MCTS has been the most successfully applied
approach in GVGP research, evolutionary algorithms have
also been used to tackle the problem. For example, the
IEEE CIG 2014 GVGP competition featured an MCTS as
well as a simple genetic algorithm (GA) approach. The final
rankings showed that although the GA approach was not as
competitive as MCTS, the GA showed potential. Based on
this result, it is predicted that hybridizing an evolutionary
algorithm with MCTS (e.g., KB Fast-Evo MCTS) will allow
a synergy between the two search techniques [80].

5.3.3. Learning and Adaptation Methods. In learning meth-
ods, the AI controller attempts to learn how to play the game.
In [62, 69], SARSA(𝜆), a traditional technique for model-
free reinforcement learning, was augmented with a linear
function approximation. The parameters of the learning
algorithm were tuned by training on five games and then
tested on 50 games. The goal of the agent was to maximize
the accumulated award by observing action-reward loops.
The authors reported that the learning approach showed
potential on the ALE platform, but there was room for
performance improvement. Additionally, during the learning
process, different types of feature representation methods
were compared using Atari 2006’s screen and memory. The
conclusion was that there is no dominant learning method
that can cover all the games. Recently, Mnih et al. proposed

the use of deep neural networks for reinforcement learning
problems on the ALE platform [72].

In a model-based approach, the goal of learning is to find
a model that properly selects the next action based on the
current game state. Recently, an evolutionary artificial neural
network developed for GVGP incorporated a large number
of neurons and connections [82, 84]. In [82], the authors
found that Hypercube-basedNeuroEvolution of Augmenting
Topologies (HyperNEAT; an evolutionary neural network),
which can handle high-dimensional inputs, was promising
for two games on the ALE platform. The authors prepro-
cessed game screens using image-processing techniques to
generate inputs for the neural networks, which, in turn,
returned key actions. In [84], the authors showed compre-
hensive experimental results of different types of evolutionary
neural networks (or NeuroEvolution, NE). They compared
Conventional NE, Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) NE, Evolutionary of Network Topology
and Weights (NEAT), and HyperNEAT on 61 test games.
They found that direct encoding algorithms (such as NEAT)
outperformed the other methods on low-dimensional, pre-
processed objects, and noise-screen representations but the
indirect encoding method, HyperNEAT, was promising for
fully generalized raw-pixel representations.

5.4. Relationships between GGP and GVGP. Technically
speaking, GDL could be used for video games. It allows non-
determinism (in the GDL-II variant), simultaneous actions,
and any number of players. However, it was not tailored for
the application in video games and there are better solutions
for this task.

The primary reasons of why GDL is not used in GVGP
are as follows:

(i) Complexity of defining sophisticated video games,
especially real-time ones with continuous (frequently
occurring) events: such definitions would end up
in GDL being very bloated and unnatural. They
would typically require extensive amounts of rules,
lots of artificial timer facts which are counterintuitive
and difficult to read by humans, and many state
updates only with no-op (no operation) moves from
players because, in video games, states often change
regardless of the player’s actions. Such complex and
extremely lengthy descriptions are difficult to main-
tain or even understand by humans.

(ii) Complexity of simulating video games in GDL: the
GDL interpreters are relatively slow. Video games
typically require fast responses from the players (e.g.,
40ms). Given the fact that descriptions inGDLwould
already extremely be complex in the case of real-time
video games, the available time could be even too low
to carry out a single simulation of a video game in
GDL. There are no prospects that this could change
in any foreseeable future.

The distinction between GGP and GVGP is done already in
formulation of goals in both frameworks.Theywere designed
to work in parallel, rather than interfere or extend each other.



The Scientific World Journal 17

GGP focuses on combinatorial mind games which may have
complex rules as long as they retain the discrete nature. In
such games, a state is updated much less frequently than
in GVGP and usually as a direct result of the actions taken
by players. GVGP games may even have simpler structure,
but the setup is more complex as the games are played
with a much faster pace and events causing the state update
may occur at any time. Therefore, GVGP needs a dedicated
framework optimized for this kind of usage.

Thanks to the optimal usage of GDL and GVGL, the
respective competitions (GGP andGVGP)may operate using
a vastly different set of games which differ in the properties
mentioned in the previous paragraph:

(i) GGP: mostly discrete combinatorial nature, the game
state usually changing to players’ actions, and typi-
cally 10+ seconds for a move

(ii) GVGP: mostly continuous nature, frequent incre-
mental changes of the game state, and typically
40+ms for a move

Although two games, which can be considered video ones,
that is, Pac-Man and Street Fighter, have been defined in
GDL, they were significantly simplified compared to their
original counterparts.

6. Benchmarking and Competitions

In GGP, the official competition [7, 85] plays an important
role in encouraging and promoting research; naturally, it
is used for benchmarking. Since 2005, the competition has
been associated and colocated with either the Association
for the Advancement of Artificial Intelligence (AAAI) or
the International Joint Conference on Artificial Intelligence
(IJCAI).Thenumber of participants is usually between 10 and
18. The tournament consists of two phases. The preliminary
phase is open to all participants, and the top eight teams
advance to the finals (except for 2014, when the top 12
advanced). In the finals, the best player is chosen in a double-
elimination playoff format. At each phase, different types of
games are used. For example, the preliminary phase may use
single-agent, two-player, and multiplayer games. However,
for the finals, only two-player games have been used so far. In
the final stage, each match between two players is played in
a best-of-three setting. The competition includes turn-based
or simultaneousmove and zero-sumor non-zero-sumgames,
including anything from simple puzzles to complex chess-
like games. Some variants of popular board games have been
used, such as checkers played on a cylindrical board or Tic-
Tac-Toe played in parallel on multiple boards.

The GGP competition has shown steady progress in
the performance of the strongest program and has evolved
to incorporate human versus machine matches (known as
carbon versus silicon) after the official tournament phase.
Except for the first year of the event, the machines have
outperformed human players. After several years of competi-
tion, progress has become apparent as the new players can
easily beat the old players. There are several sophisticated
approaches implemented in the GGP competition, such as

game-independent heuristics (mobility, inverse mobility, and
goal proximity), learningweights on game-playing heuristics,
MCTS, and structural analysis and compilation [85]. In
2013, a General Game Playing course was offered online by
COURSERA [86], which has led to a significant increase in
competition participants.

The success of the annual GGP competition has inspired
theGVGP community to start a similar event in 2014 [11].The
GVGP competition is based on the VGDL and provides 10
sample games for training purposes. An additional 10 games
each are used for validation and testing stages. However,
these 20 games are not open to the public until the day of
competition. Participants are allowed to test their algorithms
using the 10 validation games to obtain scores, but the VGDL
files themselves are not available. The VGDL is designed for
modeling two-dimensional grid environments with the pro-
tagonist, nonplayer characters, obstacles, and other objects;
Pac-Man and Space Invaders are examples of games that can
be modeled by VGDL. The VGDL consists of the following
components:

(i) Sprite Set: all available sprites for the games (parame-
ters and display settings are also included).

(ii) Level Mapping: relationships between characters and
sprites.

(iii) Interaction Set: specification of events when two
sprites collide in the game.

(iv) Termination Set: end condition of the game.

Because the VGDL is not visible to the AI in the validation
and testing stage, it is not easy to initially understand the
goal and objectives of a game. As game play progresses, the
AI controller must determine the goal of the game, how to
increase the controller’s scores, the events that occur when
two sprites collide, and the nature of the sprites in the
game. The organizers provide four different types of example
controllers: random, one-step look ahead, genetic algorithm,
and MCTS. Because they are allowed only about 40ms per
frame, it is important to efficiently simulate future game
states.

In the 2014 competition, 14 participants submitted their
entries. For comparison, the four example controllers were
included in the evaluation. The best AI player was ranked
first in five in ten hidden test games. Based on the description
of the winner, it used “an open loop” tree search to build
a tree representing sequences of actions. The open loop
means that no state is stored in the tree. The UCB (Upper
Confidence Bounds) formula introduced a “taboo bias”
penalty for actions leading to avatar positions visited in the
recent past. Also in the 2014 competition, the two best players
outperformed the sample MCTS. Table 3 summarizes the
players, scores, ranks, and the techniques used at the IEEE
CIG 2014 competition.

To evaluate AI, organizers executed 10 games with five
different levels. In total, this yielded 500 games per AI (500
= 5 × 10 × 10). To rank the AIs, the organizers used the (1)
number of victories, (2) total points, and (3) elapsed time
to compete levels. The number of victories was the most
important factor, but the total number of points was used as



18 The Scientific World Journal

Table 3: Summary of entries in the IEEE CIG 2014 competition.

Rank Entry name Total score Approach

1 Adrienctx 158 (i) Open loop tree search with UCB
(ii) Taboo bias

2 JinJerry 148 (i) Multistep look forward
(ii) Heuristics

3 sampleMCTS
(sample) 99 MCTS

4 Shmokin 77 (i) MCTS
(ii) Hill climbing

5 Normal MCTS 68 MCTS
6 Culim 61 Online Q-learning
7 MMbot 59 MCTS
8 TESTGAG 49 GA (Genetic Algorithm)
9 Yraid 49 RBS (Rule based System) with GA

10 T2Tompson 47
(i) Steepest-ascent Hill Climbing
(ii) Random move
(iii) Horizon capped A∗ search

11 MnMCTS 47 MCTS

12 sampleGA
(sample) 43 GA

13 IdealStandard 39 (i) Find all nonlethal sprites by simulation
(ii) Visit nonlethal sprite randomly

14 random
(sample) 35 Random move

15 Tichau 30

16 Sampleonesteplookahead
(sample) 17 One step look ahead

17 levis501 11 Multistep look ahead
18 LCU 14 4

a tiebreaker in cases of a draw. Each AI received a point score
based on its ranking: the first-place entry received 25 points,
the second-place entry received 18 points, and the third-place
entry received 15 points; the entries in lower places received
12, 10, 8, 6, 4, and 2 points and 1 point, respectively. Entries
ranked lower than 10th received zero points.

7. Challenges

Despite significant development of GGP and GVGP domains
in recent years there are still many open questions and chal-
lenging issues which are worth considering and interesting
research topics. Some of them, chosen based on the subjective
preferences of the authors, are listed below.

Human-Like Playing. Cognitively-plausible and human-like
playing [3] has been a challenge in AI which is still unsolved.
A majority of the top players use the MCTS algorithm which
can be considered a refined brute-force approach relying on
a high number of simulations.TheMCTS-based players tend
to play many games in a similar way which can be spotted
and exploited by a human player. Extensive calculations are
rarely involved in human-like playing. Instead, we rely on
intuition, creativity, experience, and detecting visual patterns

while playing [3, 5]. Bringing all these four concepts to GGP
is a grand challenge. Tackling intuition could be started from
a robust method of focusing the machine (simulations) only
on certain actions and discarding unpromising ones very
quickly. Detection of visual patterns could be started off by a
method of an automatic visualization of game states in GGP.

Opponent Modeling. Opponent modeling is an important
asset of game-playing programs and the realization of this
concept poses a challenge in many games. Naturally, a proper
opponent modeling is crucial to games in which there are
many iterations of the same game against the same opponents
such as Poker [87]. But it is more than that; the tree search
algorithms quietly assume some kind of (usually rational)
opponent’s behavior. Having a proper opponents’ model, the
GGPagents could prioritize exploration of certain parts in the
game tree associated with actions more likely to be played by
the opponents and have the better assessment of these states.
Knowing a profile of an opponent could also alter the strategy
of our player. So far, there had been only a limited success in
implementing this concept in GGP.

Game Description and Representation. The use of GDL as
a game-defining framework makes certain approaches pro-
hibitive. Firstly, simulations of games written in GDL are



The Scientific World Journal 19

slow because of several reasons. Some constructions such as
math expressions including very basic arithmetic, ordered
data types, and loops are not part of the language and have to
be simulated implicitly. Secondly, a suboptimal performance
of GDL is a price to pay for its universality. Because of
this universality, a GDL description contains no information
about the game except for the way of computing the initial
state, legal moves, state updates, and verification of whether
the state is terminal and if so what are the goal values for
the players in that state. There are no clues about what kind
of objects constitute the state or what does a particular fact
mean. Additionally, there is no way to put any metadata
in the GLD game description. Furthermore, while a GDL
game description can be easily used to formal simulation of a
game, it is almost impossible, in a general case, to detect what
the game is about and which are its crucial, underpinning
concepts. On the other hand, a majority of successful game-
dedicated programs (e.g., in chess, bridge, or go) dwell on the
game-related concepts.

We would like to pose three challenges in this area:

(i) To replace GDL by a more game-oriented (while still
general) description language.

(ii) To come upwith an automatic way of translating rules
written in GDL to a more efficient representation in
terms of performance and access to knowledge.

(iii) To design a method of discovering game-related
objects in a game written in GDL in order to build
the internal game representation.

Transfer Learning. Transfer learning means reusing knowl-
edge learned while playing one game in playing another
game. In GGP, this concept can be tackled in the following
three ways:

(a) Changing the GGP specification to include a unique
name in the GDL description: in this way, transfer
learning between matches of the same game could be
naturally implemented.

(b) Performing automatic mapping of equivalent games
(even if the descriptions are obfuscated, the order
of rules is changed, etc.): such idea was pursued
in [88] by means of automatic domain mapping
from a formal description of a game, which was
consequently used to transfer an evaluation function
between games.

(c) Retaining theGGP specification but still enable trans-
fer learning: to this end it would be necessary to
extract universal high-level concepts existing inmany
games (to enable transfer) and design algorithms
which operate on them (to enable learning andusage).

Transfer learning can speed up the learning process as
players would not have to learn from scratch. It could
also reveal insights about similarities between games which
would be especially useful for game descriptions related to
or inspired by real-world problems. The concept of transfer
learning clearly overlaps with human-like playing as humans

intuitively transfer game-playing experience between similar
games.

The Use of Computational Intelligence. Computational Intelli-
gence [89] encompasses variety of methods which are adap-
tive and general and can be used in gameswithout any a priori
knowledge. Among them, most notably, neural networks and
a rich family of metaheuristics seem to be a perfect choice for
multigame playing. However, CI-based methods have not yet
hadmuch success inGGP.Theachievements andperspectives
as of 2010 can be found in [90]. Probable reasons why the
CI algorithms are not fuelling the state-of-the-art players are
the limitations of GDL and relatively short time available for
learning in the GGP protocol. On a general note, CI-based
learning methods are often too slow even with specialized
game engines. The lack of game-related features present in
GDL also hampers application of many CI methods. Such
features could, in principle, be used as an input to a neural
network or expressed in the form of genomes in evolutionary
approaches.

While GDL shortcomings generally hinder the efficient
use of CI methods in competitive GGP, we believe that
multigame playing (in the form of GGP or another) is,
nonetheless, one of the grand challenges for CI/AI [3, 5, 31].

Technical Challenges. Improving the official General Game
Playing Competition has been a constant challenge for the
organizers.The community needs new games, higher number
of unbiased games (with equal chances of winning for
all players), a better communication protocol (perhaps not
requiring participants to host their players as they were
servers), and finally a way to attract more participants.

The MCTS algorithm used in GGP could be improved
further. In particular, the algorithm could be tweaked online
to better suit the currently played game and also use some
knowledge discovered in this game. Better parallelization
schemes, preferably adjusted online to the played game, and
faster inference engines are relevant technical challenges as
well.

Further Investigation on Video Game GGP. Recently, the
GGP for video games has been newly introduced to the
computational intelligence and games society. It is similar to
traditional GGP research on board games but includes video
games, more challenging and close to real-world commercial
games. Because it is quite new research area, there is very
small number of publications available so far compared
to GGP. However, there are very interesting fundamental
building blocks for future successful research including
GVGP platforms, VGDL, and GVGP competitions. The next
problem is to define more useful GVGP platforms, extension
of VGDL for complex video games, automatic creation of
video games using VGDL, cross-fertilization between GGP
and GVGP research, and application to commercial product.

8. Summary and Conclusions

In this survey, we have listed recent advances in GGP since
2011. Although we cover just four years, there has been



20 The Scientific World Journal

big progress related to MCTS, GVGP, and competitions
in this time frame. In the GGP research, there have been
successful papers on hybridization of game-independent
search/planning/heuristics and knowledge extraction from
game playing. The boundary of GGP has been expanded to
video games by the introduction of emulator-based platforms
(e.g., ALE) and VGDL-based platforms (e.g., GVG-AI). The
introduction of GGP to video games raised several new
challenges: what are the important inputs from video games
(memory or screen visual inputs)? Which GGP techniques
remain successful for GVGP? A new challenge is also related
to the invention of VGDL and a variant of GGP competition
dedicated to video games (GVGP). Successful approaches to
GVGP revealed important new insight on the understanding
of GGP for video games. They can give useful advancement
in engineering and ideas for cognitive science to understand
human’s generalization ability when playing games.

Compared to the GGP competition, which was initiated
in 2005, the GVGP competition is at quite an early stage of
development (it is just one year old as of 2014). The competi-
tion organizers have not yet created enough new video games
and, therefore, the expression of the VGDL is still limited.
Also, there are notmuch education resources for GVGP com-
petition as opposed to the GGP competition. For the latter,
there is a massively online open course (MOOC) available.
Nevertheless, the progress in GVGP field is clearly visible: a
new game description language (VGDL) was specified and
several platforms, hobby-style research works, and media
exposure (deep mind [72] acquired by Google company)
appeared recently. Lately, a group of leading researchers in
GVGP had ameeting at Dagstuhl in Germany [9].We believe
that the field will soon become one of the most important
areas of the game AI research.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was supported by the National Research Founda-
tion of Korea (NRF) grant funded by the Korean government
(MSIP) (2013 R1A2A2A01016589) and by the National Sci-
ence Centre in Poland, Grant no. DEC-2012/07/B/ST6/01527.
M. Świechowski thanks the Foundation for Polish Sci-
ence under International Projects in Intelligent Computing
(MPD) and The European Union within the Innovative
Economy Operational Programme and European Regional
Development Fund.

References

[1] F.-H. Hsu, “IBM’s deep blue chess grandmaster chips,” IEEE
Micro, vol. 19, no. 2, pp. 70–81, 1999.

[2] J. Schaeffer, N. Burch, Y. Bjornsson et al., “Checkers is solved,”
Science, vol. 317, no. 5844, pp. 1518–1522, 2007.

[3] J. Mańdziuk, “Towards cognitively plausible game playing
systems,” IEEE Computational Intelligence Magazine, vol. 6, no.
2, pp. 38–51, 2011.

[4] C. Clark and A. Storkey, “Teaching deep convolutional neural
networks to play go,” http://arxiv.org/abs/1412.3409.

[5] J. Mańdziuk, Knowledge-Free and Learning-Based Methods in
Intelligent Game Playing, vol. 276 of Studies in Computational
Intelligence, Springer, 2010, edited by: J. Kacprzyk.

[6] D. B. Fogel, T. J. Hays, S. L. Hahn, and J. Quon, “The Blondie25
chess program competes against fritz 8.0 and a human chess
master,” in Proceedings of the IEEE Symposium on Computa-
tional Intelligence and Games, pp. 230–235, May 2006.

[7] M. Genesereth, N. Love, and B. Pell, “General game playing:
overview of the AAAI competition,” AI Magazine, vol. 26, no.
2, pp. 62–72, 2005.

[8] N. Love, T. Hinrichs, and M. Genesereth, “General game play-
ing: game description language specification,” Stanford Logic
Group LG-2006-01, Computer Science Department, Stanford
University, Stanford, Calif, USA, 2006.

[9] J. Levine, C. B. Congdon, M. Ebner et al., “General video game
playing,” inProceedings of theDagstuhl Seminar onArtificial and
Computational Intelligence in Games, pp. 1–7, 2013.

[10] T. Schaul, “An extensible description language for video games,”
IEEE Transactions on Computational Intelligence and AI in
Games, vol. 6, no. 4, pp. 325–331, 2014.

[11] http://gvgai.net/.
[12] http://games.stanford.edu/index.php/ggp-competition-aaai-14.
[13] C. B. Browne, E. Powley, D. Whitehouse et al., “A survey

of Monte Carlo tree search methods,” IEEE Transactions on
Computational Intelligence and AI in Games, vol. 4, no. 1, pp.
1–49, 2012.

[14] P. Kissmann and S. Edelkamp, “Gamer, a general game playing
agent,” Künstliche Intelligenz, vol. 25, no. 1, pp. 49–52, 2011.

[15] H. Finnson andY. Björnsson, “Game-tree properties andMCTS
performance,” in Proceedings of the 11th IJCAI Workshop on
General Game Playing (GIGA ’11), pp. 23–30, Barcelona, Spain,
2011.

[16] S. F. Gudmundsson and Y. Björnsson, “MCTS: improved action
selection techniques for deterministic games,” in Proceedings of
the IJCAI-11 Workshop on General Game Playing (GIGA ’11), pp.
23–30, Barcelona, Spain, July 2011.

[17] S. F. Gudmundsson and Y. Björnsson, “Sufficiency-based selec-
tion strategy forMCTS,” in Proceedings of the 23rd International
Joint Conference on Artificial Intelligence (IJCAI ’13), pp. 559–
565, August 2013.

[18] H. Finnsson, “Generalized Monte-Carlo tree search extensions
for general game playing,” in Proceedings of the 26th AAAI
Conference on Artificial Intelligence, pp. 1550–1556, July 2012.

[19] J. Clune, “Heuristic evaluation functions for general game
playing,” in Proceedings of the AAAI Conference on Artificial
Intelligence, pp. 1134–1139, July 2007.

[20] H. Finnsson and Y. Björnsson, “CadiaPlayer: search-control
techniques,” Künstliche Intelligenz, vol. 25, no. 1, pp. 9–16, 2011.

[21] S. Gelly andD. Silver, “Monte-Carlo tree search and rapid action
value estimation in computer Go,”Artificial Intelligence, vol. 175,
no. 11, pp. 1856–1875, 2011.

[22] J. Mehat and J.-N. Vittaut, “Online adjustment of tree search for
GGP,” in Proceedings of the IJCAI-13Workshop on General Game
Playing (GIGA ’13), pp. 63–69, Beijing, China, August 2013.



The Scientific World Journal 21

[23] M. J. W. Tak, M. H. M. Winands, and Y. Björnsson, “N-grams
and the last-good-reply policy applied in general game playing,”
IEEE Transactions on Computational Intelligence and AI in
Games, vol. 4, no. 2, pp. 73–83, 2012.

[24] M. Tak, M. Winands, and Y. Björnsson, “Decaying simulation
strategies,” in Proceedings of the 13th IJCAIWorkshop on General
Game Playing (GIGA ’13), pp. 23–30, Beijing, China, August
2013.

[25] M. Świechowski and J. Mańdziuk, “Self-adaptation of playing
strategies in general game playing,” IEEE Transactions on
Computational Intelligence and AI in Games, vol. 6, no. 4, pp.
367–381, 2014.

[26] S. Schiffel, Knowledge-based general game playing [Ph.D. thesis],
Dresden University of Technology, 2011.

[27] J. Mańdziuk and M. Świechowski, “Generic heuristic approach
to general game playing,” in SOFSEM 2012: Theory and Practice
of Computer Science, vol. 7147 of Lecture Notes in Computer
Science, pp. 649–660, Springer, Berlin, Germany, 2012.

[28] M. Tak,M. Lanctot, andM.Winands, “Monte Carlo tree-search
variants for simultaneous move games,” in Proceedings of the
IEEE Conference on Computational Intelligence and Games (CIG
’14), pp. 232–239, IEEE Press, August 2014.

[29] S. Tong, Roulette wheel selection game player [M.S. thesis],
Macalester College, 2013.

[30] T. Vodopivec and B. Ster, “Enhancing upper confidence bounds
for trees with temporal difference values,” in Proceedings of the
IEEE Conference on Computational Intelligence and Games (CIG
’14), pp. 1–8, August 2014.

[31] J.Mańdziuk, Y. S.Ong, andK.Walędzik, “Multi-game playing—
a challenge for computational intelligence,” in Proceedings of the
IEEE Conference on Computational Intelligence for Human-Like
Intelligence (CHILI ’13), pp. 17–24, April 2013.

[32] K. Walędzik and J. Mańdziuk, “Multigame playing by means
of UCT enhanced with automatically generated evaluation
functions,” in Artificial General Intelligence: 4th International
Conference, AGI 2011, Mountain View, CA, USA, August 3–6,
2011. Proceedings, vol. 6830 ofLectureNotes inComputer Science,
pp. 327–332, Springer, Berlin, Germany, 2011.

[33] K. Walędzik and J. Mańdziuk, “An automatically generated
evaluation function in general gameplaying,” IEEETransactions
on Computational Intelligence and AI in Games, vol. 6, no. 3, pp.
258–270, 2014.

[34] D.Michulke, “Heuristic interpretation of predicate logic expres-
sions in general game playing,” in Proceedings of the IJCAI-
11 Workshop on General Game Playing (GIGA ’11), pp. 61–68,
Barcelona, Spain, July 2011.

[35] M. Kirci, N. Sturtevant, and J. Schaeffer, “A GGP Feature
Learning Algorithm,” Künstliche Intelligenz, vol. 25, no. 1, pp.
35–42, 2011.

[36] X. Sheng and D. Thuente, “Decision tree learning in general
game playing,” in Proceedings of the 11th IASTED International
Conference on Artificial Intelligence and Applications (AIA ’11),
pp. 192–199, February 2011.

[37] D. Michulke and S. Schiffel, “Distance features for general
game playing agents,” in Proceedings of the 4th International
Conference on Agents and Artificial Intelligence (ICAART ’12),
pp. 127–136, February 2012.

[38] D. Michulke and S. Schiffel, “Admissible distance heuristics for
general games,” Agents and Artificial Intelligence, vol. 358, pp.
188–203, 2013.

[39] D. Michulke, Evaluation functions in general game playing
[Ph.D. thesis], Dresden University of Technology, 2012.

[40] D. Michulke, “Neural networks for high-resolution state eval-
uation in general game playing,” in Proceedings of the IJCAI-
11 Workshop on General Game Playing (GIGA ’11), pp. 31–37,
Barcelona, Spain, July 2011.

[41] T. R. Hinrichs and K. D. Forbus, “Transfer learning through
analogy in games,” AI Magazine, vol. 32, no. 1, pp. 70–83, 2011.

[42] M.Thielscher, “A general game description language for incom-
plete information games,” inProceedings of the AAAIConference
on Artificial Intelligence, pp. 994–999, July 2010.

[43] M. Świechowski and J. Mańdziuk, “Prolog versus specialized
logic inference engine in General Game Playing,” in Proceedings
of the IEEEConference onComputational Intelligence andGames
(CIG ’14), pp. 36–43, IEEE, August 2014.

[44] Y. Björnsson and S. Schiffel, “Comparison of GDL reasoners,” in
Proceedings of the IJCAI-13 Workshop on General Game Playing
(GIGA ’13), pp. 55–62, Beijing, China, August 2013.

[45] P. Kissmann and S. Edelkamp, “Instantiating general games
using prolog or dependency graphs,” in Proceedings of the
German Conference on Artificial Intelligence, pp. 255–262, 2010.

[46] A. Saffidine and T. Cazenave, “A forward chaining based game
description language compiler,” in Proceedings of the IJCAI-
11 Workshop on General Game Playing (GIGA ’11), pp. 69–75,
Barcelona, Spain, July 2011.

[47] M. Schofield andA. Saffidine, “High speed forward chaining for
general game playing,” in Proceedings of the IJCAI-13 Workshop
on General Game Playing (GIGA ’13), pp. 31–38, Beijing, China,
August 2013.

[48] J. Kowalski and M. Szykuła, “Game description language com-
piler construction,” inAI 2013: Advances inArtificial Intelligence:
26th Australasian Joint Conference, Dunedin, New Zealand,
December 1–6, 2013. Proceedings, vol. 8272 of Lecture Notes in
Computer Science, pp. 234–245, Springer, 2013.

[49] M. Świechowski and J. Mańdziuk, “Fast interpreter for logical
reasoning in general game playing,” Journal of Logic and
Computation, 2014.

[50] T. Cerexhe, D. Rajaratnam, A. Saffidine, and M. Thielscher, “A
systematic solution to the (de-)composition problem in general
game playing,” in Proceedings of the 21st European Conference
on Artificial Intelligence (ECAI ’14), pp. 195–200, Prague, Czech
Republic, August 2014.

[51] J. Romero, A. Saffidine, andM.Thielscher, “Solving the inferen-
tial frame problem in the general game description language,”
in Proceedings of the 28th AAAI Conference on Artificial Intelli-
gence, pp. 515–521, AAAI Press, July 2014.

[52] D. Spies, “Stratified logic program updates for general game
playing,” in Proceedings of the IJCAI-13 Workshop on General
Game Playing (GIGA ’13), pp. 71–77, 2013.

[53] Ł. Kaiser and Ł. Stafiniak, “First-order logic with counting for
general game playing,” in Proceedings of the IJCAI-11 Workshop
on General Game Playing (GIGA ’11), pp. 85–90, August 2011.

[54] Ł. Kaiser and Ł. Stafiniak, “Translating the game description
language to toss,” in Proceedings of the IJCAI-11 Workshop on
General Game Playing (GIGA ’11), pp. 91–98, Barcelona, Spain,
July 2011.

[55] M. Thielscher, “Translating general game descriptions into an
action language,” in Logic Programming, Knowledge Representa-
tion, and Nonmonotonic Reasoning, vol. 6565 of Lecture Notes in
Computer Science, pp. 300–314, Springer, Berlin, Germany, 2011.

[56] T. Rauber, P. Kissmann, and J. Hoffmann, “Translating single-
player GDL into PDDL,” in KI 2013: Advances in Artificial
Intelligence, vol. 8077 of Lecture Notes in Computer Science, pp.
188–199, Springer, Berlin, Germany, 2013.



22 The Scientific World Journal

[57] J. Méhat and T. Cazenave, “A parallel general game player,”
Künstliche Intelligenz, vol. 25, no. 1, pp. 43–47, 2011.

[58] J. Méhat and T. Cazenave, “Tree parallelization of ary on a
cluster,” in Proceedings of the IJCAI-11 Workshop on General
Game Playing (GIGA ’11), pp. 39–43, Barcelona, Spain, July 2011.

[59] M. Möller, M. Schneider, M.Wegner, and T. Schaub, “Centurio,
a general game player: parallel, java- andASP-based,”Künstliche
Intelligenz, vol. 25, no. 1, pp. 17–24, 2011.

[60] G. A. Gibson and R. Van Meter, “Network attached storage
architecture,” Communications of the ACM, vol. 43, no. 11, pp.
37–45, 2000.

[61] T. Schaul, “A video game description language for model-based
or interactive learning,” in Proceedings of the IEEE Conference
on Computational Intelligence in Games (CIG ’13), pp. 1–8, IEEE,
August 2013.

[62] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The
Arcade Learning Environment: an evaluation platform for
general agents,” Journal of Artificial Intelligence Research, vol. 47,
pp. 253–279, 2013.

[63] Stella: A Multi-Platform Atari 2600 VCS Emulator, http://stella
.sourceforge.net/.

[64] M. Ebner, J. Levine, S. M. Lucas, T. Shaul, T. Thompson, and
J. Togelius, “Towards a video game description language,” in
Proceedings of the Dagstuhl Seminar on Artificial and Compu-
tational Intelligence in Games, 2013.

[65] S. Russell and P. Norvig, Artificial Intelligence: A Modern
Approach, Prentice Hall, Upper Saddle River, NJ, USA, 3rd
edition, 2009.

[66] R. Thawonmas and T. Ashida, “Evolution strategy for opti-
mizing parameters in Ms Pac-Man controller ICE Pambush
3,” in Proceedings of the IEEE Symposium on Computational
Intelligence and Games (CIG ’10), pp. 235–240, August 2010.

[67] T. Murphy VII, “Learnfun & Playfun: A General Technique
for Automating NES Games,” http://www.cs.cmu.edu/∼tom7/
mario/.

[68] D. Shumway, Piglet—A LUA Driven AIThat Plays and Streams
Classic Gameboy Color Games, http://danshumway.github.io/
Piglet/.

[69] M. G. Bellemare, J. Veness, and M. Bowling, “Sketch-based
linear value function approximation,” in Proceedings of the
Advances in Neural Information Processing Systems 25 (NIPS
’12), pp. 2213–2221, 2012.

[70] M. G. Bellemare, J. Veness, and M. Bowling, “Investigating
contingency awareness using Atari 2600 games,” in Proceedings
of the 26th Conference on Artificial Intelligence (AAAI ’12), pp.
864–871, July 2012.

[71] M. Bellemare, J. Veness, and M. Bowling, “Bayesian learning of
recursively factored environments,” in Proceedings of the 30th
International Conference on Machine Learning (ICML ’13), pp.
1211–1219, June 2013.

[72] V. Mnih, K. Kavukcuoglu, D. Silver et al., “Playing atari with
deep reinforcement learning,” in Proceedings of the Deep Learn-
ing, Neural Information Processing Systems Workshop, 2013.

[73] C.-U. Lim andD. F. Harrell, “An approach to general videogame
evaluation and automatic generation using a description lan-
guage,” in Proceedings of the IEEE Conference on Computational
Intelligence and Games, (CIG ’14), pp. 1–8, IEEE, August 2014.

[74] G. A. B. Barros and J. Togelius, “Exploring a large space of small
games,” in Proceedings of the IEEE Conference on Computational
Intelligence and Games (CIG ’14), pp. 1–2, August 2014.

[75] T. Murphy, “The First Level of Super Mario Bros. is Easy with
Lexicographic,” 2013, http://www.cs.cmu.edu/∼tom7/mario/
mario.pdf.

[76] F. Kaplan and V. V. Hafner, “Information-theoretic framework
for unsupervised activity classification,”Advanced Robotics, vol.
20, no. 10, pp. 1087–1103, 2006.

[77] P.-Y. Oudeyer, F. Kaplan, and V. V. Hafner, “Intrinsic motivation
systems for autonomous mental development,” IEEE Transac-
tions on Evolutionary Computation, vol. 11, no. 2, pp. 265–286,
2007.

[78] J. Schmidhuber, “Developmental robotics, optimal artificial
curiosity, creativity, music, and the fine arts,” Connection Sci-
ence, vol. 18, no. 2, pp. 173–187, 2006.

[79] J. Lehman and K. O. Stanley, “Abandoning objectives: evolution
through the search for novelty alone,” Evolutionary Computa-
tion, vol. 19, no. 2, pp. 189–222, 2011.

[80] D. Perez, S. Samothrakis, and S. Lucas, “Knowledge-based fast
evolutionaryMCTS for general video gameplaying,” inProceed-
ings of the IEEE Conference on Computational Intelligence and
Games (CIG ’14), pp. 1–8, August 2014.

[81] Dev Blog: Making a More Human Bot, http://na.league-
oflegends.com/en/news/game-updates/gameplay/dev-blog-
making-more-human-bot.

[82] M. Hausknecht, P. Khandelwal, R. Miikkulainen, and P. Stone,
“HyperNEAT-GGP: a hyperNEAT-based atari general game
player,” in Proceedings of the 14th International Conference on
Genetic and Evolutionary Computation (GECCO ’12), pp. 217–
224, July 2012.

[83] M. Vafadost, Temporal Abstraction in Monte Carlo Tree Search,
University of Alberta, 2013.

[84] M. Hausknecht, J. Lehman, R. Miikkulainen, and P. Stone, “A
neuroevolution approach to general atari game playing,” IEEE
Transactions on Computational Intelligence and AI in Games,
vol. 6, no. 4, pp. 355–366, 2014.

[85] M. Genesereth and Y. Björnsson, “The international general
game playing competition,”AIMagazine, vol. 34, no. 2, pp. 107–
111, 2013.

[86] General Game Playing, Coursera, 2013, https://www.coursera
.org/course/ggp/.

[87] D. Billings, A. Davidson, J. Schaeffer, and D. Szafron, “The
challenge of poker,” Artificial Intelligence, vol. 134, no. 1-2, pp.
201–240, 2002.

[88] G. J. Kuhlmann, Automated domain analysis and transfer
learning in general game playing [Ph.D. thesis], University of
Texas at Austin, 2010.

[89] W. Duch and J. Mańdziuk, Eds., Challenges for Computational
Intelligence, vol. 63 of Studies in Computational Intelligence, (J.
Kacprzyk Series Editor), Springer, 2007.

[90] K. Walędzik and J. Mańdziuk, “CI in general game playing—
to date achievements and perspectives,” in Artifical Intelligence
and Soft Computing: 10th International Conference, ICAISC
2010, Zakopane, Poland, June 13–17, 2010, Part II, vol. 6114
of Lecture Notes in Computer Science, pp. 667–674, Springer,
Berlin, Germany, 2010.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


