
The impact of particular components of the PSO-based
algorithm solving the Dynamic Vehicle Routing

Problem

Micha l Okulewicza,∗, Jacek Mańdziuka

aWarsaw University of Technology
Faculty of Mathematics and Information Science

Koszykowa 75, 00-662 Warsaw POLAND

Abstract

This paper presents and analyzes a Two-Phase Multi-Swarm Particle Swarm
Optimizer (2MPSO) solving the Dynamic Vehicle Routing Problem (DVRP).
The research presented in this paper focuses on finding a configuration of several
optimization improvement techniques, dedicated to solving dynamic optimiza-
tion problems, within the 2MPSO framework. Techniques, whose impact on
results achieved for DVRP is analyzed, include: solving the current state of a
problem with a capacitated clustering and routing heuristic algorithms, solv-
ing requests-to-vehicles assignment by the PSO algorithm, route optimization
by a separate instance of the PSO algorithm, and knowledge transfer between
subsequent states of the problem. The results obtained by the best chosen
configuration of the 2MPSO are compared with the state-of-the-art literature
results on a popular set of benchmark instances.

Our study shows that strong results achieved by 2MPSO should be at-
tributed to three factors: generating initial solutions with a clustering heuristic,
optimizing the requests-to-vehicle assignment with a metaheuristic approach,
direct passing of solutions obtained in the previous stage (times step) of the
problem solving procedure to the next stage. Additionally, 2MPSO outper-
forms the average results obtained by other algorithms presented in the liter-
ature, both in the time limited experiments, as well as those restricted by the
number of fitness function evaluations.

Keywords: Dynamic Vehicle Routing Problem, Particle Swarm Optimization,
Vehicle Routing Problem, Dynamic Optimization

∗Corresponding author
Email addresses: M.Okulewicz@mini.pw.edu.pl (Micha l Okulewicz),

J.Mandziuk@mini.pw.edu.pl (Jacek Mańdziuk)

Preprint submitted to ASOC, accepted and avaialble at http: // dx. doi. org/ 10. 1016/ j. asoc. 2017. 04. 070April 30, 2017

http://dx.doi.org/10.1016/j.asoc.2017.04.070

1. Introduction

Vehicle Routing Problems (VRP), and Dynamic Vehicle Routing Problem
(DVRP) in particular, are of great theoretical and practical interest. That
interest has grown since an introduction of an efficient wireless communication
systems (e.g. GSM) and an accurate real-time localization services (e.g. GPS)5

supported by the development of the Geographical Information Systems [1].
Basic variant of the VRP has been introduced in the literature as a problem of
finding a set of optimal routes for a given number of oil distributing trucks [2].
Since its introduction numerous modifications to the initial problem formulation
have been proposed. One of those formulations is VRP with Dynamic Requests,10

most commonly referred to as a DVRP [3].
Although several types of metaheuristic methods have been applied to solve

DVRP and different methods of applying Particle Swarm Optimization (PSO)
to various types of the VRP have been studied, little has been done to assess
the impact of various high-level (i.e. independent of the optimization algorithm)15

components of these optimization methods on obtained results. Some research
regarding these aspects has been conducted by Mavrovouniotis and Yang [4],
within the domain of Periodic VRP, concerning the composition of the initial
population. Within the domain of DVRP, Khouadjia et al. [5] tested the rel-
evance of parallelism and particular adaptation methods applied to candidate20

solutions found in the previous stages of the problem solving procedure.
Most of metaheuristic approaches applied to DVRP, which are reviewed in

this paper, follow a hybrid optimization pattern consisting of the following mod-
ules: a metaheuristic as a main optimization engine, an additional heuristic used
as a local search operator, and a solution migration scheme. In such a hybrid25

approach, an optimization process consists of the following steps: a population
initialization (or its adaptation in the case of dynamic problems), optimization
by the metaheuristic engine, its further improvement with a heuristic algorithm,
and (optionally) repairement of unfeasible solutions.

The Two-Phase Multi-Swarm Particle Swarm Optimization (2MPSO) algo-30

rithm [6], developed by the authors, also follows the above-mentioned pattern.
Therefore, an analysis of results obtained by various configurations of the
2MPSO can serve as a basis for studying efficiency of particular optimization
techniques and solution migrations schemes. In the case of 2MPSO applied
to DVRP those techniques include using a capacitated clustering algorithm for35

obtaining approximate solutions, optimizing requests-to-vehicles assignment in
a continuous search space, creating an approximate routes from the clustered
requests with a 2–OPT algorithm, fine tuning of the routes. Solution migration
schemes include direct passing of the previous step solution to the next step,
and following the location of tentatively assigned requests solution.40

The rest of the paper is organized as follows. Section 2 gives a formal defi-
nition of the DVRP and reviews application of various metaheuristic methods.
Section 3 introduces PSO algorithm, which is used as a main optimization en-
gine in our 2MPSO method, and reviews several approaches to applying PSO to
solving VRP. Section 4 describes the 2MPSO method proposed by the authors.45

2

Section 5 presents experiments on various 2MPSO configurations and compari-
son of 2MPSO outcomes with literature results. The last section concludes the
paper.

2. Dynamic Vehicle Routing Problem

In general, particular VRP instance is specified [2] by the properties of the50

following collections of objects:

• a fleet V of n vehicles,

• a series C of m clients (requests) to be served, and

• a set D of k depots from which vehicles may start their routes.

The goal of the VRP is to find an assignment of clients to vehicles and the order55

in which the clients’ locations are to be visited by those vehicles.
Due to the fact, that various VRP models include different sets of properties

and constraints, this section defines the objects in sets V , D, C and the problem
constraints for the DVRP model discussed in this paper.

The fleet V is homogeneous, i.e. vehicles have identical capacity cap ∈ R60

and the same speed1 ∈ R. Vehicles are stationed in one of the k depots2. Each
depot dj ∈ D, j = 1, . . . , k has assigned

• a certain location lj ∈ R2 and

• working hours (tstartj , tendj), where 0 ≤ tstartj < tendj .

For the sake of simplicity, we additionally define two global auxiliary vari-65

ables (constraints): tstart := min
j∈1,...,k

tstartj and tend := max
j∈1,...,k

tendj
, which are

not part of the standard definition.
Each client cl ∈ C (l = k + 1, . . . , k +m), has a given:

• location ll ∈ R2,

• time tl ∈ R, which is a point in time when their request becomes available70

(tstart ≤ tl ≤ tend),

• unload time ul ∈ R, which is the time required to unload the cargo,

• size sl ∈ R - which is the size of the request (sl ≤ cap).

1In all benchmarks used in this paper speed is defined as one distance unit per one time
unit.

2In the most common benchmarks used in the literature, likewise in this paper, it is assumed
that k = 1.

3

A travel distance ρ(i, j) is the Euclidean distance between li and lj in R2,
where i, j = 1, . . . , k +m.75

For each vehicle vi, ri = (ri,1, ri,2, . . . , ri,mi
) is a sequence of mi indices of

requests and depots assigned to be visited by the ith vehicle. Therefore, ri
defines the route of the ith vehicle. Please note, that the first and the last
elements always denote depots (the initial one and the final one, respectively).
The arvri,j is the time of arrival to the jth location on the route of the ith80

vehicle. arvri,j is induced by the permutation ri, the time when requests become
available - see eqs. (2) and (3) and the time arvri,1 on which ith vehicle leaves
the depot.

As previously stated, the goal is to serve all the clients (requests), according
to their defined constraints, with minimal total cost (travel distance) within the85

time constraints imposed by the working hours of the depots.
In other words, the goal of the algorithm is to find such a setR = {r∗1 , r∗2 , . . . , r∗n}

of permutations of requests and depots that minimizes the following cost func-
tion:

COST (r1, r2, . . . , rn) =

n∑
i=1

mi∑
j=2

ρ(ri,j−1, ri,j) (1)

under the following constraints (2) - (6).90

Vehicle vi, i = 1, 2, . . . , n cannot arrive at location lri,j until the time required
for traveling from the last visited location lri,j−1 (after receiving an information
about the new request) is completed:

∀i∈{1,2,...n}∀j∈{2,3...mi} arvri,j ≥ tri,j + ρ(ri,j−1, ri,j) (2)

Please recall that for j = 2, lri,j−1
denotes the location of the starting depot.

Vehicle vi cannot arrive at location lri,j before serving the request cri,j−195

and traveling to the next location:

∀i∈{1,2,...n}∀j∈{2,3...mi} arvri,j

≥ arvri,j−1
+ uri,j−1

+ ρ(ri,j−1, ri,j)
(3)

All vehicles must return to the depot before its closing and cannot leave the
depot before its opening:

∀i∈{1,2,...n} arvri,1 ≥ tstartri,1
∀i∈{1,2,...n} arvri,mi

≤ tendri,mi

(4)

Recall that index ri,mi
(the last index in route ri) denotes the closing depot for

vehicle i.100

4

A sum of requests’ sizes between consecutive visits to the depots must not
exceed vehicle’s capacity:

∀i∈{1,2,...n}∀j1<j2∈{1,2...mi} (ri,j1 and ri,j2 are two subsequent

visits to the depots in route ri) ⇒ (

j2−1∑
j=j1+1

sri,j ≤ cap)
(5)

Each client must be assigned to exactly one vehicle:

∀j∈{1+k,2+k,...m+k}∃!i∈{1,2,...n} j ∈ ri (6)

2.1. Dynamic Vehicle Routing Problem solving framework

On a general note there are two major approaches to solving dynamic opti-105

mization problems, dynamic transportation problems in particular. In the first
one the optimization algorithm is run continuously, adapting to the changes in
the environment [7]. In the second one, time is divided into discrete slices and
the algorithm is run once per time slice, usually at its origin, and the problem
instance is ”frozen” for the rest of the time slice period. In effect, any potential110

changes introduced during the current time slot are handled in the next run of
the algorithm, which is scheduled for the subsequent time slice period.

In this study the latter approach, which in the context of DVRP was pro-
posed by Kilby et al. [8], is adopted.

In a typical approach to solving DVRP, regardless of the particular optimiza-115

tion method used, one utilizes a vehicles’ dispatcher (event scheduler) module,
which is responsible for communication issues. In particular, the event scheduler
collects information about new clients’ requests, generates the current problem
instance and sends it to the optimization module and, afterwards, uses the so-
lution found to commit vehicles. Such a DVRP processing scheme is depicted120

in Fig. 1, while a technical description of such information technology system
could be found in [9].

The processing of the DVRP is controlled by the following parameters, main-
tained by an event scheduler, which in some sense define the “degree of dy-
namism” of a given problem instance:125

• Tco - cut-off time,

• nts - number of time slices,

• Tac - advanced commitment time.

The cut-off time (Tco), in real business situations, could be interpreted as
a time threshold for not accepting any new requests that arrive after Tco and130

treating them as the next-day’s requests, available at the beginning of the next
working day. In a one-day simulation horizon considered in this paper, likewise
in the referenced works [5, 6, 10–17], the requests that arrive after the Tco are
treated as being known at the beginning of the current day, i.e. they actually

5

Vehicles
Dispatcher

Clients Vehicles

New requests
Requests to vehicles

assignment

Problem
solution
feasible

at a time ti+1

Problem
instance

at a time ti

Optimization
module

Figure 1: High-level diagram of DVRP solving framework.

compose the initial problem instance. In all tests, for the sake of comparability135

with the previous results, Tco = 0.5 was set, so as to make this choice consistent
with the above-cited works.

The number of time slices (nts) decides how often the dispatcher sends a
new version of the problem to the optimization module. Kilby et al. [8] set this
value to 50, while Montemanni et al.[10] proposed 25 (adopted as a standard140

value in other subsequent approaches), claiming the optimal trade-off between
the quality of solutions and computation time. In the case of our method we
observed that it is beneficial to set nts to 40. Generally speaking, dividing the
day into greater number of time slices allows optimization module to react faster
to the newly-arrived requests since it is informed sooner about the introduced145

changes. On the other hand, with the fitness function evaluations (FFE) or
computations time budget fixed the chances for optimizing the solution within
each time slice decrease proportionally. For the sake of comparability with our
previous work [6] and with MEMSO algorithm [5] we have conducted exper-
iment with the total number of FFEs equal bound by 106, while in order to150

compute results comparable with the GA [13], EH [15] and ACO [16] we have
conducted experiments with the total computations time limited to 75 seconds
per benchmark.

The advanced commitment time (Tac) parameter is a safety buffer, which
shifts the latest possible moment in which a current part of the route is ul-155

timately approved and “frozen”, i.e. the vehicle is dispatched to serve the
respective requests. In other words, any vehicles expected to return to depot
within the last time slice before its closing time minus Tac are considered close

6

to fulfilling time constraint defined by eq. (4), and need to be dispatched:

Vtbd = {vi : arvri,mi
≥ tendri,mi

− (Tac +
1

nts
)
(
tendri,mi

− tstartri,1
)
} (7)

Requests scheduled to be served by a vehicle from a Vtbd set within the closest160

time slice are treated as ultimately approved and cannot be rescheduled to
another vehicle. Please note, that new requests can be added to the dispatched
vehicle and tentatively assigned requests can still be rescheduled to another
vehicle.

We have observed that appropriate choice of Tac allows greater flexibility in165

assigning requests to vehicles in the phase of a day, just before the Tco, when
appropriate handling of potential arrival of a large request is a critical issue.

2.2. Metaheuristics applied to Dynamic Vehicle Routing Problem

As observed in [18] the methods of solving VRP problems might be cat-
egorized into seven types, depending on the method of assigning requests to170

vehicles and construct routes. The algorithms discussed in this paper fall into
three of those categories: cluster-first route-second, route-first cluster-second
and improvement and exchange.

In the cluster-first route-second category, the requests are first assigned to
vehicles and subsequently ordered (separately within each vehicle). In the route-175

first cluster-second approach category, the requests are first ordered in a giant
TSP tour and subsequently divisioned among the vehicles. In the improvement
and exchange approach category, the initial candidate solutions are created as
a feasible ones and subsequently improved by various search operators. Clas-
sification of the reviewed methods applied to DVRP into those categories is180

presented in Tab. 1.
The first metaheuristic approach applied to DVRP has been an Ant Colony

System (ACS) [10]. In that approach a direct modification of ACS for the
Traveling Salesman Problem (TSP) has been applied. Each ant traversed a
whole graph of requests returning to the depot if needed. The highest levels of185

pheromone have been applied on the routes forming a candidate solution with
the shortest total routes’ length.

The subsequent approaches utilized Genetic Algorithm (GA) and Tabu Search
(TS) [13]. In that approach a problem solution has also been coded as a giant
TSP tour, but without the visits to a depot. In that GA and TS requests on190

the tour are divided among the vehicles by a greedy rule (i.e. are assigned to
the same vehicle as long as the capacity (eq. (5)) and time (eq. 4)) constrains
are satisfied).

Methods based on that initial research included: an adaptive heuristic build-
ing Evolutionary Hyperheuristic (EH) [15, 19, 20], a Memetic Algorithm (MA)195

consisting of GA with a local search based on adaptive heuristic operators se-
quences [17], encoding depots within the giant tour encoding and changing the

7

Table 1: Summary of different metaheuristics applied to DVRP.
Authors (Year) Category Search space Algorithms

Montemanni
et al. [10]

(2005)
exchange and
improvement

requests and
depot visits
order

ACS,
2–OPT

Hanshar[13]
Ombuki-Berman

(2007)
route-first

cluster-later
requests order

TS,
2–OPT

λ-interchange

Hanshar[13]
Ombuki-Berman

(2007)
route-first

cluster-later
requests order

GA,
2–OPT,
greedy

insertion

Garrido et al.
[15, 19, 20]

(2009)
exchange and
improvement

requests order
set of

heuristics

Khouadjia et
al. [5, 11, 12]

(2010)
cluster-first
route-later

requests
assignment

PSO,
2–OPT,
greedy

insertion

Elhasannia
et al. [16]

(2013)
exchange and
improvement

requests and
depot visits
order

GA,
set of

heuristics

Okulewicz
Mańdziuk

[6, 14]
(2013)

cluster-first
route-later

separate requests
priorities and
multi requests’
clusters centers

PSO,
2–OPT,
modified
Kruskal,
greedy

insertion

Elhasannia
et al. [21]

(2014)
exchange and
improvement

requests and
depot visits
order

GA,
greedy

insertion

Mańdziuk

Żychowski
[17]

(2016)
exchange and
improvement

requests order
GA,
set of

heuristics

8

cross-over operator for the GA [21], enhancing Ant Colony Optimization (ACO)
with a Large Neighbourhood Search (LNS) algorithm [16].

The renewed GA and ACO with LNS approaches are worth mentioning, as200

they are the first methods to present results for the largest benchmark instance,
consisting of 385 requests. Unfortunately, those results have been computed
on an Intel Core i5 processor, using the same same time limit of 1500 seconds
as the Pentium IV in the original work [10], which renders rest of the results
incomparable with the original GA and ACS.205

A different approach, in terms of the stopping criterion, optimization cate-
gory and applied metaheuristic, has been taken by Khouadjia et al. [5, 11, 12].
The MEMSO method proposed in those works uses an Adaptive Memory Par-
ticle Swarm Optimizer, which utilizes a discretized version of a PSO velocity
update procedure, uses a search space of requests-to-vehicles and assignments210

(falling into the category of cluster-first route-second methods) and limits the
time of the computation by the number of fitness function evaluations. 2MPSO
approach, developed by the authors of this paper [6, 14], falls into the same cat-
egory, although it uses a standard continuous PSO and a cluster-based heuristic
generating initial solutions. Discussion about the possibilities of using differ-215

ences of the MEMSO and 2MPSO approaches has been presented in [22].

3. Particle Swarm Optimization

PSO is an iterative global optimization metaheuristic method proposed in
1995 by Kennedy and Eberhart [23] and further studied and developed by many
other researchers, e.g., [24–26]. The underlying idea of the PSO algorithm con-220

sists in maintaining the swarm of particles moving in the search space. For each
particle the set of neighboring particles which communicate their positions and
function values to this particle is defined. Furthermore, each particle maintains
its current position and velocity, as well as remembers its historically best (in
terms of solution quality) visited location. More precisely, in each iteration t,225

each particle i updates its position xit and velocity vit based on the following
formulas:

Position update

The position is updated according to the following equation:

xit+1 = xit + vit. (8)

230

9

Velocity update

In our implementation of the PSO (based on [24, 27]) velocity vit of particle
i is updated according to the following rule:

vit+1 =u
(1)
U [0;g](x

neighborsi
best − xit)+

u
(2)
U [0;l](x

i
best − xit) + a · vit (9)

where g is a neighborhood attraction factor, xneighborsibest represents the best
position (in terms of optimization) found hitherto by the particles belonging to235

the neighborhood of the ith particle, l is a local attraction factor, xibest represents
the best position (in terms of optimization) found hitherto by particle i, a is an

inertia coefficient, u
(1)
U [0;g], u

(2)
U [0;l] are random vectors with uniform distribution

from the intervals [0, g] and [0, l], respectively.
2MPSO algorithm presented in this paper uses a Standard Particle Swarm240

Optimization 2007 (SPSO-07) [27] with a random star neighborhood topology,
in which, for each particle, we randomly assign its neighbors, each of them
independently, with a given probability3. Please note, that we are using SPSO-
07 instead of the newer SPSO-11 [27] since we intentionally take advantage of the
natural bias towards the search space center which results in greater probability245

that PSO will choose solutions closer to the center of the search space. Such
an effect was observed in the case of the former version of SPSO [28, 29]. Since
in our method the search space center is defined at the current-best particle
position, the above mentioned bias increases the solutions of finding the particles
nearby of this best location.250

3.1. Particle Swarm Optimization applications to Vehicle Routing Problems

PSO have been applied to a various models of the VRP: Capacited VRP
(CVRP) [30], VRP with Time Windows (VRPTW) [30], Multi-Depots Vehicle
Scheduling Problem (MDVSP) [31], Stochastic VRP (SVRP) [32] and Dynamic
VRP (DVRP) [5, 6]. In order to apply PSO algorithm to any type of a discrete255

problem (such as VRP) either the PSO needs to be modified, to operate in a
discrete search space, or the problem search space needs to be defined in a way
allowing for the application of the continuous PSO’s operators.

Although some of the problems, like VRPTW, need additional care for han-
dling time constrains, the design of the search spaces and the PSO operators260

modifications might be usually transferred between different VRP models.
Discussed PSO approaches have been chosen on the basis of their variety in

the design of the search spaces and operator modifications. Khouadjia et al. [12]
proposed a constrained discretized version of the PSO’s velocity update formula

3Please, note that the “neighboring” relation is not symmetrical, i.e. the fact that particle
y is a neighbor of particle x, does not imply that x is a neighbor of y.

10

Table 2: Summary of different methods of applying PSO to VRPs.
Authors VRP variant Search space PSO modifications

Ai, Kachitvichyanokul [30, 33] VRP(TW)

requests
priorities and
single requests’
clusters centers

none

Marinakis et al. [32] SVRP
normalized
giant tours

normalized velocity

Wang et al. [31] MDVSP

separate requests
priorities and
requests-to-vehicles
assignment

discretized position

Khouadjia et al. [5, 11, 12] DVRP
requests-to-vehicles
assignment

discretized position

Okulewicz, Mańdziuk [6, 14] DVRP

separate requests
priorities and
multi requests’
clusters centers

none

and created a VRP solution from a request-to-vehicle assignment vector and a265

2–OPT route optimization. Marinakis et al. [32] took an approach similar to the
work on GA [13], with the exception of an indirect continuous route encoding
instead of a direct discrete one. The solution has been coded as a vector of real
numbers, coding the ranks of the requests on a giant TSP tour. While PSO
operated in a continuous search space of the requests priorities, its velocity and270

position update equations have been changed in order to impose the constraints
of a search space to a [0, 1]m hypercube. Wang et al. [31] optimized requests-to-
vehicles assignment with a discrete PSO and requests order with a continuous
PSO, Ai and Kachitvichyanukul [30, 33] utilized a continuous Rm+2n search
space encoding both the requests order and assignment to vehicles. The first m275

coordinates of the vector in that search space define the ranks of the requests,
while second 2n coordinates define n requests’ cluster centers. Each cluster of
requests is assigned to a single vehicle. Finally, the authors of this paper [6]
used two separate continuous R2kn and Rm search spaces, thus dividing the
problem into two optimization phases. In the first phase a requests clustering280

is performed, with k clusters of requests per single vehicle, while in the second
phase a requests ordering is performed.

Summary of the search spaces and PSO operators modification is presented
in Tab. 2.

4. Two-Phase Multi-Swarm Particle Swarm Optimization for the Dy-285

namic Vehicle Routing Problem

This section presents the execution path of 2MPSO algorithm optimization
process during a single time step. Special emphasis is put on presentation of
the two independent VRP encodings which induce continuous search spaces for
the PSO algorithm.290

11

The 2MPSO algorithm has been developed by the authors over the last
few years. It is implemented in C# as a Microsoft .NET application utiliz-
ing Windows Communication Foundation services for controlling its indepen-
dent optimization processes [34]. The VRP encodings have been introduced in
[14], together with a single swarm optimization approach to DVRP. This initial295

PSO-based algorithm has been later enhanced with a multi-swarm optimiza-
tion, approximation of the number of vehicles on the basis of heuristic solution
and a multi-cluster requests-to-vehicles assignment encoding [6]. This paper
provides further development of the 2MPSO method, with a direct transfer of
candidate solutions from the previous states of the problem (time slices). Ad-300

ditionally, 2MPSO’s parameters have been tuned for a better performance on a
benchmark set of the DVRP instances.

The optimization system, built according to the 2MPSO design, consists of
a set of optimization services. Those independent services are controlled by
a single module responsible for providing new states of DVRP and choosing305

the best found solution at the end of each time step. An optimization process
of 2MPSO algorithm utilizes the following modules:

• Optimizer: Responsible for handling a single optimization process and
ensuring feasibility of a delivered solution,

• Tree: Responsible for creating an initial requests-to-vehicles assignments310

and estimating the number of necessary vehicles,

• Greedy: Responsible for repairing infeasible solutions, providing an al-
ternative initial assignments and alternative vehicles’ number estimation,

• 2–OPT: Responsible for routing the requests assigned to the same ve-
hicle in order to make the requests-to-vehicles assignment possible to be315

evaluated as a VRP solution and to create initial solutions,

• Solutions transformer: Responsible for converting discrete solutions
into a continuous representation and adapting solutions obtained in the
previous time step to the subsequent time slice,

• PSO: Responsible for performing a black-box optimization of the requests-320

to-vehicles assignment (see Section 4.2.1 for requests’ cluster centers en-
coding) and requests order (see Section 4.2.2 for requests’ ranks encoding)
in continuous search spaces with the use of PSO algorithm.

Figure 2 presents an UML-based activity diagram of the optimization process
across the aforementioned modules. 2MPSO is designed as a configurable algo-325

rithm, in which only selected optimization techniques might be used. The par-
ticular techniques utilized in a given 2MPSO run are selected by Tree, CHist,
DHist, 1PSO and 2PSO configuration flags, depicted as guard conditions on
execution branches in Fig. 2.

12

Single time step optimization process

2-OPTTree Greedy Solutions transformerPSOOptimizer

C
lo

si
ng

 p
ha

se
In

it
ia

liz
at

io
n

 p
h

as
e

1
st

 o
p

ti
m

iz
at

io
n

 p
h

as
e

2
n

d
o

p
ti

m
iz

at
io

n
 p

h
as

e

1a. Cluster
available

requests with
a modified

Kruskal
algorithm

4b. Compute
centroids from

requests assigned
to the same

vehicle in previous
solution

4a. Adapt previous
assignment

solution by adding
new vehicles
if necessary

5c. Optimize requests-to-
vehicles assignment by

clustering requests with PSO

1b. Create a
greedy clients-

to-vehicles
assignement

6. Optimize
route of

each vehicle
by ordering

requests
with PSO

4c. Compute
centroids from

requests assigned
to the same

vehicle in heuristic
solution

7c. Optimize
route

in each
vehicle by
ordering
requests

with 2-OPT

[NoTree]

[Tree]
[CHist]

[DHist]

7b. Assign
removed

requests in a
greedy
manner

7a. Remove
requests
violating

time
constraints

[1PSO]

[2PSO]

5a. Generate
population

for PSO

5b.
Incorporate

heuristic
based and

history based
solution in a

random
population

2. Optimize
each route
by ordering

requests
with 2-OPT

3. Estimate
the number
of necessary
vehicles on
the basis of

heuristic
solution

After each successful
improvement of a
solution giant route
formed by requests
priorities is stored as a
system's state on which
2-OPT operates before
evaluating assignment

Figure 2: Activity diagram of the optimization process. The obligatory actions are marked
with a gray background. Configurable execution branches are labeled with the names used
later in the algorithm description and results presentation. For the sake of diagram’s read-
ability the “decision node - action node on a single branch - merge node” notation has been
simplified to stating the guard conditions, [DHist] and [CHist], directly on the parallel fork
branches.

13

Algorithm 1 Optimization processes’ controller pseudo-code for the 2MPSO
approach.

Vt a set of vehicles available at time t
Ct a set of requests known at time t which are not ultimately assigned

1: while time ≤ end do
2: for all optimizer ∈ optimizers do
3: CreateInitialAndAdaptedSolutions(Vt, Ct) {(see Algorithm 3)}
4: OptimizeRequestsAssignment(Vt, Ct) {(see Algorithm 3)}
5: OptimizeV ehiclesRoutes(Vt, Ct) {(see Algorithm 4)}
6: CreateInitialAndAdaptedSolutions(Vt, Ct) {(see Algorithm 4)}
7: end for
8: bestSolution = ChooseBestSolution(optimizers)
9: end while

4.1. 2MPSO optimization process330

The general execution of a whole 2MPSO algorithm proceeds as follows. In
each time step, 2MPSO considers the set Ct of requests known at the time t
and not ultimately assigned to any vehicle (although they may be tentatively
assigned in previous time slice solution). Until the end of the day (line 1 in
Algorithm 1) a parallel continuous optimization (line 2 in Algorithm 1) is per-335

formed by an ensemble of instances of optimizers, which are synchronized at
the end of each time slice. At the end of each time slice (in line 8 in Algorithm 1)
the new bestSolution is chosen among all optimizerBestSolutions. In the vehi-
cles’ dispatcher module (see Fig. 1) the bestSolution is used to create vehicles’
schedules (for the assignments close to the time constraints). The remainder340

of this section is devoted to a description of a single run of the optimization
process (lines 3)–6 in Algorithm 1), with each paragraph guided by a label of
an appropriate action node from Fig. 2. Additionally, the description references
the appropriate lines in the algorithms’ pseudo-code listings.

4.1.1. Initiation phase345

(1a) Cluster available requests with a modified Kruskal algorithm [35]. The pro-
cess starts (line 3 in Algorithm 3) with dividing a set of requests among vehicles
as depicted in Algorithm 2. A result of this division is a request-to-vehicles
assignment based on the vehicles’ capacities.

(1b) Create a greedy clients-to-vehicles assignement. An alternative way to start350

the process (line 5 in Algorithm 3) is to use a simple greedy algorithm, which
processes a random sequence of requests one-by-one, placing them with the low-
est insertion cost rule into an existing route or creating a new one if a capacity
constraint would be exceed or return-to-depot time constraint violated. A re-
sult of the greedy algorithm is a request-to-vehicles assignment and a requests355

ordering within each of the routes.

14

Algorithm 2 Pseudo-code for a modified Kruskal algorithm creating a heuristic
clients-to-vehicles assignment by solving a capacitated clustering problem.

E set of a weighted edges of a fully connected graph (weight represents
distance)
V set of a weighted vertices set on an R2 plane (weight represents cargo
volume)
CAPACITY scalar defining the maximum sum of nodes’ weights in a clus-
ter
DEPOT marked node denoting vehicles’ depot

1: Esort ← SortByWeightInAscendingOrder(E)
Initial set of Tclusters consists of disjoint single nodes representing unas-
signed requests and paths representing routes through ultimately assigned
requests

2: Tclusters ← CreateSeparateTrees(V)
3: for all (v1, v2) ∈ Esort do
Tree(v) is a cluster to which node v belongs

4: if Tree(v1) 6= Tree(v2) then
5: if SumNodesW (Tree(v1)) +SumNodesW (Tree(v2)) ≤ CAPACITY

then
6: Tclusters ← Tclusters \ {Tree(v1), T ree(v2)}
7: Tclusters ← Tclusters ∪ {Tree(v1) ∪ Tree(v2)}
8: end if
9: end if

10: end for

(2) Optimize each route by ordering requests with 2-OPT. The algorithm de-
scribed in [36] is applied in order to create a route from an assignment of requests
(or improve an existing route from a greedy algorithm). A result of this action
is a requests ordering within each of the vehicles’ routes.360

(3) Estimate the number of necessary vehicles on the basis of heuristic solution.
The number of vehicles in the assignment constructed in action (1a) or (1b) is
taken as an estimation of a number of vehicles necessary to serve a given set of
requests.

The next three actions (4a,4b,4c) are independent of each other and operate365

on a continuous representation of the requests-to-vehicles assignment presented
in detail in Section 4.2.1. An important thing to note is that the size of such
a representation is proportional to the number of vehicles used in the DVRP
solution.

(4a) Adapt the previous assignment by adding new vehicles if necessary. This370

action directly passes requests’ cluster centers solution from a previous time
step and adds random cluster centers if the current estimation of the number
of required vehicles is larger than the number used in the input solution.

15

Algorithm 3 Initial phase and requests-to-vehicles assignment optimization
(2MPSO’s 1st phase) high-level pseudo-code.

1: radius⇐ 2 max
l1,l2=k+1,...,k+m

ρ(l1, l2)

heuristicSolution is created in order to increase population diversity and
to keep solution in reasonable bounds

2: if Tree then
3: heuristicSolution⇐ CapacitatedClustering(Ct) {(see Algorithm 2)}
4: else
5: heuristicSolution⇐ GreedyInsertion(Ct)
6: end if
7: if 1PSO then
8: if t = 0 then
9: bestSolution⇐ Approximate(heuristicSolution)

10: else if CHist then
11: bestSolution⇐ Adapt(bestSolution)
12: else if DHist then
13: bestSolution⇐ Approximate(bestSolution)
14: else
15: bestSolution⇐ randomSolution
16: end if

some particles checked by PSO are based on heuristicSolution in order to
keep bestSolution in reasonable bounds
some particles checked by PSO are based on bestSolution in order to pre-
serve information about previous solution
all other particles checked by PSO are generated within a radius from the
bestSolution

17: swarm⇐ InitializePSOPopulation(heuristicSolution, bestSolution, radius)

18: for i = 1, 2, . . . ,maxFirstPhaseIterations% do
19: Evaluate(swarm)
20: UpdateV elocity(swarm)
21: UpdatePosition(swarm)
22: end for

optimizerBestSolution is treated as a set of vehicles with initial routes
23: optimizerBestSolution = GetBestSolution(swarm)
24: else
25: optimizerBestSolution = heuristicSolution
26: end if

(4b) Compute centroids from requests assigned to the same vehicle in previ-
ous solution. This action computes requests’ cluster centers on the sets of the375

tentatively assigned requests during the previous time step, while ignoring the
location of the ultimately assigned ones. It also adds random cluster centers to
that solution, as in action (4a).

16

(4c) Compute centroids from requests assigned to the same vehicle in heuristic
solution. This action computes requests’ cluster centers on the sets of tenta-380

tively assigned requests in a solution created by the heuristic algorithm (ac-
tion (1a) or (1b)).

4.1.2. 1st optimization phase: requests-to-vehicles assignment

(5a) Generate population for PSO. This action generates a basic population of
the PSO, which is a set of random candidate solutions centered within a given385

radius around the bestSolution, which is defined in lines 8–16 in Algorithm 3.
The size of a search space is based on the estimated number of necessary vehicles.

(5b) Incorporate heuristic based and history based solution in a random popula-
tion. This action injects the following solutions into an initial population of the
requests-to-vehicle assignment PSO optimizer: a candidate solution based on a390

heuristicSolution for the current state of the problem, a bestSolution found in
the previous time step, a continuous approximation of the bestSolution found
in the previous time step (line 17 in Algorithm 3).

(5c) Optimize requests-to-vehicles assignment by clustering requests with PSO.
Having the population initialized, the system performs a continuous black-box395

optimization with the PSO algorithm for maxFirstPhaseIterations. While
PSO operates in a search space of requests’ cluster centers, the generated re-
quests assignments are evaluated as a complete VRP solutions. It is made
possible by applying the 2–OPT algorithm in order to construct an optimized
route for each vehicle. The output is a VRP solution for a current state of400

the problem. The solution is encoded as a requests’ cluster centers vector (see
Section 4.2.1) found by PSO and a requests’ ranks vector (see Section 4.2.2)
found by 2–OPT.

4.1.3. 2nd optimization phase: requests ordering

(6) Optimize route in each vehicle by ordering requests with PSO. Having the405

optimizerBestSolution chosen as a result of the previous action (line 23 in
Algorithm. 3), its routes are further optimized (lines 2-11). A continuous opti-
mization is performed separately for each vehicle (lines 3-9 in Algorithm 4) for
maxSecondPhaseIterations.

4.1.4. Closing phase410

In some configurations of the 2MPSO algorithm it is possible to obtain a
result which is worse than the previous one. Therefore, if the state of the
problem did not change, a solution from a previous time step is preserved (line
13 in Algorithm 4).

(7a) Remove requests violating time constraints. The final optimization proce-415

dure (line 15 in Algorithm 4), applied to each optimizerBestSolution, is aimed
at repairing unfeasible routes (violating time constraint from eq. (4)) by means
of greedy reassignment of a rearmost requests from such a route. The results of
this action are an incomplete VRP solution and a set of unassigned requests.

17

Algorithm 4 Vehicles’ routes optimization (2MPSO’s 2nd phase) and closing
phase high-level pseudo-code.

1: for all vehicle ∈ optimizerBestSolution do
2: if 2PSO then
3: swarm⇐ InitializePSOPopulation(vehicle.route)
4: for i = 1, 2, . . . ,maxSecondPhaseIterations do
5: Evaluate(swarm)
6: UpdateV elocity(swarm)
7: UpdatePosition(swarm)
8: end for
9: vehicle.route⇐ GetBestRoute(swarm)

10: end if
11: end for
12: if Ct ⊆ Ct−1 AND optimizerBestSolution > bestSolution then

if the requests set has not changed between t and t − 1, we preserve the
bestSolution if it was better

13: optimizerBestSolution⇐ bestSolution
14: else

reassign in a greedy way all requests violating time constraint of the problem
(see eq. (4))

15: optimizerBestSolution = RepairBestSolution(optimizerBestSolution)

16: end if
17: for all vehicle ∈ optimizerBestSolution do
18: vehicle.route⇐ EnhanceWith2OPT (vehicle.route)
19: end for

(7b) Assign removed requests in a greedy manner. In order to get a complete420

VRP solution, the unassigned requests are inserted into an incomplete VRP
solution obtained as a result of the previous action in the same manner as
described in action (1b).

(7c) Optimize a route of each vehicle by ordering requests with 2-OPT. To get
a finally polished result, the routes are additionally optimized with a 2–OPT425

algorithm (line 18 in Algorithm 4).

4.2. VRP encoding and fitness functions

As already stated, 2MPSO uses PSO algorithm in both phases of the opti-
mization of the current state of the DVRP problem. Therefore, two independent
types of continuous encodings are introduced in this subsection, together with430

appropriate fitness functions and swarms initialization methods.

4.2.1. Requests-to-vehicles assignment encoding

Particles positions’ in the first phase denote centers of clusters of requests
assigned to certain vehicles. The area of clients’ requests locations is divided

18

among vehicles on the basis of the Euclidean distances from the client’s location435

to the cluster centers (i.e. a request is assigned to a vehicle which serves the
nearest cluster). The number of clusters k assigned to each vehicle is a parameter
of the 2MPSO algorithm.

The solution vector (v1.x1, v1.y1, v2.x1, . . . , vm.y1, v1.x2, v1.y2 . . . , vm.yk) for
the m vehicles and k requests’ clusters per vehicle is transformed into a VRP440

solution in the following way:

1. Distances between (vi.xj , vi.yj) and all not decisively assigned clients’ lo-
cations are computed.

2. The computed distances (treated as client-vehicle edges) are sorted in the
ascending order.445

3. The algorithm iterates over the sorted distances assigning each client to a
vehicle with a nearest cluster center until all the clients have been assigned.

4. The requests assigned to a single vehicle are formed in a random route
and reordered with the use of 2–OPT algorithm [36].

The example depicted in Fig. 3 consists of 3 vehicles with 2 requests cluster450

centers per vehicle. The division of an R2 plane, on which the requests are
located, imposes their following assignment: v1 operates in the upper-right part
of the plane and has been assigned set containing 2 requests ({1, 3}), v2 operates
in the middle-right and lower-right parts of the plane and has been assigned set
containing 5 requests ({4, 6, 7, 8, 9}), v3 operates in the lower-left and upper-left455

parts of the plane and has been assigned set containing 3 requests ({2, 5, 10}).
Subsequently 2–OPT algorithm created routes from those sets of requests.

After performing such clustering and routing procedure the COST (r1, r2,
. . . , rn) function (see eq. (1)) may be directly applied as a fitness function for
particles evaluation. In order to promote finding feasible solutions by the PSO,460

a penalty function is added to the DVRP cost function. The penalty is a sum of
squares of times of late returns to the depot (with I being an indicator function):

PENALTY (r1, r2, . . . , rn) =

n∑
i=1

I(arvri,mi
> tend)(arvri,mi

− tend)2 (10)

4.2.2. Vehicle’s route encoding465

In the second phase of the 2MPSO, the clients-to-vehicles assignment re-
mains unchanged while the order of visits is optimized. In this phase each indi-
vidual encodes the order of requests assigned to a given vehicle (each vehicle’s
route is optimized by a separate PSO instance). The sequence of visits is ob-
tained by sorting indices of each of the proposed solution vector in the ascending470

order by their values. The example depicted in Fig. 3 consists of 3 routes: 0–
3–1–0, 0–8–6–9–7–4–0 and 0–2–10–5–0. Those routes have been constructed by
fixing the requests-to-vehicles assignment obtained in the first phase of optimiza-
tion and sorting the indexes of requests vector within each vehicle by its values:
(3 : 0.5, 1 : 1.0), (8 : 0.2, 6 : 0.4, 9 : 0.6, 7 : 0.8, 4 : 1.0), (2 : 0.3, 10 : 0.7, 5 : 1.0).475

19

requests cluster centers (1st phase encoding)
1st vehicle 2nd vehicle 3rd vehicle 1st vehicle 2nd vehicle 3rd vehicle
1.0 1.4 1.0 0.0 -0.5 2.1 2.0 2.1 -3.0 -3.0

requests ranks (2nd phase encoding)
1.0 0.3 0.5 1.0 1.0 0.4 0.8 0.2 0.6 0.7

-0.6 -1.9

Figure 3: Example of a VRP with 3 vehicles and 10 clients’ requests. Solid lines represent
possible routes, whose lengths are used as an evaluation function by 2MPSO. Dotted lines
separate the operating areas assigned to vehicles. Operating areas are defined by their cluster
centers denoted by (vi.xj , vi.yj) for the ith vehicle and the jth cluster center. The division
of the R2 plane imposes the requests-to-vehicle assignment. The particular routes are defined
by the requests ranks vector, by sorting requests identifier by their rank within each vehicle.

The solution assessment in the second phase is equal to the length of a route
for a given vehicle, defined by the proposed ordering. The final cost value is
equal to the sum of the assessments of the best solutions found by each of
the second-phase optimization algorithm instances. The same type of square
penalty function (see eq. (10)) as in the first phase optimization is applied to480

each of the routes if necessary.

4.2.3. Solution transfer for swarm initialization

In order to take advantage of existence of the candidate solutions for the
previous state of the DVRP and a heuristic solution for the current state of the
problem obtained by capacitated clustering (or greedy insertion) and 2–OPT485

algorithm, 2MPSO uses those solutions to initialize particles locations. The
previous requests clusters centers solution may adapted in two ways: a direct
transfer and a continuous approximation.

Directly transferred solution consists of a vector of requests’ clusters centers
obtained in a previous time slice, with additional random requests’ cluster cen-490

ters added if the current state of the problem is estimated by a heuristic solution
as needing additional vehicles. In the continuous approximation approach all
the clusters centers for a given vehicle are set to the average location (with
a small random perturbation) of the tentatively assigned requests within that
vehicle. The same average location method is applied to the heuristic solution.495

The order of the requests is passed directly in both of the transfer meth-
ods, with new requests being initialized with a random rank. For the solutions
obtained by the 2–OPT, in the first phase of optmization, a continuous rep-
resentation for the second phase is created by setting the ranks within the
given vehicle from the best found requests assignment to a following sequence:500

(1
mi
, 2
mi
, . . . , mi

mi
).

20

Table 3: Parameter values in the baseline experiments.

Value(s)
Parameter FFE budget Time budget

DVRP simulation
Tco 0.5 0.5
nts 40 40
Tac 4% 4%

2MPSO
#clusters per vehicle 2 2

#parallel optimization processes 8 8
#particles 22 22

#iterations 1st/2nd phase 140/0 1.875/0 sec.
PSO

g 0.60 0.60
l 2.20 2.20
a 0.63 0.63

P (X is a neighbor of Y) 0.50 0.50

In both phases the swarm is initialized within a certain radius around the
previous best solution with some of the particles placed at the exact locations
of transferred solutions.

5. Experiments and 2MPSO results505

5.1. Benchmark files

In order to evaluate the performance of the algorithm we used dynamic
versions of Christofides’ [37], Fisher’s [38] and Taillard’s [39] benchmark sets
adapted to the DVRP by Kilby et al. [8]. Each instance consists of between 50
and 385 requests to be served by a fleet of 50 vehicles (the number of requests is510

a part of the benchmark’s name). The chosen benchmarks are very popular in
DVRP literature and, in particular, were used in all papers we make a compari-
son with in this study. Generally speaking, the benchmark sets are very diverse.
They include examples of a very well clustered problems, semi-clustered ones,
and completely unstructured instances. Also the volume distribution (especially515

its skewness) significantly differs across the benchmarks.
Visualization of requests’ distribution for all the benchmarks can be found

at our project website [40] with some examples presented in Appendix B.

5.2. 2MPSO parameters

The main parameters for the baseline experiments are presented in the Ta-520

ble 3. For PSO g, l, a and P where chosen experimentally based on some
number of initial tests. The stopping criterion was defined based on either the
number of fitness function evaluations (FFE) or computational time limit. The

21

Figure 4: Distribution of the relative results for 2MPSO configurations with various opti-
mization components switched off run with the FFEs number computations limit. Horizontal
line depicts the average result of a MEMSO algorithm.

limit for the total number of FFE and the cut-off time were imposed accord-
ing to the former literature results. The total time limit of 75 seconds, on525

multithreaded Intel Core i7, for 2MPSO has been proposed and used as an
equivalent to the time limit of 750 seconds for GA, which has been run on a
single threaded Intel Pentium IV machine [13]. The number of parallel opti-
mization processes stemmed from the number of virtual CPUs on the testing
machine. The number of cluster per vehicle, number of time slices, the advanced530

commitment time, and the ratio of the number of solutions to the number of
iterations were experimentally tuned on the set of 21 benchmarks used in the
FFE limited experiments4.

5.3. Experiments setup

In order to achieve statistically significant and comparable results each bench-535

mark has been solved 30 times with the common parameter set. From those
30 runs the average value (showing the general quality of the algorithm) and
the minimum value (showing the potential for achieving high quality solutions)
were computed. The significance of the average results has been tested against
the literature results with the Student’s t-test.540

In order to summarize all the results for a given parameter set the particular
results were normalized by dividing them by the shortest known solution for
a given benchmark instance. Such normalized results are referred to (on the
boxplots) as relative results.

5.4. Optimization modules analysis545

The critical research question of this paper is to estimate the particular
2MPSO’s components contribution on achieving good results on the DVRP

4The details and results of the parameter tuning procedure are presented in Appendix A.

22

Table 4: Summary of the average results on a set of benchmark instances for dividing op-
timization budget between phases. Percentages denote the division of the number of fitness
function evaluations between 1PSO and 2PSO. Best result is marked in bold and grey back-
ground denotes results which are not significantly worse than the best average (based on the
Student’s t-test).

1PSO(100%) 1PSO(86%) 1PSO(86%)
+2PSO(14%)

Avg Avg Avg
c50 578.31 579.65 581.62
c75 903.72 905.72 907.64

c100 933.46 926.56 931.43
c100b 845.8 843.52 841.15
c120 1071.38 1081.9 1090.51
c150 1134.2 1146.07 1143.32
c199 1408.7 1415.27 1407.89

f71 298.5 291.04 291.24
f134 11892 11904.48 11880.04

tai75a 1805.03 1818.46 1844.97
tai75b 1422.6 1419.48 1408.43
tai75c 1510 1504.51 1513.15
tai75d 1433.25 1438.07 1441.79

tai100a 2216.23 2235.43 2259.82
tai100b 2136.8 2162.21 2142.82
tai100c 1494.72 1497.99 1499.23
tai100d 1727.95 1736.32 1746.72
tai150a 3530.82 3558.19 3558.34
tai150b 3026.89 3046.21 3019.01
tai150c 2603.53 2583.87 2611.98
tai150d 3009.01 2985.12 2995.35

sum 44982.9 45080.07 45116.45

benchmark set. For testing various configurations of the 2MPSO, two types
of experiments have been conducted. The first one was performed to assess
the need of the second phase PSO optimization and its results are presented in550

Table 4. The second one has been performed to assess the impact on DVRP
results of introducing heuristic solutions, directly transferred solutions, approx-
imately transferred solutions and the PSO optimization itself. Results of that
experiment are presented in Figure 4 and Table 5. Discussion of the particular
techniques uses the configuration flags (Tree, CHist, DHist, 1PSO, 2PSO) intro-555

duced in Section 4.1, while describing the activities of the 2MPSO algorithm.

5.4.1. 2PSO: 2nd phase PSO optimization

The analysis of the results presented in Table 4 points out the relative in-
significance of the continuous optimization performed in the second phase (likely
due to using 2–OPT in the first phase). While having a second phase PSO op-560

timization slightly improves the average results (cf. columns 1PSO(86%) +
2PSO(14%) and 1PSO(86%)), a visibly better improvement, although not sta-
tistically significant, can be achieved if the same total budget of FFEs is spent
exclusively in the 1st phase (cf. columns 1PSO(100%) and 1PSO(86%) +
2PSO(14%)).565

Therefore, in all further experiments the whole metaheuristic optimization
computations budget is utilized by the 1st phase PSO with a baseline configu-
ration (denoted as 1PSO or simply 2MPSO) having all the other configuration
flags (Tree, CHist, DHist) switched on.

23

Table 5: Summary of the average results on a set of benchmark instances for various opti-
mization modules switched off. Best result is marked in bold and grey background denotes
results which are not significantly worse than the best average (based on the Student’s t-test).

1PSO 1PSO 1PSO 1PSO 1PSO 1PSO 1PSO Tree 1PSO
+Tree +Tree +Tree +CHist +CHist +DHist +Tree

+CHist +CHist +DHist +DHist
+DHist

Avg Avg Avg Avg Avg Avg Avg Avg Avg
c50 578.31 580.6 576.48 584.25 584.78 587.08 605.64 736.66 768.49
c75 903.72 905.32 906.5 927.1 947.61 925.99 999.11 1121.94 1422.61

c100 933.46 925.54 930.17 939.31 975.83 970.03 1014.72 1102.27 1575.53
c100b 845.8 842.88 838.74 843.89 852.98 853.19 838.36 835.05 982.56
c120 1071.38 1090.56 1085.82 1119.76 1097.47 1124.65 1087.68 1100.35 1417.92
c150 1134.2 1154.63 1145.67 1193.8 1278.92 1233.69 1243.95 1278.69 2187.39
c199 1408.7 1421.52 1403.86 1441.17 1488.73 1537.94 1608.39 1640.37 2528.06

f71 298.5 290.26 294.57 291.23 298.68 297.8 301.94 332.05 402.32
f134 11892 11878.62 11992.36 11974.4 11982.38 12192.3 12188.79 12928.45 12399.6

tai75a 1805.03 1804.5 1828.85 1823.18 1912.45 1868.8 1916.67 2011.77 2862.4
tai75b 1422.6 1418.35 1485.56 1423.05 1431.05 1523.09 1535.72 1605.2 2050.18
tai75c 1510 1501.34 1520.98 1541.31 1552.97 1557.35 1594.42 1665.86 2094.51
tai75d 1433.25 1452.19 1454.6 1442.08 1452.63 1487.34 1496.25 1480.29 2444.79

tai100a 2216.23 2250.34 2277.29 2308.59 2330.15 2382.92 2515.87 2582.84 4365.11
tai100b 2136.8 2153.72 2165.55 2194.7 2259.7 2289.77 2356.51 2356.64 4187.3
tai100c 1494.72 1501.72 1536.52 1517.49 1524.9 1558.33 1630.28 1570.9 2382.15
tai100d 1727.95 1737.12 1757.42 1769.5 1779.56 1810.48 1953.39 2063.46 3004.16
tai150a 3530.82 3522.7 3718.11 3540.63 3707.63 3845.85 3956.46 3735.37 8078.31
tai150b 3026.89 3048.36 3096.83 3135.83 3170.44 3193.1 3274.73 3472.06 6373.7
tai150c 2603.53 2580.25 2698.73 2675.97 2669.49 2837.01 2833.65 2678.9 4301.98
tai150d 3009.01 2995.86 3090.26 3061.67 3081.2 3172.15 3251.66 3354.67 5586.19

sum 44982.9 45056.38 45804.87 45748.91 46379.55 47248.86 48204.19 49653.79 71415.26

5.4.2. 1PSO: 1st phase PSO optimization570

Analysis of the results presented in Figure 4 and Table 5 shows that the
continuous optimization of the requests-to-vehicles assignment is crucial for ob-
taining high quality solutions (cf. results of configurations using 1PSO with any
of the additional modules vs. a Tree only configuration). It is also important
to observe that PSO initialized only with random solutions (1PSO configura-575

tion) in each time step provides very low quality solutions and needs at least one
type of “reasonably good” solution to perform better than a discrete capacitated
clustering on its own.

5.4.3. CHist and DHist: solutions transfer between problem states

Utilizing at least one type of a solution transfer between subsequent problem580

states is important for obtaining high quality solutions (1PSO+Tree, Tree and
1PSO configuration, which do not have any type of solutions transfer obtained
the worst results). From the two types of a transfer a direct passing of the solu-
tion (CHist flag) is more important than passing its approximation (DHist flag).
For some benchmark instances 1PSO+Tree+CHist configuration obtained even585

better average solutions than the baseline 1PSO+Tree+CHist+Dhist setup.
While considering the overall average performances, the setup without a given
type of transfer always gives worse results than the one utilizing it.

24

Table 6: Comparison of the GA, TS, EH algorithms with a 2MPSO algorithm. Time limit
of 75 seconds has been chosen in order to make results comparable with those obtained on an
Intel Pentium IV. The best minimum and average values within each setup are bolded and
statistically significant differences between authors’ and literature results are marked with a
grey background. The statistical significance has been measured by a one-sided t-tests with
α = 0.05.

GA [13] TS [13] EH [15] ACOLNS [16] 2MPSO
750 seconds 750 seconds 250 seconds 1500 seconds 75 seconds

Intel Pentium IV Intel Pentium IV Athlon 64 Intel Core i5 Intel Core i7(2nd)
@2.8GHz @2.8GHz @2.2 GHz @2.4 GHz @3.4GHz

Min Avg Min Avg Min Avg Min Avg Min Avg

c50 570.89 593.42 603.57 627.90 597.72 632.71 601.78 623.09 562.70 581.46
c75 981.57 1013.45 981.51 1013.82 979.29 1019.05 1003.20 1013.47 874.08 905.95

c100b 881.92 900.94 891.42 932.14 956.67 1020.02 932.35 943.05 819.56 844.90
c100 961.10 987.59 997.15 1047.60 975.20 1003.95 987.65 1012.30 882.96 930.95
c120 1303.59 1390.58 1331.80 1468.12 1245.94 1372.45 1272.65 1451.60 1066.15 1085.46
c150 1348.88 1386.93 1318.22 1401.06 1342.91 1413.05 1370.33 1394.77 1147.50 1195.95
c199 1654.51 1758.51 1750.09 1783.43 1689.55 1747.02 1717.31 1757.02 1434.70 1503.94

f71 301.79 309.94 280.23 306.33 287.99 299.58 311.33 320.00 270.35 290.62
f134 15528.81 15986.84 15717.90 16582.04 14801.60 14952.66 15557.82 16030.53 11773.74 12038.02

tai75a 1782.91 1856.66 1778.52 1883.47 1769.75 1859.25 1832.84 1880.87 1767.64 1825.87
tai75b 1464.56 1527.77 1461.37 1587.72 1450.45 1502.09 1456.97 1477.15 1366.80 1419.66
tai75c 1440.54 1501.91 1406.27 1527.80 1685.10 1779.08 1612.10 1692.00 1427.76 1487.39
tai75d 1399.83 1422.27 1430.83 1453.50 1432.92 1445.89 1470.52 1491.84 1404.75 1442.45

tai100a 2232.71 2295.61 2208.85 2310.37 2227.43 2309.90 2257.05 2331.28 2196.91 2261.66
tai100b 2147.70 2215.39 2219.28 2330.52 2183.38 2221.40 2203.63 2317.30 2060.46 2151.73
tai100c 1541.28 1622.66 1515.10 1604.18 1656.97 1756.25 1660.48 1717.61 1476.24 1512.13
tai100d 1834.60 1912.43 1881.91 2026.76 1834.47 2029.45 1952.15 2087.96 1676.10 1746.44
tai150a 3328.85 3501.83 3488.02 3598.69 3346.02 3487.78 3436.40 3595.40 3476.48 3777.98
tai150b 2933.40 3115.39 3109.23 3215.32 2874.72 3068.64 3060.02 3095.61 2978.30 3120.09
tai150c 2612.68 2743.55 2666.28 2913.67 2583.13 2731.14 2735.39 2840.69 2532.23 2678.16
tai150d 2950.61 3045.16 2950.83 3111.43 3084.58 3252.03 3138.70 3233.39 2958.75 3141.63
tai385 NA NA NA NA NA NA 33062.06 35188.99 31162.15 32801.70

5.4.4. Tree: capacitated clustering

Capacitated clustering by a modified Kruskal algorithm proved to be a rea-590

sonably well performing algorithm in itself (especially if one considers the fact
that it processes the whole sequence of problem states within a few seconds, even
for the larger instances). Analysis of the average results raises a similar con-
clusion to that of the solution transfer: configuration without the capacitated
clustering perform worse than the corresponding ones utilizing it.595

5.5. Comparison with the literature results

The analysis of the configurations of the 2MPSO resulted in selecting a
1PSO+Tree+CHist+DHist configuration as a baseline one, which is simply re-
ferred to as 2MPSO, in the comparison with the literature results.

As already mentioned, two types of comparison with the literature results600

were made: the number of FFE limited experiment and the computations time
limited experiment.

The comparison of the time limited approaches includes the algorithms pro-
viding state-of-the art results for at least one benchmark problem. The results
of the experiment with 2MPSO’s computations time limited to 1.875 for each605

of the 40 time slices are presented in Tab. 6. It can be observed that 2MPSO
obtained 18 out of 22 best average results (all of them statistically significantly
better), including the largest tai385 benchmark.

25

Table 7: Comparison of the MAPSO and MEMSO algorithms with the initial and current
version of the 2MPSO algorithm. Total number of fitness function evaluation of 106 has been
chosen in order to make the results comparable. The best minimum and average values within
each setup are bolded and statistically significant differences between authors’ and literature
results are marked with a grey background. The statistical significance has been measured by
a one-sided t-tests with α = 0.05.

MAPSO [12] MEMSO [5] 2MPSO 2014 [6] 2MPSO
(25 ∗ 8 ∗ (0.5 ∗ 104)) (25 ∗ 8 ∗ (0.5 ∗ 104)) (25 ∗ 8 ∗ (1.4 ∗ 104)) (40 ∗ 8 ∗ (0.31 ∗ 104))

Min Avg Min Avg Min Avg Min Avg

c50 571.34 610.67 577.60 592.95 583.09 618.59 544.11 578.31
c75 931.59 965.53 928.53 962.54 904.83 946.85 884.43 903.72

c100b 866.42 882.39 864.19 878.81 830.58 875.47 819.56 845.80
c100 953.79 973.01 949.83 968.92 926.10 966.27 902.00 933.46
c120 1223.49 1295.79 1164.63 1284.62 1061.84 1176.38 1053.18 1071.38
c150 1300.43 1357.71 1274.33 1327.24 1132.12 1208.60 1098.03 1134.20
c199 1595.97 1646.37 1600.57 1649.17 1371.61 1458.01 1362.65 1408.70

f71 287.51 296.76 283.43 294.85 302.50 319.01 274.16 298.50
f134 15150.50 16193.00 14814.10 16083.82 11944.86 12416.65 11746.40 11892.00

tai75a 1794.38 1849.37 1785.11 1837.00 1721.81 1846.03 1685.23 1805.03
tai75b 1396.42 1426.67 1398.68 1425.80 1418.82 1451.92 1365.36 1422.60
tai75c 1483.10 1518.65 1490.32 1532.45 1456.90 1560.68 1439.02 1510.00
tai75d 1391.99 1413.83 1342.26 1448.19 1445.58 1481.25 1408.79 1433.25

tai100a 2178.86 2214.61 2170.54 2213.75 2211.30 2327.20 2137.30 2216.23
tai100b 2140.57 2218.58 2093.54 2190.01 2052.54 2131.91 2060.65 2136.80
tai100c 1490.40 1550.63 1491.13 1553.55 1465.06 1519.44 1458.81 1494.72
tai100d 1838.75 1928.69 1732.38 1895.42 1722.16 1808.67 1663.87 1727.95
tai150a 3273.24 3389.97 3253.77 3369.48 3367.55 3537.81 3338.71 3530.82
tai150b 2861.91 2956.84 2865.17 2959.15 2911.22 3033.83 2910.06 3026.89
tai150c 2512.01 2671.35 2510.13 2644.69 2510.51 2579.72 2497.65 2603.53
tai150d 2861.46 2989.24 2872.80 3006.88 2893.54 2992.53 2869.79 3009.01

The results of the experiment with computations budget bound by the num-
ber of FFEs are compared with the state-of-the art MAPSO and MEMSO ap-610

proaches utilizing a discrete version of the PSO algorithm. The results of the
computations with the number of FFEs limited to 3125 within each time slice
for each of the 8 parallel optimization processes is presented in Tab. 7. It can
be observed that 2MPSO obtained 15 out of 21 best average results (13 of
them statistically significantly better), with MAPSO and MEMSO approaches615

remaining competitive for the Taillard’s benchmark set.

6. Conclusions

The 2MPSO algorithm presented in this article outperforms other litera-
ture approaches, both in the time bounded computations and in those bounded
by a number of FFEs. In the time bounded experiment 2MPSO outperforms620

the average length of the GA’s routes by 7.1% and ACOLNS’s by 10.4%.
In the FFE bounded experiment 2MPSO outperforms the average length of
MEMSO’s routes by 5.7%. The average results of the 2MPSO implemen-
tation presented in this paper outperform on its initial version (from the year
2014) [6] by 3.2%.625

Detailed analysis of the optimization techniques used by our algorithm con-
firms the findings from [4], on importance of including both the previous and

26

random solutions in the initial population after the problem state change. In
the area of the initial population composition, it also proved beneficial to add
solution based on a heuristic clustering algorithm, with the most credit for the630

quality of the final solution belonging to the assignment optimization performed
by the PSO.

In the area of the knowledge transfer between problem states, our research
experimentally proves that direct transfer of solutions, without discretizing
them, improves the results obtained on a benchmark set.635

Finally, optimizing vehicles routes with the PSO, after they have been al-
ready optimized with a 2–OPT algorithm in assignment phase proved to be
unnecessary. The computations budget is more efficiently utilized by optimiz-
ing requests-to-vehicles assignment.

Therefore, the success of the 2MPSO method can be contributed to three640

crucial factors: (1) the usage of the modified Kruskal algorithm, (2) knowledge
transfer between consecutive time slices by means of transferring the best so-
lution from the previous time slice, and (3) the use of continuous optimization
meta-heuristic, in particular in requests-to-vehicles-assignment phase.

In the future work we plan to test other continuous optimization algorithms645

(eg. Differential Evolution) as a main optimization engine, instead of the PSO.
Additionally, we are going to analyse the reason for obtaining good quality final
results by solving DVRP a series of dependent static VRP instances, despite
insufficient initial knowledge on the properties of the final set of requests. Also,
we plan to apply a robust-like optimization approach, to directly account for a650

dynamic characteristics of the DVRP.

Acknowledgement

The research was financed by the National Science Centre in Poland, grant
number DEC-2012/07/B/ST6/01527.

Appendix A. Parameter tuning655

This appendix presents the results of tuning two major parameters of the
proposed optimization method: the number of time slices and the advanced
commitment time. In addition, the ratio of the iterations to the number of
individuals in the population has been tuned. Finally, the impact of a number
of clusters and knowledge transfer type on a quality and computations time has660

been measured for experiments with the fixed FFE budget.

Appendix A.1. Advance commitment time and number of time slices

In order to choose the appropriate number of time slices and the size of
time buffer (advanced commitment time) the following tests were run for all
benchmark instances:665

27

Figure A.5: Relative performance of the 2MPSO algorithm on all benchmark files for various
numbers of time slices (with the same FFE budget and the same population size to iterations
ratio). Horizontal line depicts the average result of a MEMSO algorithm.

Figure A.6: Relative performance of the 2MPSO algorithm on all benchmark files for various
advanced commitment time values. Horizontal line depicts the average result of a MEMSO
algorithm.

• 2MPSO with the population size to iterations ratio equal to 1 : 6.25 (20 :
250), the advanced commitment time equal to 0.04 and the number of time
slices from the set {10, 20, . . . , 100};

• 2MPSO with the population size to iterations ratio equal to 1 : 6.25 (20 :
250), the number of time slices equal to 40, and the advanced commitment670

time from the set {0, 0.02, . . . , 0.16}.

The results of testing various numbers of time slices and advanced commit-
ment times are presented in Figures A.5 and A.6, respectively. Since there was
no significant difference in the distribution of relative results between the ex-
periments with 40 and more time slices, the number of time slices was set to675

40 in the main experiments presented in the paper. The advanced commitment
time was set to 0.04 as no relevant difference was observed between the ad-
vanced commitment time set to 0.04 and 0.08, and smaller time buffer is a more
intuitive choice.

28

Appendix A.2. Population size to iterations ratio680

Figure A.7: Relative performance of the 2MPSO algorithm on all benchmark files for various
population size to iterations ratios with the constant FFE budget. Horizontal line depicts the
average result of a MEMSO algorithm.

In order to choose the efficient number of iterations to population size ratio
an experiment with the advanced commitment time equal to 0.04, the number
of time slices equal to 505 and the population size from the set {10, 20, 30, 40}
has been conducted. Figure A.7 presents the relative results for various pop-
ulation size to iterations ratios for constant budget of 106 FFE per optimizer685

(population/swarm). There seems to be no significant difference between the
distribution of relative results for swarm sizes equal to 20 and 30. Therefore, in
the main experiment, the number of iterations to population size ratio was set
to 6.25 : 1 (125 : 20).

Appendix A.3. Knowledge transfer and number of requests clusters per vehicle690

Final parameter tuning experiment concerned the optimum number of re-
quests clusters for both type of knowledge transfer. Experiments with transfer-
ring previous solution through a discretization phase are denoted by Hist, while
experiments with direct transfer of continuous solution are denoted by CHist.
The experiments have been conducted for the number of clusters k = 1, 2, 3 and695

resulted in choosing k = 2 as a value for the baseline experiments. One clus-
ter encoding seems to be beneficial if the limit on computations time becomes
an optimization process constraint. Three clusters proved to generate to large
search space to be effectively utilized.

Appendix B. Selected benchmark instances and obtained best results700

In section Appendix B.1 of this appendix the differences in spatial and vol-
ume distributions of requests between example benchmark instances are pre-

5This was the first parameter tuning experiment, therefore the initial number of 50 time
slices has been used.

29

100 120 140 160 180 200 220

1.
07

0
1.

07
5

1.
08

0
1.

08
5

1.
09

0

Quality and computations time comparison for different knowledge transfer types

Average time

R
el

at
iv

e
to

 th
e

be
st

 k
no

w
n

re
su

lt

PSOCHistx1

PSOCHistx2 PSOCHistx3

PSOHistx1
PSOHistx2

PSOHistx3

Figure A.8: Average relative performance and average computations time for direct (CHist)
and indirect (Hist) previous solutions transfer, with xk denoting the number of requests’
clusters used in the encoding of the requests-to-vehicles assignment.

sented, with the aim of pointing the probable explanation of better performance
of the discrete encoding based algorithms on some of the instances.

In section Appendix B.2 depiction and schedules of solutions obtained by705

the 2MPSO algorithm for the chosen benchmark instances are presented. Up
to date best obtained solutions can be found at our website [40].

Appendix B.1. Benchmark instances

Spatial and volume distributions, as well as histogram of requests’ sizes and
the plot of their cumulative size over time, of the four exemplar benchmark710

sets are presented in Figs. B.9a–B.9d. The distributions of requests’ sizes differ
mainly in their skewness and the existence of relatively large requests. The
spatial distribution of requests varies from uniform-like (e.g. c50) to clearly
structured ones (e.g. c120, tai150b).

Appendix B.2. Obtained results715

Selected results obtained by the 2MPSO algorithm are presented in Fig-
ures B.10a–B.10d. Tables B.8–B.11 present the schedules for the fleet of vehi-
cles in terms of the vehicle id, request id, its location (columns X, Y), time of
availability in the system (column Known) and scheduled visit time (column
Time). The requests are grouped by vehicle id and ordered by scheduled time.720

Horizontal lines denote returns to a depot.

30

(a) Depiction of the c50 benchmark set.
c50 is characterized by a uniform spatial
distribution of requests that are relatively
small and similar in size.

(b) Depiction of the c120 benchmark set.
c120 is characterized by a clustered spa-
tial distribution of requests that are rela-
tively small and similar in size.

(c) Depiction of the f134 benchmark
set. f134 is characterized by a semi-
structured spatial distribution of requests
with quite a high number of relatively
small requests and several large requests
appearing within the first 20% of a work-
ing day time.

(d) Depiction of the tai150b bench-
mark set. tai150b is characterized by
a clustered spatial distribution of re-
quests with a relatively high number
of (non-uniformly distributed) large re-
quests. In addition, some of these large
requests appear relatively late, i.e. after
the first 25% of a working day time.

Figure B.9: Spatial and volume distribution of requests (left subplots in the subfigures), the
plot of cumulative requests’ size and the histogram of requests’ sizes (right subplots in the
subfigures).

31

10 20 30 40 50 60 70

10
20

30
40

50
60

70

c50

X

Y

(a) Depiction of the result for the c50
benchmark set.

20 40 60 80 100

0
20

40
60

80

c120

X

Y

(b) Depiction of the result for the c120
benchmark set.

-1500 -1000 -500 0 500

-2
00

0
20
0

40
0

60
0

f134

X

Y

(c) Depiction of the result for the f134
benchmark set.

-100 -50 0 50 100

-5
0

0
50

10
0

tai150b

X

Y

(d) Depiction of the result for the
tai150b benchmark set.

Figure B.10: Results obtained by 2MPSO for a selected benchmark instances.

32

Table B.8: Best result obtained for c50
Vehicle Client X Y Known Scheduled

Depot 30 40 0 351
1 38 45 35 0 42.14
1 50 56 37 0 68.32
1 34 61 33 0 135.48
1 30 58 27 0 157.19
1 9 52 33 42 181.44
1 16 52 41 80 204.44
1 21 62 42 128 229.49
1 29 58 48 0 251.70
1 2 49 49 4 275.75
1 11 42 41 51 301.38
2 47 25 32 0 70.86
2 4 20 26 12 93.67
2 17 27 23 86 145.47
2 42 21 10 0 174.78
2 19 13 13 104 198.33
2 40 5 6 0 223.96
2 41 10 17 0 251.04
2 13 5 25 63 275.47
2 18 17 33 100 304.90
3 32 38 46 0 36.33
3 1 37 52 1 57.41
3 8 31 62 34 84.07
3 26 27 68 0 118.74
3 31 37 69 0 143.79
3 28 43 67 0 165.11
3 3 52 64 9 189.60
3 36 63 69 0 216.68
3 35 62 63 0 237.76
3 20 57 58 116 259.83
3 22 42 57 138 289.87
3 46 32 39 0 325.46
4 6 21 47 16 125.48
4 14 12 42 79 150.77
4 25 7 38 0 172.18
4 24 8 52 0 201.21
4 43 5 64 0 228.58
4 7 17 63 21 255.62
4 23 16 57 157 276.70
4 48 25 55 0 300.92
4 27 30 48 0 324.53
5 12 31 32 58 95.81
5 37 32 22 0 120.86
5 44 30 15 0 143.14
5 15 36 16 80 164.23
5 45 39 10 0 185.93
5 33 46 10 0 207.93
5 39 59 15 0 236.86
5 10 51 21 44 261.86
5 49 48 28 0 284.48
5 5 40 30 12 307.72

33

Table B.9: Best result obtained for c120
Vehicle Client X Y Known Time

Depot 10 45 0 794
1 8 46 9 38 467.76
1 12 47 6 70 483.92
1 13 40 5 71 504.00
1 14 39 3 89 519.23
1 15 36 3 114 535.23
1 11 35 5 70 550.47
1 10 34 6 62 564.88
1 9 35 7 46 579.30
1 7 34 9 35 594.53
1 6 32 9 34 609.53
1 5 31 7 29 624.77
1 4 32 5 27 640.00
1 3 31 5 26 654.00
1 1 25 1 1 674.21
1 2 25 3 14 689.21
1 88 11 42 0 743.65
2 119 5 40 0 463.62
2 82 10 40 0 481.62
2 81 10 35 0 499.62
2 112 15 36 0 517.72
2 84 17 35 0 532.96
2 117 16 33 0 548.19
2 113 18 31 0 564.02
2 83 18 30 0 578.02
2 108 28 33 0 601.46
2 118 25 35 0 618.07
2 18 24 36 152 632.48
2 114 25 37 0 646.89
2 90 21 39 0 664.37
2 91 20 40 0 678.78
2 92 18 41 0 694.02
2 89 18 40 0 708.02
2 85 16 38 0 723.85
2 86 14 40 0 739.67
3 17 73 8 140 350.96
3 16 73 6 122 365.96
3 20 76 10 172 383.96
3 23 78 9 200 399.20
3 19 76 6 166 415.80
3 25 79 5 223 431.97
3 22 78 3 188 447.20
3 24 79 3 206 461.20
3 27 82 3 226 477.20
3 33 85 1 274 493.81
3 30 84 3 251 509.04
3 31 84 5 254 524.04
3 34 87 5 276 540.04
3 36 87 7 292 555.04
3 29 90 15 235 576.59
3 35 85 8 289 598.19
3 32 84 9 273 612.60
3 28 82 7 234 628.43
3 26 79 11 223 646.43
3 21 76 13 181 663.04
3 109 33 38 0 725.78
4 120 5 50 0 423.92
4 105 14 50 0 445.92
4 102 16 48 0 461.75
4 101 18 49 0 476.99
4 106 15 51 0 493.59

Vehicle Client X Y Known Time
4 107 16 54 0 509.75
4 104 18 53 0 524.99
4 103 20 55 0 551.78
4 99 20 50 0 569.78
4 100 22 51 0 585.01
4 116 25 52 0 601.18
4 115 30 46 0 621.99
4 97 25 45 0 640.09
4 94 22 44 0 656.25
4 93 20 44 0 671.25
4 96 20 45 0 685.25
4 95 16 45 0 702.25
4 87 15 42 0 718.41
4 111 13 40 0 734.24
5 98 30 55 0 439.21
5 68 50 80 0 484.23
5 73 46 83 0 502.23
5 76 48 83 0 517.23
5 77 50 85 0 533.05
5 79 54 86 0 550.18
5 80 54 90 0 567.18
5 78 50 88 0 584.65
5 75 46 89 0 601.77
5 72 46 89 0 614.77
5 74 46 87 0 629.77
5 71 44 86 0 645.01
5 70 35 87 0 667.06
5 69 35 85 0 682.06
5 67 37 83 0 697.89
6 52 83 80 0 378.71
6 54 85 81 0 432.09
6 57 87 80 0 447.32
6 59 90 77 0 464.56
6 65 95 80 0 483.40
6 61 93 82 0 499.22
6 62 93 84 0 514.22
6 64 94 86 0 529.46
6 66 99 89 0 548.29
6 63 93 89 0 567.29
6 60 90 88 0 583.45
6 56 85 89 0 601.55
6 58 87 86 0 618.16
6 55 85 85 0 633.39
6 53 83 83 0 649.22
7 110 30 50 0 377.92
7 40 85 55 324 446.14
7 43 89 52 339 464.14
7 45 92 52 356 480.14
7 48 94 48 377 497.61
7 51 99 50 0 516.00
7 50 99 46 396 533.00
7 49 96 42 383 551.00
7 47 94 44 361 566.83
7 46 94 42 358 581.83
7 44 92 42 346 596.83
7 41 89 43 330 612.99
7 42 89 46 330 628.99
7 39 86 46 324 644.99
7 38 86 44 324 659.99
7 37 86 41 304 675.99

34

Table B.10: Best result obtained for f134
Vehicle Client X Y Known Time

Depot -60 150 0 11741
1 78 -70 0 0 7488.46
1 133 -150 -40 0 7590.90
1 68 -250 -200 4650 7792.58
1 70 -240 -350 5063 7955.91
1 69 -250 -350 4975 7978.91
1 112 -780 -170 0 8551.65
1 125 -780 -175 0 9997.85
1 111 -780 -180 0 10015.85
1 110 -780 -190 0 10038.85
1 122 -790 -190 0 10061.85
1 123 -790 -185 0 10079.85
1 124 -790 -180 0 10097.85
1 126 -790 -170 0 10120.85
1 127 -800 -170 0 10143.85
1 121 -900 -220 0 10268.65
1 128 -800 -160 0 10398.27
1 129 -800 -150 0 10421.27
1 113 -800 -140 0 10444.27
1 81 -620 -100 0 10641.66
2 46 -140 160 3073 8886.37
2 118 -150 160 0 8909.37
2 17 -200 130 1171 8980.68
2 18 -210 140 1234 9007.82
2 132 -620 -90 0 9490.93
2 116 -850 140 0 9829.20
2 131 -850 150 0 9852.20
2 117 -780 150 0 9935.20
2 119 -620 320 0 10181.65
2 130 -480 370 0 10343.31
2 65 -400 490 4479 10500.53
2 19 -300 300 1278 10728.24
3 82 -80 300 0 8957.08
3 20 -50 300 1278 9000.08
3 83 10 600 0 9319.02
3 85 100 520 0 9452.43
3 84 100 520 0 9465.43
3 86 100 510 0 9488.43
3 87 160 290 0 9729.47
3 89 160 210 0 9822.47
3 90 155 192 0 9854.15
3 16 205 190 1040 9917.19
3 13 235 190 909 9960.19
3 15 250 200 1039 9991.22
3 88 260 210 0 10018.36
3 14 260 200 953 10041.36
3 11 283 143 672 10115.83
3 12 270 143 716 10141.83
3 10 265 117 587 10181.30
3 9 290 100 541 10224.54
3 8 300 105 453 10248.72
3 7 335 105 389 10296.72
3 6 310 80 345 10345.07
3 5 290 80 282 10378.07
3 4 278 83 259 10403.44
3 2 246 83 111 10448.44
3 42 230 40 2898 10507.32
3 41 228 31 2702 10529.54
3 3 233 13 130 10561.22
3 40 203 21 2702 10605.27
3 44 208 40 3030 10637.92
3 43 208 40 3006 10650.92
3 45 185 64 3049 10697.16
3 94 169 77 0 10730.77
3 93 165 78 0 10747.90
3 29 144 113 1969 10801.71
3 92 172 143 0 10855.75
3 28 114 145 1969 10926.78

Vehicle Client X Y Known Time
3 27 98 166 1967 10966.19
3 26 70 150 1819 11011.43
3 25 48 170 1754 11054.17
3 21 13 178 1430 11103.07
3 91 0 165 0 11134.45
4 120 -1200 -200 0 8824.17
4 109 -1420 -310 0 9083.14
4 108 -1520 0 0 9421.87
4 107 -1520 10 0 9444.87
4 106 -1500 80 0 9530.67
4 114 -1180 220 0 9892.95
4 115 -1070 300 0 10041.97
5 66 -150 100 4543 10082.81
5 71 -180 100 5319 10125.81
5 33 -300 -100 2164 10372.04
5 80 -300 -110 0 10395.04
5 67 -110 -100 4648 10598.31
5 79 -30 -60 0 10700.75
5 63 -40 -40 4326 10736.11
5 64 -30 12 4327 10802.06
5 77 -30 20 5817 10823.06
5 76 -17 30 5751 10852.46
5 134 -10 32 0 10872.74
5 74 -30 50 5603 10912.65
5 73 -40 80 5538 10957.27
6 75 21 62 5729 9512.40
6 1 32 51 25 9540.96
6 62 72 40 4281 9595.44
6 50 87 28 3547 9627.65
6 51 90 33 3632 9646.49
6 53 112 33 3719 9681.49
6 102 118 30 0 9701.19
6 103 120 40 0 9724.39
6 104 128 36 0 9746.34
6 101 130 26 0 9769.53
6 35 145 10 2399 9804.47
6 36 150 18 2488 9826.90
6 37 172 24 2509 9862.70
6 95 180 20 0 9884.65
6 39 182 44 2598 9921.73
6 38 172 42 2550 9944.93
6 96 162 40 0 9968.13
6 97 150 40 0 9993.13
6 98 150 30 0 10016.13
6 99 148 24 0 10035.45
6 100 145 30 0 10055.16
6 105 134 55 0 10095.47
6 57 123 55 4043 10119.47
6 56 123 47 3874 10140.47
6 55 115 46 3828 10161.53
6 54 108 47 3762 10181.61
6 61 72 60 4194 10232.88
6 60 58 85 4155 10274.53
6 59 65 97 4066 10301.43
6 23 18 131 1495 10372.43
6 22 18 138 1492 10544.63
6 24 20 136 1666 10560.46
6 31 93 107 2098 10652.01
6 30 110 120 2096 10686.41
6 58 112 69 4066 10750.45
6 52 90 35 3700 10803.95
6 49 56 18 3354 10854.96
6 48 32 28 3265 10893.96
6 34 20 0 2273 10937.42
6 32 6 28 2142 10981.73
6 47 -5 69 3203 11037.18
6 72 -20 100 5386 11084.62

35

Table B.11: Best result obtained for tai150b
Vehicle Client X Y Known Time

Depot 0 0 0 988
1 8 57 -69 45 484.70
1 1 58 -75 3 517.78
1 7 63 -76 34 549.88
1 9 64 -76 51 577.88
1 10 64 -81 74 609.88
1 3 79 -80 7 651.91
1 2 80 -76 5 683.04
1 11 78 -69 74 717.32
1 6 73 -71 31 749.70
1 4 64 -66 18 787.00
1 5 61 -65 23 817.16
2 148 -3 -3 0 275.94
2 84 -12 -48 0 348.83
2 86 -8 -49 0 379.96
2 82 -8 -53 0 500.30
2 87 -5 -61 0 535.84
2 85 -10 -57 0 569.25
2 88 -14 -57 0 697.90
2 83 -11 -55 0 728.51
2 16 17 -5 100 812.81
2 120 15 -4 0 842.05
2 22 8 -2 131 876.33
2 28 7 -2 149 904.33
3 127 14 -2 0 63.54
3 136 17 -4 0 94.15
3 137 31 -10 0 136.38
3 106 87 4 0 221.10
3 102 100 2 0 261.26
3 96 106 -1 0 294.96
3 99 113 -1 0 328.96
3 95 107 5 0 364.45
3 89 106 6 0 392.86
3 104 114 18 0 434.29
3 107 110 16 0 465.76
3 97 102 16 0 500.76
3 92 102 13 0 530.76
3 93 90 24 0 753.73
3 108 102 25 0 792.77
3 103 108 16 0 830.59
4 33 -95 -19 207 417.98
4 47 -100 -16 298 450.81
4 35 -102 -15 211 480.05
4 49 -109 -12 300 514.66
4 48 -111 -12 300 543.66
4 37 -110 -17 218 575.76
4 32 -112 -20 180 606.37
4 34 -112 -27 207 640.37
4 41 -109 -26 247 670.53
4 40 -106 -26 244 700.53
4 42 -102 -26 258 731.53
4 29 -101 -25 154 759.95
4 31 -99 -22 174 790.55
4 45 -94 -24 282 822.94
4 30 -94 -26 165 851.94
5 149 -18 4 0 364.24
5 52 -59 3 320 432.25
5 56 -59 -1 338 463.25
5 62 -56 1 371 574.01
5 81 -76 28 0 634.61
5 77 -80 28 0 697.90
5 80 -81 29 0 726.31
5 79 -85 31 0 757.79
5 78 -81 35 0 790.44
5 145 -1 1 0 904.37
5 26 -2 0 142 934.78
6 51 -48 -27 311 425.57
6 61 -69 -25 366 473.67
6 38 -101 -15 222 579.23
6 43 -101 -14 271 607.23
6 39 -105 -10 227 639.88
6 44 -99 -12 280 673.21
6 46 -96 -13 293 703.37
6 36 -96 -13 213 730.37
6 68 -73 -18 453 780.91
6 59 -72 -17 362 809.32

Vehicle Client X Y Known Time
6 66 -45 -18 426 863.34
7 23 9 15 133 709.09
7 15 9 18 96 739.09
7 25 14 16 142 771.48
7 19 20 15 109 804.56
7 21 19 12 123 834.72
7 27 20 11 144 863.14
7 20 9 6 114 902.22
8 121 30 -7 0 277.81
8 105 99 11 0 376.12
8 90 96 6 0 650.33
8 94 94 6 0 679.33
8 98 90 8 0 710.80
8 100 88 15 0 745.08
8 122 31 8 0 829.51
8 24 24 5 136 864.13
8 18 20 8 102 896.13
9 65 -46 -15 415 542.38
9 67 -51 -21 447 577.19
9 69 -61 -15 455 615.86
9 54 -62 -10 320 647.96
9 50 -66 -12 302 679.43
9 60 -67 -11 365 707.84
9 55 -72 -11 333 739.84
9 64 -72 -7 407 770.84
9 57 -73 -6 353 799.26
9 63 -66 -6 402 833.26
9 58 -62 -3 355 865.26
9 53 -47 -4 320 907.29

10 140 -5 13 0 260.93
10 141 1 18 0 295.74
10 116 -4 102 0 406.89
10 112 -4 108 0 477.60
10 115 -7 111 0 508.84
10 118 -14 112 0 542.91
10 111 -10 108 0 575.57
10 109 -8 108 0 671.20
10 119 -10 105 0 701.81
10 113 -8 104 0 731.04
10 110 -9 102 0 760.28
10 117 -12 101 0 790.44
10 114 -9 100 0 820.60
11 142 2 -2 0 225.13
11 144 5 -4 0 255.73
11 14 7 -9 96 288.12
11 17 14 -6 102 322.73
11 131 20 -6 0 477.60
11 128 21 -7 0 506.01
11 125 19 -8 0 535.25
11 126 19 -9 0 563.25
11 129 24 -10 0 595.35
11 133 27 -5 0 650.33
11 139 28 -3 0 679.57
11 135 27 -2 0 707.98
11 134 25 3 0 740.37
11 132 23 3 0 769.37
11 138 22 2 0 797.78
11 12 20 2 85 826.78
11 123 15 1 0 858.88
11 13 14 0 87 887.29
12 124 17 7 0 92.48
12 130 26 10 0 128.97
12 101 87 21 0 217.96
12 91 92 23 0 250.34
12 76 54 103 0 733.07
12 75 50 113 0 770.84
12 74 46 101 0 810.49
13 143 -9 10 0 556.85
13 146 -11 19 0 593.07
13 71 -46 74 486 685.27
13 73 -49 72 491 715.87
13 72 -57 67 487 752.30
13 70 -57 60 460 786.30
13 150 -21 1 0 882.42
13 147 -12 3 0 918.64

Vehicle Client X Y Known Time
166 101 87 21 0 217.96
166 91 92 23 0 250.34
166 76 54 103 0 733.07
166 75 50 113 0 770.84
166 74 46 101 0 810.49

170 143 -9 10 0 556.85
170 146 -11 19 0 593.07
170 71 -46 74 486 685.27
170 73 -49 72 491 715.87
170 72 -57 67 487 752.30
170 70 -57 60 460 786.30
170 150 -21 1 0 882.42
170 147 -12 3 0 918.64

36

References

[1] H. N. Psaraftis, Dynamic vehicle routing: Status and prospects, Annals of
Operations Research 61 (1995) 143–164.

[2] G. B. Dantzing, J. H. Ramser, The Truck Dispatching Problem, Manage-725

ment Science 6 (1) (1959) 80–91. doi:10.1287/mnsc.6.1.80.
URL http://www.jstor.org/stable/2627477

[3] V. Pillac, M. Gendreau, C. Guéret, A. L. Medaglia, A review of dynamic
vehicle routing problems., European Journal of Operational Research
225 (1) (2013) 1–11.730

URL http://dblp.uni-trier.de/db/journals/eor/eor225.html#

PillacGGM13

[4] M. Mavrovouniotis, S. Yang, Ant colony optimization with immigrants
schemes for the dynamic travelling salesman problem with traffic factors,
Applied Soft Computing 13 (10) (2013) 4023–4037.735

[5] M. R. Khouadjia, E.-G. Talbi, L. Jourdan, B. Sarasola, E. Alba, Multi-
environmental cooperative parallel metaheuristics for solving dynamic op-
timization problems, Journal of Supercomputing 63 (3) (2013) 836–853.

[6] M. Okulewicz, J. Mańdziuk, Two-Phase Multi-Swarm PSO and the Dy-
namic Vehicle Routing Problem, in: 2nd IEEE Symposium on Computa-740

tional Intelligence for Human-like Intelligence, IEEE, Orlando, Fl, USA,
2014, pp. 86–93. doi:10.1109/CIHLI.2014.7013391.

[7] T. Blackwell, Particle swarm optimization in dynamic environments, Evo-
lutionary Computation in Dynamic and Uncertain Environments 51 (2007)
29–49.745

[8] P. Kilby, P. Prosser, P. Shaw, Dynamic VRPs: A Study of Scenarios (1998).
URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.

1.6748

[9] C. Lin, K. L. Choy, G. T. S. Ho, H. Y. Lam, G. K. H. Pang, K. S. Chin, A
decision support system for optimizing dynamic courier routing operations,750

Expert Systems with Applications 41 (15) (2014) 6917–6933. doi:10.1016/
j.eswa.2014.04.036.

[10] R. Montemanni, L. M. Gambardella, A. Rizzoli, A. Donati, A new algo-
rithm for a dynamic vehicle routing problem based on ant colony system,
Journal of Combinatorial Optimization 10 (2005) 327–343.755

[11] M. R. Khouadjia, B. Sarasola, E. Alba, L. Jourdan, E.-G. Talbi, A com-
parative study between dynamic adapted PSO and VNS for the vehicle
routing problem with dynamic requests, Applied Soft Computing 12 (4)
(2012) 1426–1439. doi:10.1016/j.asoc.2011.10.023.

37

http://www.jstor.org/stable/2627477
http://dx.doi.org/10.1287/mnsc.6.1.80
http://www.jstor.org/stable/2627477
http://dblp.uni-trier.de/db/journals/eor/eor225.html#PillacGGM13
http://dblp.uni-trier.de/db/journals/eor/eor225.html#PillacGGM13
http://dblp.uni-trier.de/db/journals/eor/eor225.html#PillacGGM13
http://dblp.uni-trier.de/db/journals/eor/eor225.html#PillacGGM13
http://dblp.uni-trier.de/db/journals/eor/eor225.html#PillacGGM13
http://dblp.uni-trier.de/db/journals/eor/eor225.html#PillacGGM13
http://dx.doi.org/10.1109/CIHLI.2014.7013391
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1.6748
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1.6748
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1.6748
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1.6748
http://dx.doi.org/10.1016/j.eswa.2014.04.036
http://dx.doi.org/10.1016/j.eswa.2014.04.036
http://dx.doi.org/10.1016/j.eswa.2014.04.036
http://dx.doi.org/10.1016/j.asoc.2011.10.023

[12] M. R. Khouadjia, E. Alba, L. Jourdan, E.-G. Talbi, Multi-Swarm Optimiza-760

tion for Dynamic Combinatorial Problems: A Case Study on Dynamic Ve-
hicle Routing Problem, in: Swarm Intelligence, Vol. 6234 of Lecture Notes
in Computer Science, Springer, Berlin / Heidelberg, 2010, pp. 227–238.
doi:10.1007/978-3-642-15461-4_20.

[13] F. T. Hanshar, B. M. Ombuki-Berman, Dynamic vehicle routing using765

genetic algorithms, Applied Intelligence 27 (1) (2007) 89–99. doi:10.1007/
s10489-006-0033-z.

[14] M. Okulewicz, J. Mańdziuk, Application of Particle Swarm Optimiza-
tion Algorithm to Dynamic Vehicle Routing Problem, Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intel-770

ligence and Lecture Notes in Bioinformatics) 7895 (2) (2013) 547–558.
doi:10.1007/978-3-642-38610-7_50.

[15] P. Garrido, M. C. Riff, DVRP: a hard dynamic combinatorial optimisation
problem tackled by an evolutionary hyper-heuristic, Journal of Heuristics
16 (6) (2010) 795–834.775

[16] M. J. Elhassania, B. Jaouad, E. A. Ahmed, A new hybrid algorithm to
solve the vehicle routing problem in the dynamic environment, Interna-
tional Journal of Soft Computing 8 (5) (2013) 327–334.

[17] J. Mańdziuk, A. Żychowski, A memetic approach to vehicle routing problem
with dynamic requests, Applied Soft Computing 48 (2016) 522–534. doi:780

http://dx.doi.org/10.1016/j.asoc.2016.06.032.

[18] T. C. Du, E. Y. Li, D. Chou, Dynamic vehicle routing for online B2C
delivery, Omega 33 (1) (2005) 33–45. doi:10.1016/j.omega.2004.03.

005.

[19] P. Garrido, C. Castro, Stable solving of {CVRPs} using hyperheuristics,785

Proceedings of the 11th Annual conference on Genetic and evolutionary
computation (2009) 255–262doi:10.1145/1569901.1569938.

[20] P. Garrido, C. Castro, A Flexible and Adaptive Hyper-heuristic Approach
for (Dynamic) Capacitated Vehicle Routing Problems, Fundamenta Infor-
maticae 119 (1) (2012) 29–60. doi:10.3233/FI-2012-726.790

[21] M. Elhassania, B. Jaouad, E. A. Ahmed, Solving the dynamic Vehicle
Routing Problem using genetic algorithms, in: Logistics and Operations
Management (GOL), 2014 International Conference on, IEEE, 2014, pp.
62–69.

[22] M. Okulewicz, J. Mańdziuk, Particle Swarm Optimization hyper-heuristic795

for the Dynamic Vehicle Routing Problem, in: 7th BIOMA Conference,
2016, pp. 215–227. doi:10.13140/RG.2.2.27509.58082.

38

http://dx.doi.org/10.1007/978-3-642-15461-4_20
http://dx.doi.org/10.1007/s10489-006-0033-z
http://dx.doi.org/10.1007/s10489-006-0033-z
http://dx.doi.org/10.1007/s10489-006-0033-z
http://dx.doi.org/10.1007/978-3-642-38610-7_50
http://dx.doi.org/http://dx.doi.org/10.1016/j.asoc.2016.06.032
http://dx.doi.org/http://dx.doi.org/10.1016/j.asoc.2016.06.032
http://dx.doi.org/http://dx.doi.org/10.1016/j.asoc.2016.06.032
http://dx.doi.org/10.1016/j.omega.2004.03.005
http://dx.doi.org/10.1016/j.omega.2004.03.005
http://dx.doi.org/10.1016/j.omega.2004.03.005
http://dx.doi.org/10.1145/1569901.1569938
http://dx.doi.org/10.3233/FI-2012-726
http://dx.doi.org/10.13140/RG.2.2.27509.58082

[23] J. Kennedy, R. Eberhart, Particle Swarm Optimization, Proceedings of
IEEE International Conference on Neural Networks. IV (1995) 1942–1948.

[24] Y. Shi, R. C. Eberhart, Parameter selection in particle swarm optimization,800

Proceedings of Evolutionary Programming VII (EP98) (1998) 591–600.

[25] Y. Shi, R. C. Eberhart, A modified particle swarm optimizer, Proceedings
of IEEE International Conference on Evolutionary Computation (1998) 69–
73.

[26] I. C. Trelea, The particle swarm optimization algorithm: convergence anal-805

ysis and parameter selection, Information Processing Letters 85 (6) (2003)
317–325.

[27] M. Clerc, Standard PSO 2007 and 2011 (2012).
URL http://www.particleswarm.info/

[28] C. K. Monson, K. D. Seppi, Exposing origin-seeking bias in PSO, in:810

Proceedings of the 2005 conference on Genetic and evolutionary com-
putation, GECCO ’05, ACM, New York, NY, USA, 2005, pp. 241–248.
doi:10.1145/1068009.1068045.

[29] W. M. Spears, D. T. Green, D. F. Spears, Biases in Particle Swarm Opti-
mization, International Journal of Swarm Intelligence Research 1(2) (2010)815

34–57.

[30] T. J. Ai, V. Kachitvichyanukul, A particle swarm optimization for the
vehicle routing problem with simultaneous pickup and delivery, Computers
and Operations Research 36 (5) (2009) 1693–1702. arXiv:arXiv:1011.

1669v3, doi:10.1016/j.cor.2008.04.003.820

[31] S. Wang, L. Wang, H. Yuan, M. Ge, B. Niu, W. Pang, Y. Liu, Study
on Multi-Depots Vehicle Scheduling Problem and Its Two-Phase Parti-
cle Swarm Optimization, no. 2006, 2009, pp. 748–756. doi:10.1007/

978-3-642-04020-7_80.
URL http://link.springer.com/10.1007/978-3-642-04020-7_80825

[32] Y. Marinakis, G.-R. Iordanidou, M. Marinaki, Particle Swarm Optimiza-
tion for the Vehicle Routing Problem with Stochastic Demands, Applied
Soft Computing Journal 13 (4) (2013) 1693–1704. doi:10.1016/j.asoc.

2013.01.007.

[33] T. J. Ai, V. Kachitvichyanukul, Particle swarm optimization and two so-830

lution representations for solving the capacitated vehicle routing prob-
lem, Computers & Industrial Engineering 56 (1) (2009) 380–387. doi:

10.1016/j.cie.2008.06.012.

[34] M. Okulewicz, Source code of the Two-Phase Multiswarm Particle Swarm
Optimizer for Dynamic Vehicle Routing Problem (2016).835

URL https://sourceforge.net/projects/continuous-dvrp/

39

http://www.particleswarm.info/
http://www.particleswarm.info/
http://dx.doi.org/10.1145/1068009.1068045
http://arxiv.org/abs/arXiv:1011.1669v3
http://arxiv.org/abs/arXiv:1011.1669v3
http://arxiv.org/abs/arXiv:1011.1669v3
http://dx.doi.org/10.1016/j.cor.2008.04.003
http://link.springer.com/10.1007/978-3-642-04020-7_80
http://link.springer.com/10.1007/978-3-642-04020-7_80
http://link.springer.com/10.1007/978-3-642-04020-7_80
http://link.springer.com/10.1007/978-3-642-04020-7_80
http://link.springer.com/10.1007/978-3-642-04020-7_80
http://dx.doi.org/10.1007/978-3-642-04020-7_80
http://dx.doi.org/10.1007/978-3-642-04020-7_80
http://dx.doi.org/10.1007/978-3-642-04020-7_80
http://link.springer.com/10.1007/978-3-642-04020-7_80
http://dx.doi.org/10.1016/j.asoc.2013.01.007
http://dx.doi.org/10.1016/j.asoc.2013.01.007
http://dx.doi.org/10.1016/j.asoc.2013.01.007
http://dx.doi.org/10.1016/j.cie.2008.06.012
http://dx.doi.org/10.1016/j.cie.2008.06.012
http://dx.doi.org/10.1016/j.cie.2008.06.012
https://sourceforge.net/projects/continuous-dvrp/
https://sourceforge.net/projects/continuous-dvrp/
https://sourceforge.net/projects/continuous-dvrp/
https://sourceforge.net/projects/continuous-dvrp/

[35] J. B. Kruskal, On the Shortest Spanning Subtree of a Graph and the Travel-
ing Salesman Problem, Proceedings of the American Mathematical Society
(1959) 48–50.

[36] G. A. Croes, A method for solving traveling salesman problems, Operations840

Res. 6 (1958) 791–812.

[37] N. Christofides, J. E. Beasley, The period routing problem, Networks 14 (2)
(1984) 237–256. doi:10.1002/net.3230140205.

[38] M. L. Fisher, R. Jaikumar, A generalized assignment heuristic for vehicle
routing, Networks 11 (2) (1981) 109–124. doi:10.1002/net.3230110205.845

URL http://dx.doi.org/10.1002/net.3230110205

[39] É. D. Taillard, Parallel iterative search methods for vehicle routing prob-
lems, Networks 23 (8) (1993) 661–673. doi:10.1002/net.3230230804.
URL http://onlinelibrary.wiley.com/doi/10.1002/net.

3230230804/abstract850

[40] J. Mańdziuk, S. Zadrożny, K. Walȩdzik, M. Okulewicz, M. Świechowski,
Adaptive metaheuristic methods in dynamically changing environments
(2015).
URL http://www.mini.pw.edu.pl/~mandziuk/dynamic/

40

http://dx.doi.org/10.1002/net.3230140205
http://dx.doi.org/10.1002/net.3230110205
http://dx.doi.org/10.1002/net.3230110205
http://dx.doi.org/10.1002/net.3230110205
http://dx.doi.org/10.1002/net.3230110205
http://dx.doi.org/10.1002/net.3230110205
http://onlinelibrary.wiley.com/doi/10.1002/net.3230230804/abstract
http://onlinelibrary.wiley.com/doi/10.1002/net.3230230804/abstract
http://onlinelibrary.wiley.com/doi/10.1002/net.3230230804/abstract
http://dx.doi.org/10.1002/net.3230230804
http://onlinelibrary.wiley.com/doi/10.1002/net.3230230804/abstract
http://onlinelibrary.wiley.com/doi/10.1002/net.3230230804/abstract
http://onlinelibrary.wiley.com/doi/10.1002/net.3230230804/abstract
http://www.mini.pw.edu.pl/~mandziuk/dynamic/
http://www.mini.pw.edu.pl/~mandziuk/dynamic/

	Introduction
	Dynamic Vehicle Routing Problem
	Dynamic Vehicle Routing Problem solving framework
	Metaheuristics applied to Dynamic Vehicle Routing Problem

	Particle Swarm Optimization
	Particle Swarm Optimization applications to Vehicle Routing Problems

	Two-Phase Multi-Swarm Particle Swarm Optimization for the Dynamic Vehicle Routing Problem
	[id=MO]2MPSO optimization processAlgorithm phases description
	Initiation phase
	1st optimization phase: requests-to-vehicles assignment
	2nd optimization phase: requests ordering
	Closing phase

	VRP encoding and fitness functions
	Requests-to-vehicles assignment encoding
	Vehicle's route encoding
	Solution transfer for swarm initialization

	Experiments and 2MPSO results
	Benchmark files
	2MPSO parameters
	Experiments setup
	Optimization modules analysis
	2PSO: 2nd phase PSO optimization
	1PSO: 1st phase PSO optimization
	CHist and DHist: solutions transfer between problem states
	Tree: capacitated clustering

	Comparison with the literature results

	Conclusions
	Parameter tuning
	Advance commitment time and number of time slices
	Population size to iterations ratio
	Knowledge transfer and number of requests clusters per vehicle

	Selected benchmark instances and obtained best results
	Benchmark instances
	Obtained results

