
Analysis of statistical model-based optimization enhancements
in Generalized Self-Adapting Particle Swarm Optimization

framework

Mateusz Zaborski, Micha l Okulewicz, Jacek Mańdziuk ∗

Abstract. This paper presents characteristics of model-based optimization meth-
ods utilized within the Generalized Self-Adapting Particle Swarm Optimization (GA–
PSO) – a hybrid global optimization framework proposed by the authors. GAPSO
has been designed as a generalization of a Particle Swarm Optimization (PSO) al-
gorithm on the foundations of a large degree of independence of individual particles.
GAPSO serves as a platform for studying optimization algorithms in the context of
the following research hypothesis: (1) it is possible to improve the performance of an
optimization algorithm through utilization of more function samples than standard
PSO sample-based memory, (2) combining specialized sampling methods (i.e. PSO,
Differential Evolution, model-based optimization) will result in a better algorithm
performance than using each of them separately. The inclusion of model-based en-
hancements resulted in the necessity of extending the GAPSO framework by means
of an external samples memory - this enhanced model is referred to as M-GAPSO in
the paper.

We investigate the features of two model-based optimizers: one utilizing a quadratic
function and the other one utilizing a polynomial function. We analyze the conditions
under which those model-based approaches provide an effective sampling strategy.
Proposed model-based optimizers are evaluated on the functions from the COCO
BBOB benchmark set.

Keywords: Particle Swarm Optimization, global optimization, metaheuristic

∗Faculty of Mathematics and Information Science, Warsaw University of Technology,
Poland,{M.Zaborski,M.Okulewicz,J.Mandziuk}@mini.pw.edu.pl



1. Introduction

Non-gradient population-based optimization algorithms have grown popular over the
last decades. Some of their features that attract the research community include their
effectiveness, simplicity of implementation and ease of modification. In the domain
of continuous optimization the mostly studied approaches include Particle Swarm
Optimization (PSO) and Differential Evolution (DE).

PSO [11] is a well-known global optimization metaheuristic with many possible
variants. For instance, Nepomuceno and Engelbrecht [13] proved that appropriate
combination of heterogeneous versions of PSO can lead to significant performance
improvement. DE [20] is another example of population-based optimization approach
with large degree of independence between solutions (individuals).

Despite their effectiveness in solving numerous engineering and production prob-
lems [6, 19, 14, 15], those algorithms quite quickly “forget” the shape of optimized
function due to their limited memory. Therefore, they loose information which might
be useful in accelerating the convergence of the algorithm. One of the approaches,
which might be worth looking into to amend this weakness, is surrogate modeling of
optimized function [1]. While originally motivated by the research on expensive opti-
mization, those surrogate optimization methods might be hybridized with population
based approaches to make a good use of the function samples gathered during the
optimization process.

There are many ways of enriching optimization algorithms by some surrogate mod-
eling. In general, surrogate models of the original function are constructed to estimate
its value at some point which is cheaper than making an evaluation of the true objec-
tive function. Kriging (Gaussian process) metamodel can be utilized as a standalone
optimization technique [12]. The principle of its utilization is sequential approxima-
tion of the optimized function and designating the next sampling point. Iterative
sampling rules lead to gradually decreasing metamodel uncertainty. Therefore, the
performance of Kriging metamodel, against population-based approaches like PSO
and DE, depends greatly on the computational costs of the objective function. Op-
timization process performed by Kriging will be more time and memory consuming
than PSO’s or DE’s. However, this approach is profitable when the computational or
financial cost of obtaining true objective function values is relatively high. Chung et
al. [3] present that computationally expensive fitness function evaluations made by
evolutionary algorithm (EA) can be successfully replaced by estimates from surrogate
models such as the previously mentioned Kriging. However, Chung et al. also point
out the computational complexity of prediction and training using Kriging is O(n3)
for n data points due to necessary matrix inversions (or decompositions). Therefore,
this approach can be inefficient for building model utilizing large dataset.

The CMA-ES [8] algorithm can be extended by surrogate models in a similar way.
Only the most promising points designated by the metamodel (Gaussian process)
can be evaluated by the original fitness [17]. The work showed that enriching CMA-
ES with surrogate model reduces the number of necessary evaluations. It should be
noted that experiments were conducted up to 100 ·D evaluations, where D is problem
dimensionality, while our goal is to use the limit of 106 evaluations.



Cai et al. [2] utilize metamodel to modify PSO velocity updating mechanism and
introduce two algorithms (ESPSO and PESPSO). Both utilize Radial Basis Function
(RBF) as a surrogate model. In the case of ESPSO, PSO velocity update formula takes
into consideration estimation of local and global minimum designated by metamodel.
PESPSO additionally utilizes metamodel in the evaluations process. Real evaluation
is made only by particles for which the function value estimation (after a position
update) is better than their historical minimum. As in previously mentioned works,
experiments were carried out relatively low number of evaluations.

Chung et al. [4] also prove that enhancing PSO with RBF metamodel utilizing
samples archive can be beneficial. Presented SA-COSO algorithm is a hybrid of
two PSO variants (FES-assisted PSO and RBF-assisted PSO). Both PSO variants
use function value approximation to limit the number of real evaluations. Presented
solution has been tested on 200-dimensional problems and outperformed the state-
of-the-art algorithms. Real evaluation number in each problem has not exceed 1000.

Incorporating archive into an optimization algorithm is not always associated with
strict surrogate modeling. JADE[24] is an example of DE extension that utilize archive
for its parameters adaptation. The algorithm stores successful crossover probabilities
and mutation factors and generates their current values based on the means of stored
parameters.

Jin [10] surveys the research on fitness approximation in evolutionary computation.
Except for the above-mentioned techniques, the work briefly describes the use of
neural networks, support vector machines and polynomial models. Modeling function
as a polynomial requires a set of fitness evaluations. Polynomial coefficients can be
obtained with the least square method.

Generally speaking, in surrogate based optimization, statistical models themselves
are subject to optimization by metaheuristics. This work investigates an approach
where a PSO-DE hybrid is further enhanced with model-based optimization ap-
proaches. Within GAPSO setup they work in parallel with simple sampling ap-
proaches like PSO and DE, utilizing samples already gathered through those meth-
ods. Their principle is to sequentially construct a surrogate model, estimate local
optimum and finally sample a designated point. Moreover, our solution is computa-
tionally efficient, i.e. an optimization run with relatively large number of real function
evaluations can be executed in a reasonable time.

The rest of the paper is organized as follows. Section 2 introduces the M-GAPSO
algorithm proposed by the authors including the method of constructing incorporated
surrogate models. Section 3 gives insight into sampling properties of the model-based
enhancements utilized in M-GAPSO. The next section presents the results on the
COCO BBOB benchmark functions. Section 5 concludes the paper.



2. M-GAPSO framework description

This section summarizes the proposed Generalized Self-Adapting Particle Swarm Op-
timization framework with external samples memory (M-GAPSO), which is an en-
hancement of the GAPSO approach [21]. This work is an extension of the research
presented in [23], while a detailed description of M-GAPSO can be also found in our
working paper [16].

GAPSO optimization framework has been designed as a generalization of the PSO
algorithm. It allows the use of virtually any optimization algorithm behavior. Parti-
cles act independently and behave differently according to assigned optimization algo-
rithm. From the swarm’s point of view internal behavior of a particle (i.e. function
sampling scheme) is irrelevant. Each particle is only obliged to update its velocity
and maintain its current and best positions. Therefore, the well-known algorithms,
such as DE can be easily implemented within GAPSO by means of an appropriate
scheme for updating a velocity vector.

Our goal is to study the hybridization of the population based optimization al-
gorithms with a search process guided by statistical models created from objective
function samples. Therefore, the original GAPSO algorithm [21] has been extended
by an additional memory module, for storing the already sampled function values.
Apart from that, the original GAPSO’s particle-by-particle restart method has been
changed into a global JADE-like restart mechanism [18], as it was found to be more
beneficial for the algorithm’s performance [16].

A high-level pseudocode of the M-GAPSO is provided in Algorithm 1. The main
concept of the algorithm is to apply various particle’s location update formulas (be-
haviors), thus creating a hybrid approach. These behaviors are selected at random in
a given iteration (line 10) according to the weight vector assigned to each behavior.
It should be noted that the conditional statement starting in line 16 could be easily
extended with additional clauses, as lines 15 and 25 provide a universal approach to
the PSO-like velocity management for non-PSO algorithms.

The rest of this section provides information about the selection of optimization
algorithms, external memory modules and implementation of the model-based behav-
iors.

2.1. Optimization algorithms within M-GAPSO

Currently the pool of M-GAPSO optimization algorithms contains the following meth-
ods: (1) Standard PSO-2007 [5], (2) DE/best/1/bin [20], (3) quadratic model based
optimizer and (4) polynomial model based optimizer. Both model based optimizers
are the key elements of this work, further discussed in Section 2.3. At every iteration
each particle has one of the above optimization algorithms assigned. The assignment
is carried out in accordance to established probability vector. Importantly, each be-
havior is assigned to at least one particle. Probability vector can be fixed during the
whole optimization process or can be adaptable.

Adaptation module measures the performance of each particle. It observes the



Algorithm 1 M-GAPSO high–level pseudocode

1: F is the objective function, Swarm is a set of PSO particles
2: Behavior is particle’s velocity update rule, BehaviorsPool is the set of available opti-

mization algorithms
3: BehaviorsWeights is a vector parameterizing the probability of selecting particular

Behavior from BehaviorsPool
4: Initializer is particle’s initial location sampler
5: SamplesArchive is an RTree based samples’ index
6: RestartManager observes swarm state and performance
7: Swarm← Initializer.initializeSwarm(F.bounds)
8: while Stopping criterion not met do
9: for Particle ∈ Swarm do

10: Behavior ← BehaviorsPool.select(BehaviorsWeights)
11: if Behavior == PSO then
12: Particle.v ← Particle.applySPSOV elocityUpdate(Swarm)
13: Particle.x← Particle.x+ Particle.v
14: else
15: Particle.xprev ← Particle.x
16: if Behavior == DE then
17: Particle.x← Particle.applyDESampling(Swarm)
18: else if Behavior == QuadraticModel then
19: QuadraticModel← Particle.buildQuadraticModel(SamplesArchive)
20: Particle.x← QuadraticModel.selectModelMinimum()
21: else if Behavior == PolynomialModel then
22: PolynomialModel ← Particle.buildPolynomialModel(SamplesArchive)

23: Particle.x← PolynomialModel.selectModelMinimum()
24: end if
25: Particle.v ← Particle.x− Particle.xprev . Management of the velocity

feature for non-PSO optimization algorithms
26: end if
27: Sample← F.evaluate(Particle.x)
28: if Sample.value < Particle.bestvalue then
29: Particle.best← Sample.x
30: Particle.bestvalue ← Sample.value
31: end if
32: SamplesArchive.store(Sample)
33: RestartManager.register(Sample) . Restart manager observes if there has

been an improvement in global optimum estimation
34: end for
35: if RestartManager.shouldReset(Swarm) then
36: Swarm← Initializer.initializeSwarm(F.bounds)
37: end if
38: end while

contributions made by each of the optimization behaviors to the improvement of the
global best value. The optimization algorithms that brought the highest average
improvement over the last k iterations to the estimated optimum are used relatively



more frequently according to the designated probability vector.

2.2. External memory

Gathering samples (understood as point coordinates and function values at these
points) is a key enhancement compared to the initial work on GAPSO [21]. The
main idea is to take advantage of already gathered samples and use them in the
model-based optimization enhancements. In order to store and retrieve samples in
an efficient way M-GAPSO utilizes a multidimensional R-Tree index [7]. It allows a
quick access to the desired subset of samples, such as surroundings of a selected point.
Due to performance reasons the number of collected samples is limited. When the
number of samples reaches the limit, the archive is cleared and the gathering process
begins to insert new samples into the empty archive.

As can be observed in Algorithm 1, function samples are stored in the external
memory (SamplesArchive object) after each function evaluation (line 32). The stored
samples are utilized in the context of building statistical models (lines 19 and 22).
The process of selecting samples from the archive and constructing those models is
explained in details in the following subsection.

2.3. Model-based optimization

Model-based enhancements (quadratic or polynomial models) are applied in order
to support quick convergence to local optima. In both cases the same principles of
particle’s behavior are considered. At the beginning, the model f̂(xxx) is fitted using

specified sample collection S. Then, the optimum (x̂xx∗) of model’s function (f̂∗) is
selected in relation to the assumed boundaries. Finally, the particle is moved to
coordinates x̂xx∗ that match the estimated optimum.

2.3.1. Quadratic model

Quadratic model is fitted on a data set SQ composed of k nearest samples (in the sense
of the Euclidean metric) to a particle xxxbest location for which the quadratic behavior
has been selected (see Fig. 1 as an example). Quadratic function-based approach fits
the following model:

f̂Q(xxx) =

dim∑
d=1

(
adx

2
d + bdxd

)
+ c (1)

where xxx = [x1, . . . , xdim] is a vector of coordinates.
Ordinary Least Squares method is applied to obtain linear regression coefficients:

a1, . . . , adim and b1, . . . , bdim. Finding f̂∗Q (minimum of f̂Q) is equivalent to find-

ing dim independent minima f̂∗Qd
(d ∈ 1, . . . , dim) of dim independent parabolas

f̂Qd
(xxx) = adx

2
d + bdxd. Coordinates of the bounded parabola peak are computed in



Figure 1. Comparison of samples data sets used for fitting quadratic and polynomial
models.

the following way:

x̂∗Qd
=


− bd

2ad
, if ad > 0 ∧ − bd

2ad
∈ [xlower

d , xupper
d ]

xlower
d , if f̂(xlower

d ) ≤ f̂(xupper
d )

xupper
d , if f̂(xlower

d ) > f̂(xupper
d )

(2)

where xlower
d and xupper

d are lower and upper bounds of the function domain, respec-

tively. Estimated optimum x̂xx∗ is a composition of dim independent peaks x̂xx∗d:

x̂xx∗ = [x̂xx∗1, . . . ,
ˆxxx∗dim] (3)

2.3.2. Polynomial model

Polynomial model is fitted independently on dim data sets SPd
. Each of these data sets

is composed of k samples closest to a line with coordinates fixed at the current location,
except for dimension d for which the model is currently fitted. The differences between
methods of gathering samples (quadratic vs. polynomial) are depicted in Fig. 1.
Polynomial model function is an extension of quadratic one and can be expressed as
follows:

f̂Pd
(xxx) =

p∑
i=1

ai,dx
i
d + cd (4)

where p is a polynomial degree.
Similarly to the quadratic model, Ordinary Least Squares method is applied to

obtain linear regression coefficients: ai,d, i ∈ {1, . . . , p}, d ∈ {1, . . . , dim}. dim in-



dependent minima f̂∗Pd
, d ∈ {1, . . . , dim} of dim independent polynomial functions

f̂Pd
(xxx) are computed using grid search. For each dimension d, a space between xmin

d

and xmax
d is divided into 1000 regular points, where xmin

d and xmax
d are respectively

minimum and maximum coordinates in dimension d derived from the fitting data
set SPd

. A value of f̂Pd
(xxx) in (4) is calculated in each of these 1000 points and the

smallest one determines the optimal value x̂xx∗d.
Finally, coordinates of optimum estimation x̂xx∗ are obtained in the same way as in

the quadratic model.

3. Analysis of the model-based optimization enhancements

This section presents how model-based optimizers sample the function’s search space.
The goal is to observe conditions in which these optimizers are beneficial for the
whole process, in order to utilize these observations in future improvements of the
M-GAPSO algorithm.

3.1. Quadratic model sampling analysis

To analyze the effectiveness of the quadratic model-based optimizer, we have created
contour plots of 2-dimensional instances of the selected benchmark functions. Figures
2-7 present locations of the function samples utilized to create the model (red dots)
and the location indicated by the model as potential improvement (blue dot). Red
square denotes the location of the function global optimum. The numbers in the plots
present reference function values.

Introduction of quadratic model has been motivated by the possibility of achieving
a quick convergence to local optima, while the population is still somewhat dispersed.
As can be observed in Fig. 2 in certain cases this goal is achieved, while in others
(Fig. 3) the model leads the search process away from the optimum. Currently, our
working hypothesis is that this behavior could be improved through management of
the samples set diversity in order to avoid numerical instabilities.



Figure 2. Successful sampling with quadratic model optimizer for separable Rastri-
gin’s function (COCO BBOB f03).

Figure 3. Unsuccessful sampling with quadratic model optimizer for separable Ras-
trigin’s function (COCO BBOB f03).



Figure 4. Quadratic model optimizer behavior for Büche-Rastrigin’s function
(COCO BBOB f04).

Figure 5. Quadratic model optimizer behavior for non-separable Rastrigin’s function
(COCO BBOB f15).

As expected, this simple quadratic model-based optimizer has not been able to
guide the search process correctly in the case of asymmetrical shapes of the optima
(Fig. 4) or non-separable functions (Fig. 5). While samples preselection might help
in the case of asymmetrical optima, improving quality for non-separable function,
without enlarging the model, could be achieved through some variation of Principal
Components Analysis approach.



Figure 6. Quadratic model optimizer behavior with standard sample set size (5 ·
DIM) in the initial iterations of optimization process for a separable Rastrigin’s
function (COCO BBOB f03).

Figure 7. Quadratic model optimizer behavior with increased sample set size (100 ·
DIM) in the initial iterations of optimization process for a separable Rastrigin’s
function (COCO BBOB f03).

Finally, quadratic model optimizer could be better utilized in initial phases of
the optimization process for functions with the so-called general structure, simply
by enlarging the set of samples on which the model is constructed. A comparison
between sample set sizes of 5 ·DIM and 100 ·DIM is depicted in Figures 6 and 7.



−5.0

−2.5

0.0

2.5

5.0

−5.0 −2.5 0.0 2.5 5.0
X1

X
2

−250

0

250

500

750

Y

Figure 8. Example of polynomial model next sample calculation during Büche-
Rastrigin’s function (COCO BBOB f04) optimization run.

3.2. Estimated optimum trajectory of polynomial model

Since the polynomial model is fitted independently in each dimension, it is expected
that it will perform satisfactorily on separable functions. Its behavior was empirically
examined using Büche-Rastrigin’s function (COCO BBOB f04) since we hypothesized
that the polynomial model should perform better for an asymmetrical function, while
quadratic model was unable to do so, due to its inherent properties. We presented
example of its next sample calculation and trajectory of all evaluations made during
the optimization process. The goal was to observe if model tends to choose promising
points for the evaluation.

Figure 8 presents an example of the next sample calculation of polynomial model.
The snapshot was made during 2D separable Büche-Rastrigin’s function (COCO
BBOB f04) optimization run and concerns the fifth polynomial model-based behav-
ior call. The blue triangle represents the current particle position. Black squares
represent gathered samples which are closest to x1 coordinate. Black circles gath-
ered samples which are closest to x2 coordinate. The next sample position is marked
with red triangle. Early phase of the optimization run explains why the samples are
not strictly concentrated along lines parallel to the axis. Nonetheless, the model has
designated a promising point that is significantly distant from a vertical dataset.

Figure 9 presents trajectory of all evaluations of polynomial model-based behavior
during the separable function f4 (instance 1, 2D) optimization run. There are many
evaluation points close to the perpendicular lines designated by optimum coordinates.
This is a consequence of the polynomial model construction and the samples gathering
method. The presented characteristics of making subsequent evaluations is suitable
for separated functions, which is confirmed by the results presented in section 4.2.



−5.0

−2.5

0.0

2.5

5.0

−5.0 −2.5 0.0 2.5 5.0
X1

X
2

−250

0

250

500

750

Y

Figure 9. Example of polynomial model trajectory during Büche-Rastrigin’s function
(COCO BBOB f04) optimization run.

3.3. Quality of samples gathered with polynomial model behavior

A complementary experiment was carried out in which in each dimension k-nearest
samples gathered through polynomial model-based behaviors were collected. The
dispersion of all gathered samples was calculated independently for each dimension
d ∈ {1, . . . , dim}.

For each d, dim dispersion measures dispd,d′ are obtain independently for each
of dim dimensions d′ ∈ {1, . . . , dim}. The goal is to check how k-nearest samples in
dimension d are dispersed through a line (hyperplane for dimensions greater than 2D)
designated by dimension d and how close they are in other dimensions d′ 6= d. The
assumption is that the model will perform better if dispd,d >> dispd,d′ for d′ 6= d.

d′ \d 1 2 3 4 5

1 0.488 0.145 0.166 0.167 0.176
2 0.149 0.594 0.159 0.159 0.172
3 0.159 0.146 0.463 0.166 0.179
4 0.175 0.165 0.178 0.416 0.185
5 0.137 0.132 0.135 0.137 0.304

Table 1. Dispersion (standard deviation) by dimension of samples gathered during
f4 (instance 1, 5D) optimization run.

Let xxxP = [xP
1 , . . . , x

P
dim] be the current position of model-based behavior particle.

The data set SPd
(cf. Figure 1) contains k coordinate vectors xi,dxi,dxi,d = [xi,1,d, . . . , xi,dim,d],

i ∈ {1, . . . , k}. The dispersion dispd,d′ is calculated as standard deviation of (xP
d −

xi,d′,d).



0.0

0.5

1.0

1.5

2.0

0 200 400
Iteration

M
A

(1
0)

 o
f S

ta
nd

ar
d 

D
ev

ia
tio

n

Dimension 0

Dimension 1

Figure 10. Dispersion by dimension of gathered samples in polynomial model during
f4 (instance 1, 5D) optimization run.

Table 1 presents mean values of all dispd,d′ obtained during f4 (instance 1, 5D)
optimization run. As expected dispd,d is higher than dispd,d′ for d′ 6= d. Nonetheless,
the differences are not significant.

Based on the results presented in Table 1, all subsequent values dispd,d′ were
stored. Figure 10 shows how were the moving averages of disp1,1 and disp1,2 chang-
ing during f4 (instance 1, 5D) optimization run. The repetitive rapid increases of
dispersion are mainly caused by archive clearing after reaching the limit of stored
samples. Another factors that cause sudden changes in dispersion value are algorithm
restarts and cyclic reassigning of behaviors to each particle. Moreover, polynomial
model-based behavior is susceptible to relatively extensive jumps within the function
domain.

4. Experimental results

All experiments were conducted using COCO BBOB benchmark data set [9]. Sec-
tions 4.1 and 4.2 present the base experiments and Sections 4.3 and 4.4 are devoted to
additional tests investigating how changing the key parameters of polynomial model-
based behavior affects its performance.



4.1. Comparison with GAPSO and state-of-the art version of CMA-
ES

Comparisons with GAPSO and state-of-the art CMA-ES[22] (KL-BIPOP) are shown
in Fig. 11. Evaluation was made on 24 noiseless continuous functions. Two variants of
M-GAPSO are included in this comparison: PDLPr and PDr. The first one includes
model-based behaviors. The other one, does not, i.e. its behavior pool consists only
of PSO-2007 and DE/best/1/bin particles. Both variants do not utilize adaptation
module. The comparison of PDr and PDLPr was made for 2, 3, 5, 10, 20 and
40 dimensions. Results of the GAPSO are available for 5 and 20 dimensions. The
KL-BIPOP results are presented for all dimensions except 40. Parameter values of
M-GAPSO PDLPr variant are presented in Table 2 in the appendix.

The enhancements implemented in M-GAPSO improved the performance over
GAPSO for both 5 and 20 dimension experiments. Both variants are significantly
better than GAPSO, specifically in the case of 5 dimensions. Compared to CMA-
ES, M-GAPSO performs better for 2, 3 and 5 dimension experiments. For higher
dimensions both M-GAPSO variants are slightly worse than CMA-ES. For 2,3 and
5 dimension experiments both M-GAPSO variants perform similarly. For higher di-
mensions PDLPr tends to outperform PDr. Moreover, in all experiments PDLPr
distinctly exceeds PDr in the early phase of an optimization run which suggests that
in the early phase model-based behaviors approximate function well enough to help
other particles to move faster to more promising areas.

4.2. Comparison for separable functions

Considering the principle of model-based behaviors and analysis presented in section
2.3 we expected that the PDLPr variant should perform distinctly better than the PDr
for separable functions. Complementary comparisons for both variants are presented
in Figure 12. The experiment was conducted with DIM · 106 optimization budget,
for 2, 3, 5, 10, 20 and 40 dimensions using separable benchmark functions.

For all dimensions PDLPr performs distinctly better than PDr. For 2 and 3
dimensions the advantage is noticeable especially in the early stages of an optimization
run. For higher dimensions PDLPr performs indisputably better during the whole
optimization run. Furthermore, for 20 and 40 dimensions it performs relatively better
for separable functions than for the remaining ones from the 24 function benchmark
considered.



0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

KL-BIPOP-

PDLPr-6 1

PDr-6 1.2

best 2009bbob f1-f24, 2-D
51 targets: 100..1e-08
15 instances

v2.3.1

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

KL-BIPOP-

PDLPr-6 1

PDr-6 1.2

best 2009bbob f1-f24, 3-D
51 targets: 100..1e-08
15 instances

v2.3.1

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

GAPSO

KL-BIPOP-

PDr-6 1.2

PDLPr-6 1

best 2009bbob f1-f24, 5-D
51 targets: 100..1e-08
15 instances

v2.3.1

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

PDr-6 1.2

PDLPr-6 1

KL-BIPOP-

best 2009bbob f1-f24, 10-D
51 targets: 100..1e-08
15 instances

v2.3.1

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

GAPSO

PDr-6 1.2

PDLPr-6 1

KL-BIPOP-

best 2009bbob f1-f24, 20-D
51 targets: 100..1e-08
15 instances

v2.3.1

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

PDr-6 1.2

PDLPr-6 1

best 2009bbob f1-f24, 40-D
51 targets: 100..1e-08
15 instances

v2.3.1

Figure 11. Results of M-GAPSO configurations with model-based optimization
(PDLPr) and without model-based optimization (PDr) against GAPSO and state-
of-the-art variant of CMA-ES, for DIM ∗ 106 optimization budget.

4.3. Experiments with various polynomial degrees

In the experiments presented in Figs. 11 and 12 a constant degree (equal to 4) of
polynomial model-based behavior was assumed. In Fig. 13 performance for various
degrees of polynomial-based model is presented with DIM · 106 optimization budget



0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

PDr-6 1.2

PDLPr-6 1

best 2009bbob f1-f5, 2-D
51 targets: 100..1e-08
15 instances

v2.3.1

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

PDr-6 1.2

PDLPr-6 1

best 2009bbob f1-f5, 3-D
51 targets: 100..1e-08
15 instances

v2.3.1

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

PDr-6 1.2

PDLPr-6 1

best 2009bbob f1-f5, 5-D
51 targets: 100..1e-08
15 instances

v2.3.1

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

PDr-6 1.2

PDLPr-6 1

best 2009bbob f1-f5, 10-D
51 targets: 100..1e-08
15 instances

v2.3.1

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

PDr-6 1.2

PDLPr-6 1

best 2009bbob f1-f5, 20-D
51 targets: 100..1e-08
15 instances

v2.3.1

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

PDr-6 1.2

PDLPr-6 1

best 2009bbob f1-f5, 40-D
51 targets: 100..1e-08
15 instances

v2.3.1

Figure 12. Results for separable functions of M-GAPSO configurations with model-
based optimization (PDLPr) and without model-based optimization (PDr), for DIM ·
106 optimization budget.

on 2D, 3D, 5D and 10D separable benchmark functions. The following polynomial
degrees were examined: 2, 4, 5, 6 and 10. Additionally, a variant with no polynomial
model-based behavior was also included in the behavior pool.

For 2D experiment the performance of all variants was similar. As the number of
dimensions increases, inclusion of polynomial model-based behavior in the pool re-



0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

P2 1.27.0

P10 1.27.

P5 1.27.0

NoP 1.27.

P4 1.27.0

P6 1.27.0

best 2009bbob f1-f5, 2-D
51 targets: 100..1e-08
15 instances

v2.3.1

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

NoP 1.27.

P4 1.27.0

P5 1.27.0

P10 1.27.

P2 1.27.0

P6 1.27.0

best 2009bbob f1-f5, 3-D
51 targets: 100..1e-08
15 instances

v2.3.1

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

NoP 1.27.

P6 1.27.0

P2 1.27.0

P4 1.27.0

P5 1.27.0

P10 1.27.

best 2009bbob f1-f5, 5-D
51 targets: 100..1e-08
15 instances

v2.3.1

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

NoP 1.27.

P6 1.27.0

P5 1.27.0

P10 1.27.

P4 1.27.0

P2 1.27.0

best 2009bbob f1-f5, 10-D
51 targets: 100..1e-08
15 instances

v2.3.1

Figure 13. Results of M-GAPSO configurations for different degrees of the polyno-
mial model on separable functions, for DIM · 106 optimization budget.

sults in improved performance. M-GAPSO with no polynomial model-based behavior
performed worst in all trials with dimension greater than 2. For 10D the lack of the
polynomial model-based behavior causes significant performance decrease. None of
the specific polynomial degrees performed clearly better or worse than the others.
Adaptation of polynomial-based model degree is one of our future research directions.

4.4. Experiments with other samples gathering methods

A possibility of mixing polynomial and quadratic model-based behavior was also in-
vestigated. Mixing is understood as incorporating samples gathering method as in
the quadratic model-based behavior into polynomial model-based behavior. Figure
14 presents performance of both gathering methods (cf. Figure 1) incorporated into
polynomial model-based behavior. The experiment was conducted with DIM · 106

optimization budget, in 2D, 3D, 5D and 10D using separable benchmark functions.
The results show that for lower dimensions (2D and 3D) there are no significant

performance differences between both variants of gathering samples. The differences
occur in 5D and 10D experiments. Therefore, the use of more advanced samples
gathering algorithm within polynomial model-based behavior has proven to be a rea-



0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

P4 1.27.0

P4 circle

best 2009bbob f1-f5, 2-D
51 targets: 100..1e-08
15 instances

v2.3.1

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

P4 1.27.0

P4 circle

best 2009bbob f1-f5, 3-D
51 targets: 100..1e-08
15 instances

v2.3.1

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

P4 circle

P4 1.27.0

best 2009bbob f1-f5, 5-D
51 targets: 100..1e-08
15 instances

v2.3.1

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

P4 circle

P4 1.27.0

best 2009bbob f1-f5, 10-D
51 targets: 100..1e-08
15 instances

v2.3.1

Figure 14. Results of M-GAPSO configurations for various samples gathering meth-
ods in polynomial model, for DIM · 106 optimization budget.

sonable approach.

5. Summary

In this paper quadratic and polynomial model-based behaviors are introduced. Exper-
imental evaluation confirms the reasonability of incorporating them into M-GAPSO.
The analysis of samples gathered by quadratic and polynomial model-based behaviors
reveals the strong and weak points of the proposed solution and points directions for
further improvement of results. Presented models can be parameterized to act more
globally, e.g. by gathering a wider range of samples.

It is important to note that various other models can also be incorporated into M-
GAPSO. For instance, the RBF or Gaussian process may be included in the behavior
pool. In the current version of the algorithm, model-based behavior designates the
next sampling point regardless of the model quality. In future work we plan to select
models depending on their fitness measure.

In summary, we believe that M-GAPSO results are promising, although there is
still room for improvement of the method. In particular other local methods for



handling samples gathered in external memory, as well as global modeling schemes
can be considered as an alternative to the current M-GAPSO setting.

Appendix

Table 2. Settings of the M-GAPSO PDLPr variant.

Core M-GAPSO parameters
Population size 10D
PSO behavior weight 1000
DE behavior weight 1000
Quadratic model–based behavior weight 1
Polynomial model–based behavior weight 1
Adaptation module off

Optimization algorithms parameters
PSO cognitive factor c1 1.4
PSO social factor c2 1.4
PSO velocity inertia factor ω 0.64
DE cross-over probability 0.9
DE mutation scaling factor F 0.0 - 1.4
Samples archive size 2 · 105

Quadratic model nearest samples count 5D
Polynomial model degree 4
Polynomial model nearest samples count 4D + 1

References

[1] Bartz-Beielstein T. and Zaefferer M. Model-based methods for continuous and
discrete global optimization. Applied Soft Computing, 55:154–167, 2017.

[2] Cai X., Qiu H., Gao L., Jiang C., and Shao X. An efficient surrogate-assisted
particle swarm optimization algorithm for high-dimensional expensive problems.
Knowledge-Based Systems, 184:104901, nov 2019.

[3] Chugh T., Rahat A., Volz V., and Zaefferer M. Towards Better Integration
of Surrogate Models and Optimizers. In High-Performance Simulation-Based
Optimization, pages 137–163. 2020.

[4] Chugh T., Sun C., Wang H., and Jin Y. Surrogate-Assisted Evolutionary Opti-
mization of Large Problems, pages 165–187. Springer International Publishing,
Cham, 2020.



[5] Clerc M. Standard particle swarm optimisation. 2012.

[6] Das S., Abraham A., and Konar A. Particle swarm optimization and differential
evolution algorithms: technical analysis, applications and hybridization perspec-
tives. In Advances of computational intelligence in industrial systems, pages 1–38.
Springer, 2008.

[7] Guttman A. R-trees: A dynamic index structure for spatial searching. In Pro-
ceedings of the 1984 ACM SIGMOD international conference on Management of
data, pages 47–57, 1984.

[8] Hansen N. The CMA Evolution Strategy: A Comparing Review. In Towards
a New Evolutionary Computation: Advances in the Estimation of Distribution
Algorithms, pages 75–102. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[9] Hansen N., Brockhoff D., Mersmann O., Tusar T., Tusar D., ElHara O. A.,
Sampaio P. R., Atamna A., Varelas K., Batu U., Nguyen D. M., Matzner F.,
and Auger A. COmparing Continuous Optimizers: numbbo/COCO on Github,
2019.

[10] Jin Y. A comprehensive survey of fitness approximation in evolutionary compu-
tation. Soft computing, 9(1):3–12, 2005.

[11] Kennedy J. and Eberhart R. C. Particle Swarm Optimization. Proceedings of
IEEE International Conference on Neural Networks. IV, pages 1942–1948, 1995.

[12] Kleijnen J. P. C. Simulation Optimization Through Regression or Kriging Meta-
models. In High-Performance Simulation-Based Optimization, pages 115–135.
2020.

[13] Nepomuceno F. V. and Engelbrecht A. P. A Self-adaptive Heterogeneous PSO
Inspired by Ants. In International Conference on Swarm Intelligence, pages
188–195. Springer, 2012.

[14] Okulewicz M. and Mańdziuk J. Application of Particle Swarm Optimization
Algorithm to Dynamic Vehicle Routing Problem. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 7895:547–558, 2013.

[15] Okulewicz M. and Mandziuk J. Two-phase multi-swarm PSO and the dynamic
vehicle routing problem. In 2014 IEEE Symposium on Computational Intelligence
for Human-like Intelligence (CIHLI), pages 1–8, Orlando, Fl, USA, dec 2014.
IEEE.

[16] Okulewicz M., Zaborski M., and Mańdziuk J. Generalized Self-Adapting Particle
Swarm Optimization algorithm with archive of samples, 2020. preprint, available
at: https://arxiv.org/pdf/2002.12485.



[17] Pitra Z., Bajer L., and Holeňa M. Doubly Trained Evolution Control for the
Surrogate CMA-ES. In Parallel Problem Solving from Nature – PPSN XIV,
pages 59–68. Springer International Publishing, Cham, 2016.

[18] Poáık P. and Klema V. JADE, an adaptive differential evolution algorithm,
benchmarked on the BBOB noiseless testbed. In Proceedings of the fourteenth
international conference on Genetic and evolutionary computation conference
companion - GECCO Companion ’12, page 197, New York, New York, USA,
2012. ACM Press.

[19] Poli R. An analysis of publications on particle swarm optimization applications.
Technical report, Technical Report CSM-469, Department of Computer Science,
University of Essex, 2007.

[20] Storn R. and Price K. Differential Evolution – A Simple and Efficient Heuristic
for global Optimization over Continuous Spaces. Journal of Global Optimization,
11(4):341–359, 1997.

[21] Uliński M., Żychowski A., Okulewicz M., Zaborski M., and Kordulewski H. Gen-
eralized Self-adapting Particle Swarm Optimization Algorithm. In Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics), volume 3242, pages 29–40. Springer,
Cham, 2018.

[22] Yamaguchi T. and Akimoto Y. Benchmarking the novel CMA-ES restart strategy
using the search history on the BBOB noiseless testbed. In GECCO ’17 Pro-
ceedings of the Genetic and Evolutionary Computation Conference Companion,
pages 1780–1787, 2017.

[23] Zaborski M., Okulewicz M., and Mańdziuk J. Generalized Self-Adapting Particle
Swarm Optimization algorithm with model-based optimization enhancements. In
2nd PP-RAI Conference (PPRAI-19), pages 380–383, Wroc law, Poland, 2019.
Wroc law University of Science and Technology.

[24] Zhang J. and Sanderson A. C. Jade: Adaptive differential evolution with optional
external archive. IEEE Transactions on Evolutionary Computation, 13(5):945–
958, 2009.


