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Abstract—This article aims at closing a gap between the re-
search on solving theoretical packing and stock cutting problems
and the research on strictly practical aspects of timber sawing.
In order to do that, the article proposes a simple model of a
timber log and its sawing procedure, solves a set of packing
and stock cutting problems with the usage of a Particle Swarm
Optimization based algorithm, and promotes a publicly available
benchmark data set for the solved problem.

In this article a problem of packing a set of rectangular shapes
into a circular containers is formulated and solved with the us-
age of Particle Swarm Optimization algorithm, one-dimensional
solutions dictionary and a greedy insertion heuristic for two-
dimensional problem. The optimization problem is motivated by
the sawn timber production and models the process of cutting
out a stock of sawn timber out of the sets of tree logs.

Proposed algorithm provides results of a stable quality with
a reasonably high yield (low material waste). Quality of results
obtained for different user parameter settings gives also some
insight about the trade-off between the value of produced stock,
material loss, number of created product types and possible
production process costs (which are related to the number of
allowed rotations of the input source material).

I. INTRODUCTION

Solving packing and stock cutting problems allows for
efficient usage of space for storage and usage of input material
in producing output resources. Both the packing and stock
cutting problems are closely related, but differ in optimization
goals. The goal of the packing problem is to find such a
coverage of input material with output resource types which
will minimize material loss or maximize the output products
value. The goal of the stock cutting problem is to produce a
demanded number of each type of products. The common part
of both optimization problem lies in the problem representa-
tion and constraints. Input material and the product types are
represented as geometrical objects in Rn. Products need to be
fully contained in the source material and must not overlap
with each other.

The most popular literature for two dimensional packing and
stock cutting problems discusses the rectangular (rectangles-
in-rectangles [1]) and circular problems (circles-in-rectangles
[2], circles-in-circles [3]). The problem of cutting a rectangular
shapes out the circular shapes, which is presented in this
paper, is deliberately omitted in the common typology [4]
and therefore not available in the two dimensional benchmark
generator [5]. On the other hand, considering rectangles-in-
circles packing (RICP) as a problem of packing irregular

shapes [6] seems to be too general, thus possibly an inefficient
approach.

While RICP has not been considered as a packing or
stock cutting problem, the problem of optimizing sawn timber
production has been discussed in the operations research
literature [7]. This paper proposes an abstract model for such
a problem and presents a hybrid approach for solving it.

The rest of the paper is organized as follows. Section II
defines the model for the 2-Dimensional Rectangles-in-Circles
Packing (2DRICP) and Stock Cutting (2DRICSC). Section III
describes the PSO algorithm and discusses its possible applica-
tions to discrete optimization problems. Section IV describes
the proposed PSO-based hybrid algorithm to solve it. Sec-
tions V and VI describe the test set, experiments setup and
their results. Finally, section VII concludes the paper.

II. 2-DIMENSIONAL RECTANGLES-IN-CIRCLES PACKING
AND STOCK CUTTING WITH ORTHOGONAL GUILLOTINE

CUTS

The 2DRICP and 2DRICSC problems discussed in this
paper can be formulated in the following way. Both problems
consider a set of types of rectangles R (defined by their width
wi, thickness hi, value vi and demanded number di) and
a set of circles C (defined by their radius rj and count mj).
The solution of the problems consists of a set of placings
P : R×C → {X×Y ×{horizontal, vertical}}ni,j for each
of the pairs in R× C.

The fact, that possible placings must be achievable only
by the orthogonal guillotine cuts, results in creating sets of
rectangular stripes, with each stripe formed by the rectangles
of identical thickness. Sets of adjacent perpendicular stripes
form a block (see Fig. 1).

For 2DRICP the following objective functions over the set
P of all pi,j placings are considered:
• Waste minimization

fwaste(P ) =

|C|∑
j=1

mj

πrj2 − |R|∑
i=1

ni,jwihi

 (1)

• Profit maximization

fprofit(P ) =

|C|∑
j=1

mj

 |R|∑
i=1

ni,jvi

 (2)



Fig. 1. An example of a circular input material divided into 3 blocks (marked
by blue borders) with perpendicular stripes within each of the blocks (depicted
with alternating white and gray background).

For 2DRICSC the following objective function over the set P
of all pi,j placings is considered:

• Demand fulfilment maximization

fdemand(P ) =
|R|
min
i=1

|C|∑
j=1

mjni,j

di
(3)

Waste minimization (1) is obtained when the placings have
been done in such a way, that a circle is densely packed
with rectangular products. Value maximization (2) is obtained
for the placings utilizing high number of the most valuable
rectangular products, while it may result with a lower input
material utilization. Demand fulfilment is obtained, when the
value of its objective function (3) is larger then or equal to 1.
It is important to note, that while the placings for each circle
are independent of each other in the waste minimization and
value maximization scenarios, that statement is not true for
the demand fulfilment.

The additional observation is, which can be utilized to speed
up optimization process, is that a feasible placing for a circle
with radius rk is also a feasible placing for any circle with
radius rl, where rl ≥ rk.

III. PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization (PSO) is a population-based
metaheuristic continuous optimization algorithm, initially de-
signed by Kennedy and Eberhart as an algorithm mimicking
simple social behavior [8], quite similar to Reynold’s boids [9].
The main idea of the PSO algorithm is to manage a population
of particles maintaining their current location x, velocity v
(applied to x), memorizing the best visited location (in terms
of optimized function) xBest and exchanging information with
their neighbors. Further work by Eberhart and Shi [10] resulted

in creating the sampling mechanism based on updating the
velocity of particles by applying the following rule:

v = ωv + c1u1(xBest − x)+
c2u2(xNeighborBest − x)

(4)

Where:
• v is a velocity vector of the particle,
• x is a current location of the particle,
• xBest is a best location visited by the particle,
• xNeighborBest is a best location visited by the neighbors

of the particle,
Additionally:
• ω is an inertia coefficient,
• c1 is a local attraction factor,
• c2 is a neighbor attraction factor,
• u1, u2 are vectors of uniformly distributed random vari-

ables.
Apart from the above parameters the communication topology
needs to be set, with the typical choice being between: full
graph, a random star or a k-ring [11].

Finally, for the discrete problems, it needs to be decided
whether PSO will be applied by modifying the algorithm to
work in discrete search space [12], [13] or by designing a
continuous search space for a given problem [14].

IV. BLOCK CUTTING PSO-BASED ALGORITHM

For the problem described in Section II, the following
algorithm is proposed. First, a dictionary D of exact 1-D
stripe solutions is constructed with a dynamic programming
approach [15], over all the subsets of rectangles with identical
thickness. Subsequently, a division of a circle into a set of
blocks by cut-and-rotate operation is created. Finally, within
each of the blocks, perpendicular stripes are placed by a greedy
algorithm from a dictionary of 1-D solutions.

The 1-D solutions dictionary is iteratively constructed in
the following way. Initially the dictionary contains an empty
solution with a null value. Possibility of adding new elements
to the dictionary is tested, while it is possible to create a
new solution maintaining the limit of its maximum length,
which is a parameter of the dictionary. In each iteration of
the algorithm a single solution from the dictionary is tested
for the possibility of enhancement by each of the atomic
rectangular products. A new solution is added to the dictionary
if there is no solution with higher value consuming less input
material. Because the dictionary of solutions would be utilized
for finding the most valuable stripe within the given length
bound applying dynamic programming scheme for finding the
dictionary is beneficial not only during construction procedure,
but especially during the lookup phase, as all the relevant
solutions would be available in the memory.

The search space for the PSO algorithm consists of alter-
nating vertical and horizontal k guillotine cuts coordinates:
top-to-bottom, left-to-right, bottom-to-top, right-to-left, top-
to-bottom, and so on. Number of cuts k is a user-defined
parameter.



TABLE I
SUMMARY OF THE AGGREGATED NUMBER OF TIMBER LOGS’ DIAMETERS
GENERATED ON THE BASIS OF THE THE HARVESTED TIMBER DESCRIBED

IN THE DATA SET [16], CUT IN 2000MM LONG LOGS.

Diameter Length Count
1 (100,300] 2000 6610
2 (300,500] 2000 20702
3 (500,700] 2000 25313
4 (700,900] 2000 20668
5 (900,1100] 2000 13023
6 (1100,1300] 2000 7191
7 (1300,1500] 2000 3510
8 (1500,1700] 2000 555

Greedy solution within each block is created by inserting
a sequence of stripes from D. In each iteration the greedy
algorithm chooses a fitting stripe with the highest value, with
the whole process initialized by selecting a smallest fitting
stripe on the left or top of the block.

The 2DRICP problem is solved by: (1) creating a common
dictionary of 1-D solutions for all of the circles C (limited
by the maximum diameter 2rj); (2) sampling search spaces
of block cuts for each of the circles by an independent PSO
optimizers; (3) computing objective function within each block
as a sum of values vi or sizes wihi for rectangles placed by
a greedy algorithm.

The 2DRICSC problem is solved by: (1) sampling a search
space of all the circles’ block cuts by a single PSO optimizer
(with solutions computed sequentially in ascending order of
their radii); (2) forming a sequence of 1-D solutions dictio-
naries, separately for each of the circles, with the values of
rectangles equal to the demand di reduced by the number
of rectangles placed in the smaller circles; (3) computing
objective function as specified by eq. (3).

V. ASSESSMENT ENVIRONMENT

In order to test the proposed algorithm a set of rectangles has
been generated on the basis of the commonly produced sawn
pine timber dimensions within the Finnish timber industry. A
set of circles has been generated on the basis of statistics of
harvested pine trees [16]. The test set is available in the form
of JSON files [17] and its summary is presented in Tables I
and II.

The test consisted of running the algorithm 10 times, for
each of the optimization goals (1)-(3) and 0-6 limit of block
cuts. For waste and profit optimization criterion PSO has been
run with 40 particles and 500 iterations, while for demand
optimization is has been run with 20 particles and 100 itera-
tions. Parameters of the PSO have been set to the following
values: c1 = c2 = 1.4, ω = 0.64, and neighbourhood
topology has been set to a random star (with neighbourhood
probability = 0.5).

The algorithm has been implemented as a single thread ap-
plication in the .NET Core technology. All of the experiments
have been conducted on an Intel Core i5 4300U@1.9GHz
processor. Computations time depended on the particular test
case. For the whole set of 145 types of input circles computa-

TABLE II
SAWN TIMBER PRODUCTS’ SIZES IN MILLIMETERS, THE VALUE PER THEIR

CUBIC METER AND THE DEMAND FOR THE STOCK CUTTING PROBLEM.

Thickness Width Length Value mˆ3 Demand
1 19 100 2000 1.00 500000
2 25 100 2000 1.15 500000
3 32 100 2000 1.30 500000
4 38 100 2000 1.41 500000
5 38 125 2000 1.58 500000
6 50 73 2000 1.39 500000
7 50 100 2000 1.62 500000
8 50 125 2000 1.81 500000
9 50 150 2000 1.99 500000

10 50 175 2000 2.15 500000
11 50 200 2000 2.29 500000
12 75 200 2000 2.81 500000
13 75 225 2000 2.98 500000

tions took from 2.8 seconds for the profit optimization with 0
block cuts up to 24 minutes for 6 cuts for demand fulfilment
experiment.

VI. RESULTS

Best obtained numerical results are presented in Tables III
and IV. Results present: (a) the total value achieved from
all the products, (b) the total material yield (i.e. how much
of the input material has been effectively used for creating
the output products), (c) the minimum and maximum ratio of
the produced number of products to their demanded number
over all the 13 types of products. While Tab. III presents the
results of packing criteria for all types of experiments, Tab. IV
concentrates on presenting the spread of demand fulfilment
over various types of products (sawn timber sizes) for the
stock cutting problems.

TABLE III
VALUE AND YIELD RESULTS SUMMARY FOR PACKING AND STOCK

CUTTING EXPERIMENTS.

Cuts Criterion Value Yield
1 0 waste minimization 219227 0.8563
2 1 waste minimization 217265 0.8884
3 2 waste minimization 218439 0.9033
4 3 waste minimization 219430 0.9093
5 4 waste minimization 216801 0.9122
6 5 waste minimization 214330 0.9128
7 6 waste minimization 214698 0.9134
8 0 profit maximization 221019 0.8409
9 1 profit maximization 227783 0.8692

10 2 profit maximization 229599 0.8790
11 3 profit maximization 230380 0.8822
12 4 profit maximization 230536 0.8836
13 5 profit maximization 230744 0.8853
14 6 profit maximization 230827 0.8856
15 0 demand fulfillment 180814 0.9141
16 1 demand fulfillment 180818 0.9129
17 2 demand fulfillment 180846 0.9132
18 3 demand fulfillment 180868 0.9133
19 4 demand fulfillment 180703 0.9127
20 5 demand fulfillment 180702 0.9128
21 6 demand fulfillment 180967 0.9142

In order to provide a better insight of the results distribution
over various radii of input circles, Fig. 2 and 3 present the
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(b) Material use comparison

Fig. 2. Comparison of the best results for the various number of block cuts over a set of logs’ diameters.

comparison for various number of block cuts and distribution
of the results for the 6 block cuts.

TABLE IV
RESULTS FOR THE DEMAND FULFILMENT EXPERIMENTS.

Cuts Criterion Min(demand) Max(demand)
1 0 demand fulfillment 0.9011 1.0177
2 1 demand fulfillment 0.9084 0.9692
3 2 demand fulfillment 0.9090 0.9717
4 3 demand fulfillment 0.9089 0.9701
5 4 demand fulfillment 0.9070 0.9716
6 5 demand fulfillment 0.9087 0.9809
7 6 demand fulfillment 0.9073 0.9769

Figure 2 presents how much can be gained in terms of
waste minimization by introducing the possibility of rotating
the log (with the lowest line presenting material usage of a
greedy heuristic with no cuts). Figure 3 gives insight into
the stability of the optimization process by presenting the
minimal and maximal obtained values over 10 runs for the
6 block cuts experiment. Diagrams present both the values
of the optimization goal within the given experiment and the
value of the criterion not used in obtaining the solution.

VII. CONCLUSIONS

It can be observed that, for a given number of block cuts, the
optimization process is quite stable, especially for the profit
optimization (see Fig. 3). It can be also noted that the number
of cuts is a crucial parameter for the waste optimization, while
profit and demand results quality are affected to a lesser extent
by that parameter (see Tab. III and Fig. 2).

Future work will consist of comparing the computations
time with exact algorithm for the smaller examples, and quality

comparison with a Monte Carlo game-like approach. Another
possible area of research is application of the multiobjective
optimization techniques in order to search for Pareto Fronts for
all of the optimization criteria. Finally, extending the model
in order to solve a 3-D problem is planned.

As a final remark it is worthwhile to observe, that from a
production optimization point of view, having a global non-
gradient search (i.e. PSO) approach within the optimization
procedure gives also one additional advantage over plain
heuristic or gradient approaches. Such a non-gradient method
makes it possible to add additional information about the
production process costs or timber quality estimations to
the objective functions values, without redesigning the whole
algorithm.
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[4] G. Wäscher, H. Haußner, and H. Schumann, “An improved typol-
ogy of cutting and packing problems,” European Journal of Op-
erational Research, vol. 183, no. 3, pp. 1109–1130, 2007. doi:
10.1016/j.ejor.2005.12.047

[5] E. Silva, J. F. Oliveira, and G. Wäscher, “2DCPackGen : A problem gen-
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