
Self-Adapting Particle Swarm Optimization for
continuous black box optimization

Micha l Okulewicza,∗, Mateusz Zaborskia, Jacek Mańdziuka,b

aWarsaw University of Technology, Warsaw, Poland
bAGH University of Science and Technology, Krakow, Poland

Abstract

This paper introduces a new version of a hyper-heuristic framework: Gen-
eralized Self-Adapting Particle Swarm Optimization with samples archive
(M-GAPSO). This framework is based on the authors previous works on hy-
bridization of optimization algorithms and enhancing population based op-
timization with model based optimization. The paper presents the structure
of the proposed framework and analyzes the impact of its modules on the
final system performance. M-GAPSO hybridizes Particle Swarm Optimiza-
tion, Differential Evolution and model based optimizers. A ratio of particular
algorithms within a population is regulated by an adaptation scheme. The
applicability of the proposed hybrid method to black-box optimization is ver-
ified on 24 continuous benchmark functions from the COCO test set and 29
functions from the CEC-2017 test set. On the BBOB test set a hybrid of
PSO and DE with adaptation obtained 11 significantly better and 2 signif-
icantly worse results on 5 and 20 dimensional functions than the basic DE.
Further inclusion of the model based optimizers led to 15 significantly better
and 2 significantly worse results compared to the PSO-DE hybrid. On the
CEC-2017 test set, M-GAPSO was significantly better than both Red Fox
Optimization and Dual Opposition-Based Learning for Differential Evolution
(DOBL) on 7 functions in 30 dimensions and 12 functions in 50 dimensions.

Keywords: hyper-heuristics, meta-heuristics, global optimization

∗Corresponding author.
Email addresses: M.Okulewicz@mini.pw.edu.pl (Micha l Okulewicz),

M.Zaborski@mini.pw.edu.pl (Mateusz Zaborski), jacek.mandziuk@pw.edu.pl (Jacek
Mańdziuk)

Preprint submitted to Applied Soft Computing 10.1016/j.asoc.2022.109722 December 3, 2022

https://doi.org/10.1016/j.asoc.2022.109722

1. Introduction

The quest for a general purpose optimization algorithms, which started
with the works on evolutionary computations [1, 2], resulted in creation of
a few excellent optimization methods like Differential Evolution (DE) [3]
or Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [4]. Those
methods have been thoroughly studied and gradually improved over the years
following their initial presentation [5, 6, 7, 8].

Recently, further improvement of metaheuristics within the families of
DE, CMA-ES and biologically inspired methods has been observed. Among
the DE family of algorithms, a Dual Opposition-Based Learning for Dif-
ferential Evolution (DOBL) [9] has yielded good results on CEC-2017 data
set, while NL-SHADE-RSP presented very good results on CEC-2021 [10].
Within the CMA-ES family, the lq-CMA-ES algorithm [11] has dominated
other approaches on the COCO benchmark set, extending previous state-
of-the-art version of BIPOP-CMA-ES approach [12] with a surrogate model
technique. Likewise, surrogate model extensions can increase performance of
a DE-based algorithm when the available number of fitness function evalu-
ations is restricted [13, 14]. Finally, among the recent biologically inspired
algorithms, a Red Fox optimization (RFO), which mimics the behavior and
hunting patterns of red foxes, is already getting attention [15].

The search for a universal optimization algorithm is a challenging task
because optimization performance strongly depends on the type of an opti-
mized function [16]. Additionally, the works on theoretical convergence of
random sampling based methods (i.e. Genetic Algorithms (GA) [17], Simu-
lated Annealing (SA) [17] and Particle Swarm Optimization (PSO) [18, 19])
are not necessarily helpful in practical setting of parameters for a particular
problem.

One of the methods used in order to escape the problem of overfit-
ting a particular algorithm for a given type of optimization problem is to
use a hyper-heuristic approach. Hyper-heuristics have been formally intro-
duced in [20] and further popularized in [21] as “(meta)heuristics working on
(meta)heuristics”. Initial motivation was to develop a way to effectively se-
lect a set of easy to implement heuristics, while maintaining a domain barrier
between the selection mechanism and the optimized problem.

In the domain of hyper-heuristics most of the approaches focus on the ap-
plications to the discrete domain problems. However, there have been also a
few notable approaches for the continuous optimization problems. The work

2

Table 1 A summary of the related prior contribution of the authors
2016: [26] Initial concept of generalizing swarm-optimization paradigm

within a social simulation scheme
2018: [27] First version of GAPSO hybridizing and adapting; utilization

of various PSO and DE algorithms
2019: [28] Initial (conference) work on model based optimization ap-

proaches within GAPSO framework
2020: [29] Extended (journal) work on model based optimization ap-

proaches within GAPSO framework
2020: [30] arXiv preprint presenting M-GAPSO framework

[22] is an example of DE application to continuous constrained optimization,
where hyper-heuristic uses roulette wheel selection to choose among 12 basic
DE variants for the current iteration. The importance of diversity among uti-
lized low-level meta-heuristics such as PSO, DE, GA and CMA-ES is pointed
out in [23]. The Artificial Bee Colony (ABC) and Krill Herd (KH) can be
utilized as low-level optimizers [24]. The choice of particular optimizer for
the agent is done on the basis of the agent rank in terms of its fitness. The
work [25] introduce an approach called hyperSPAM that consists of CMA-
ES as initial search algorithm and S and Rosenbrock (R) algorithms as the
second-phase low-level optimizers during hyper-heuristic search.

The authors propose a hyper-heuristc framework as an extension of their
previous works on algorithms hybridization [26, 27, 28, 29]. The first paper
discussed the possibility of finding an optimal team of optimization agents
based on Belbin’s Team Roles Inventory. The second article introduced the
initial version of GAPSO algorithm as a hybrid of several variants of the
PSO and DE methods. The third and the fourth publications analyzed the
impact and behavior of the model-based optimization methods within the
M-GAPSO framework. Furthermore, the authors presented the pseudocode
and a series of experiments discussed in this work in the arXiv preprint [30].
Table 1 summarizes the authors’ prior contribution.

The focus of this paper is to present the design of GAPSO framework
enhanced with an archive of function samples (M-GAPSO) and to analyze
the impact of its extension by adding a global adaptation scheme. Fur-
thermore, the work advocates the relevance of hybrid optimization meth-
ods which above all can gain from synergistic combination of advantages of
the compound methods. The proposed M-GAPSO design separates auxil-

3

iary techniques (e.g. population initialization after algorithm’s stagnation)
from the actual optimization engine (e.g. PSO’s particles sampling strategy).
The resulting system consists of multiple groups of components, each serv-
ing a particular purpose within the optimization environment. This allows
the components of the framework to be developed independently, as easily
swapped for different versions in order to analyze their contribution to the
overall performance.

1.1. Contribution and organization of the paper
Proposed M-GAPSO framework provides a platform for cooperation of

various existing optimization approaches. The main contribution of this pa-
per is threefold:

• Presenting the design of a hyper-heuristic framework in which sampling
methods and model-based optimization approaches seamlessly cooper-
ate within a common environment. This work significantly extends the
previous version of this framework [27] by adding model based opti-
mization and alternative adaptation mechanism.

• Analyzing the impact (in terms of results quality and computational
load) of including an adaptation scheme within the hyper-heuristic en-
vironment.

• Improving performance of the base algorithms in terms of the number
of fitness function evaluations.

The rest of the paper is organized as follows. Section 2 presents the
related literature. Section 3 introduces the principles of M-GAPSO algorithm
(taking into account the original GAPSO) and discusses its components.
Results on the Comparing Continuous Optimizers in a Black-Box Setting
(COCO) benchmark set [31] are presented in Section 4. Conclusions and
directions for future work are discussed in Section 5.

2. Related work

This section presents the background of PSO, DE and model based op-
timization, together with auxiliary elements of optimization methods (i.e.
restarts, hybridization and adaptation).

4

2.1. Particle Swarm Optimization
Particle Swarm Optimization (PSO) algorithm was introduced in [32].

The key concept is to utilize swarm (population) of particles so that they
search the space in a certain way. Each particle has its own movement rules
enhanced by information derived from its neighbor particles. The particle i
has its own velocity vector that changes with each iteration. The velocity
vector vvvt+1

i takes into account: a random component, an inertia effect (ve-
locity vector vvvt

i from previous iteration) and two memorized points. The fist
memorized point (pppt

i) is the best position, according to an objective function,
of particle i found until iteration t. While, the second (lllt

i) is the best position
that comes from whole neighborhood of particle i until iteration t.

The neighbor definition and velocity update formula depend on the spe-
cific version of PSO. For one of the popular variants, SPSO-2007 [33], the
neighborhood of particle i consist of 3 particles with the following indices:
i− 1 mod(S), i, i + 1 mod(S), where S is the swarm size. The exact velocity
update formula is presented in the following equation:

vvvt+1
i = ωvvvt

i + U(0, c1)(pppt
i − xxxt

i)) + U(0, c2)(lllt
i − xxxt

i) (1)
where: ω is velocity inertia factor, c1 is cognitive factor, c2 is social factor,
xxxt

i is position of a particle in iteration t and U(0, cr), r = 1, 2 are uniform
random variables sampled independently in each iteration.

Finally, the position of particle i for iteration t + 1 (next sampling point)
is obtained as follows:

xxxt+1
i = xxxt

i + vvvt+1
i (2)

2.2. Differential Evolution
Differential evolution (DE) is a population-based optimization algorithm

firstly presented in [3]. Each iteration consist of the three main phases ap-
plied to each individual: mutation, crossover and selection. Similarly to
PSO, DE has many variants differing mainly in the mutation phase. As an
example, DE/best/1/bin variant is described below. In the mutation phase,
in iteration t + 1 (originally generation G + 1) for each individual xxxt

i (parent
vector) a mutated vector yyyt+1

i is generated according to:

yyyt+1
i = xxxt

best + F (xxxt
r1 − xxxt

r2) (3)
where: F > 0 is a constant, xxxt

best is a current best vector and {r1, r2} are
random mutually different indexes of individuals from population.

5

In the crossover phase the parent vector xxxt
i is recombined with the mu-

tated vector yyyt+1
i so that a trial vector uuut+1

i is obtained. Each element d
from trial vector uuut+1

i comes from parent vector xxxt
i or mutated vector yyyt+1

i

according to the assumed probability. One randomly chosen element ut+1
i,drand

from trial vector uuut+1
i takes the value of yt+1

i,drand
to ensure that the trial vector

will differ in at least one position from the parent vector xxxt
i. Formally, each

element ut+1
i,d from trial vector can be expressed as follows:

ut+1
i,d =

yt+1
i,d , if randd(0, 1) ≤ CR or d = drand.

xt
i,d, otherwise,

(4)

where: CR > 0 is a constant that denotes probability of crossover.
Finally, the trial vector uuut+1

i is evaluated on an objective function and
selected as a population member instead of parent vector, only if its value is
less than or equal to parent’s value. Otherwise, the parent vector xxxt

i remains
unchanged for iteration t + 1 (please see eq. (5)).

xxxt+1
i =

uuut+1
i , if f(uuut+1

i) ≤ f(xxxt
i).

xxxt
i, otherwise.

(5)

2.3. Model-based optimization
The model-based enhancements are described in detail in authors’ previ-

ous work [29]. In brief summary, two meta-models (quadratic and polyno-
mial) are incorporated into optimization process. They behave like a particle
that designates its next sampling position by following a few steps described
below.

First, they gather from archive a collection of already evaluated samples.
Separate rules are applied to separate meta-models. The quadratic model
particle requires k nearest samples in the sense of the Euclidean metric to fit
meta-model f̂Q(xxx). Whereas, the polynomial model particle requires D inde-
pendent collections of samples for each dimension d of the D dimensions to
fit D independent meta-models f̂Pd

(xd). Each collection related with dimen-
sion d is composed of k samples that are outspread along dimension d and
possibly tight in relation to the rest D− 1 dimensions. In the other words, k
samples that minimizes Euclidean distance metric excluding the dimension d
are gathered. The difference of both gathering methods is depicted in Fig. 1.
In order to have a more efficient way of finding nearest samples than linear
search, all samples in the archive are indexed using an R-Tree [34].

6

Figure 1 Comparison of samples data sets used for fitting quadratic and
polynomial models

Second step is fitting an adequate meta-model. The quadratic and poly-
nomial models are expressed by eqs. (6) and (7), respectively. Ordinary
Least Squares method is used for coefficient estimation in both cases.

f̂Q(xxx) =
D∑

d=1

(
adx2

d + bdxd

)
+ c (6)

f̂Pd
(xd) =

p∑
i=1

ai,dxi
d + cd (7)

Finally, the optimum of meta-model xxx∗ is designated so the model particle
changes its position to this optimum and is evaluated using the true objective
function (see eq. (8)).

xxxt+1
model = xxx∗ = arg min f̂(xxx) (8)

where: f̂(xxx) ∈ {f̂Q(xxx), [f̂P1(x1), . . . , f̂PD
(xD)]}

Calculation of the quadratic model optimum is performed by obtaining
a composition of D independent parabola vertices (or a proper boundary
points, if necessary) in accordance with f̂Q(xxx). Alternatively, the polynomial
model optimum is obtained using grid search (1000 points) separately for all
D coordinates using D independent f̂Pd

(xd) polynomial models.

7

2.4. Generalizing optimization algorithms
On the subject of generalizing metaheuristic algorithms, the work [35]

presented utilization of the term “adaptive memory programming” (AMP),
proposing a unified view on several of those optimization methods. AMP
initially has been used in connection with Tabu Search [36]. Other meta-
heuristic algorithms (i.e. Genetic Algorithm, Scatter Search and Ant Sys-
tems) follow the same design patterns and their performance depends on the
problem structure in a similar way [35]. However, no unified approach has
been proposed for a hybrid implementation of those methods.

In the area of hybrid optimization algorithms utilizing PSO and DE,
there are a few effective solutions, extending their performance beyond each
of the component methods alone. For instance, the work [37] presented a
hybrid algorithm combining PSO and DE, motivated by the fact that PSO
activity is prone to stagnation when particles are unable to improve their per-
sonal best positions. In such a case DE has been applied to update particles
best positions and make the swarm jump out of the stagnation phase. Ran-
dom switching between PSO and DE (with single algorithm applied within
a given iteration) was proposed in [38]. Additionally, this method observed
the convergence of the population. If the population converged too much,
the individuals locations were randomized with the multivariate Gaussian
distribution.

PSO can also be hybridized with Genetic Programming [39], Grammat-
ical Evolution [40] or specialized algorithms designed for solving particular
optimization problems [41].

2.5. Restarts
Complex and multi-modal functions cause the convergence of an algo-

rithm to local rather than global optimum. Therefore an efficient global
optimization method needs to decide when such a convergence occurs and as-
sess if the optimization process should be restarted. One of the widely known
restart mechanisms is implemented into JADE optimization algorithm [5]. In
a basic JADE approach a spread of population locations is considered and
combined with the frequency of global optimum estimation improvements.
The following two conditions must occur jointly in order for the restart to be
performed. Firstly, a diversity measure Div(X) = 1

D

D∑
d=1

V ar(Xd) of popula-
tion X = {xxx1, . . . ,xxxN} is smaller than a threshold Θ, where N is population

8

size, D problem size and Xd set of coordinates in dimension d of all popula-
tion members. Secondly, the objective function value has not been improved
in the last Tmax iterations.

2.6. Algorithms adaptation scheme
One of the methods for improving the algorithm performance is to create

a scheme for adjusting algorithm parameters during an optimization pro-
cess. Those schemes could be applied to the internal control of the algorithm
parameters or to select the algorithm to be applied in a hyper-heuristic set-
ting. This section presents selected concepts related to PSO, DE and hybrid
algorithms.

There are many variants and modifications of PSO whose performance
strictly depends on the optimized problem. A framework PSO-X [42] is
designed to facilitate automatic generation of appropriate PSO configurations
using training instances and irace tool [43]. A configuration, once selected,
remains unchanged during the whole optimization run.

An alternative approach is to adapt the algorithm configuration during
the optimization process. Such an Adaptive PSO algorithm based on the
swarm diameter has been proposed in [44].

The method classifies the observed swarm diameter as one of the four
states of the algorithm: exploration, exploitation, convergence and jumping-
out. If a given state is detected, parameters c1 and c2 of the PSO velocity
update (eq. (1)) are adjusted accordingly. Overall, the method relies on
the particular ease of controlling exploration-exploitation balance within the
PSO.

Within the DE family of algorithms the most successful method of pa-
rameter adaptation is Success-History based parameter Adaptation for Dif-
ferential Evolution (SHADE) described in [45]. The method stores several
sets of well-performing F and CR parameters controlling the DE’s mutation
(eq. (3)) and cross-over (eq. (4)). During the optimization process one pair
of Fi and CRi is sequentially selected and the perturbed version of these
parameters is used to obtain a new DE sample. Lehmer means [46] calcu-
lated for the perturbed parameters, which resulted in improvement of the
individual value, replace the old values within the ith slot.

For the case of adaptation within hybrid algorithms the focus is usually on
the performance of component algorithms. According to [47], selection of an
algorithm can be done in a probabilistic manner by PM-AdapSS method. In
this method each probability is designated by measuring the impact of given

9

algorithm k at iteration t understood as a reward value rk,t. The reward
value takes into consideration performance of all Nk offspring individuals
generated by algorithm k and is calculated using the fitness value f(xxxi) of
ith offspring, the fitness value f(xxxparent

i) of ith offspring’s parent and the best
solution f(xxxbest) found so far:

rk,t = 1
Nk

Nk∑
i=1

f(xxxbest) ·max(f(xxxparent
i)− f(xxxi), 0)

f(xxxi)
(9)

Subsequently, rk,t values are used in roulette setup to decide how many
individuals would be governed by each evaluated algorithm.

3. Description of M-GAPSO

This section describes the proposed M-GAPSO framework which is based
on the PSO algorithm, but allows the usage of virtually any other optimiza-
tion method whose “particles” act independently. Additionally, the algo-
rithm’s restart manager, the archive (external memory) of samples and the
algorithm’s search space manager are defined as auxiliary modules indepen-
dent from the core optimization part.

The underlying features of M-GAPSO design can be listed as follows:

• it relies on well-researched optimization algorithms,

• effectively utilizes samples already gathered by means of randomized
search procedures (i.e. PSO, DE),

• guides the search process of the algorithm on the basis of already found
local optima,

• keeps independence of the constituting modules to the highest possible
extent.

The main components of M-GAPSO are presented in the UML class di-
agram (Fig. 2) and discussed in detail in the following subsections.

3.1. General swarm–based optimization framework
A starting point for GAPSO was a multi-agent view of the PSO algo-

rithm [26]. In PSO particles can be seen as independent optimization agents,

10

Figure 2 The UML class diagram of M-GAPSO

GAPSO Framework

Particle

+currentLocation: double[]
+currentVelocity: double[]
+bestLocation: double[]
+bestValue: double
+nextSample(Behavior[]): double

<<Interface>>

Behavior

+usageProbability: double

+nextSample(Particle, Particle[]): double[]

PSO DE

SamplesArchive

+storeSample(double[] location, double value): void
+getNearestSamples(int size, double[] origin): Pair<double[],double>[]

<<uses>>

<<uses>>

QuadraticFunction

BehaviorAdapter

+registerImprovement(Behavior, double): void
+getUsageProbablity(Behavior): double

<<uses>>

SearchSpaceManager

+registerOptimum(double[], double): void
+getInitialSearchRegionBBOX(): double[][]

RestartManager

+registerIteration(): void
+registerImprovement(boolean): void
+shouldBeRestarted(Particle[]): boolean

PolynomialFunction

each exposing its historically best location only and maintaining its own cur-
rent location and velocity. This view led to the most important GAPSO
design choice: a separation of particles’ locations from their velocity update
formula. Subsequently, regarding velocity update just as a method of spec-
ifying the next location to be sampled by the algorithm, allowed utilization
of any population-based self-governing optimization algorithm in GAPSO.
Apart from various swarm-based approaches, it also meant the possibility
of including other than PSO-like sampling equations (e.g. DE) in GAPSO
framework, which has been presented in [27]. Additionally, the pool of avail-
able search space samplers (algorithms) has been extended with model-based
optimizers in [29]. The above-described design can be observed in the class

11

diagram (Fig. 2) as PSO, DE, Quadratic Function and Polynomial Function
classes implement the Behavior interface. Objects of classes implementing
that interface can be applied to modify the location of the Particle on the
bases of current state of population and (optionally) data stored in Samples
Archive.

Application of particular Behavior object is managed by the Behavior
Adapter. This object registers the performance of each of the considered
types of behavior and uses it to update the respective probability of selecting
a given behavior as a sampling mechanism in future iterations.

M-GAPSO extends the previous version of GAPSO [27] with three main
components, that can be implemented and configured independently from
the core optimization algorithms:

Samples Archive - serves as a cache and a source of additional information
about optimized function.

Restart Manager - observes the population state in terms of values, loca-
tion and improvement history and decides when the method should be
restarted.

Search Space Manager - decides where the algorithm should be initialized
within the problem space.

The purpose of the Samples Archive is to enable efficient utilization of
function values gathered during the solution search process.

The Restart Manager, together with the Search Space Manager, guide the
optimization algorithm towards promising areas of the problem space, when
further exploitation of the currently searched area seems to be pointless.
With such a design it is possible to extend the GAPSO framework and test
the impact of optimization improvements somewhat independently of the
main optimization engine.

The M-GAPSO operates similarly to the population based methods like
the PSO or DE, as depicted in the Algorithm 1 pseudocode.

12

Algorithm 1 M-GAPSO high–level pseudocode
1: F is optimized RD → R function, Bounds is an

(
R2)D vector

2: Swarm is a set of PSO particles, Behavior is particle’s velocity update rule
3: Initializer is particle’s initial location sampler
4: SamplesArchive is an RTree based samples’ index
5: BehaviorAdapter collects optimum value improvement data
6: RestartManager observes swarm state and performance
7: Bounds← f.getBounds() . Initially the whole area is considered
8: PerformanceMonitor.behaviourProbabilities← initialProbabilities
9: LocalOptima← ∅ . Set of optima estimations

10: while Stopping criterion not met do
11: for Particle ∈ Swarm do
12: Particle.x← Initializer.nextSample(Bounds)
13: Sample← F.evaluate(Particle.x)
14: BehaviorAdapter.registerV alue(Sample)
15: end for
16: for Particle ∈ Swarm do
17: . Initial velocity is computed on the basis of two random particles

18: Particle.v ← (Particlerand1.x− Particlerand2.x)
2.0

19: end for
20: while RestartManager.shouldOptimizationContinue(Swarm) do
21: for Particle ∈ Swarm do
22: . The number and application order of behaviors is mixed in

each iteration
23: Behaviour ← BehaviorAdapter.sampleBehaviourPool()
24: Particle.x← Behavior.sampleNext(Particle, Swarm, SamplesArchive)
25: . Velocity must be managed for the sake of PSO-like behaviors
26: Particle.v ← Particle.x− Particle.xprevious

27: . Samples Archive is also used as cache
28: if SamplesArchive.stored(Particle.x) then
29: Sample← SamplesArchive.retrieve(Particle.x)
30: else
31: Sample← F.evaluate(Particle.x)
32: SamplesArchive.store(Sample)
33: end if
34: BehaviorAdapter.registerImprovement(Sample, Behaviour)
35: end for
36: BehaviorAdapter.recomputeBehaviourProbabilities()
37: end while
38: LocalOptima← LocalOptima ∪ Swarm.bestSample
39: Bounds← Initializer(LocalOptima) . Guides the search process to the

areas expected to uncover new function optima
40: end while

13

At the beginning of the optimization process (and after each restart),
the population (including particles’ velocity) is initialized randomly over the
selected area of search space. The difference is within the sampling procedure
where, for the sake of generality, the sampled location is computed first and
the velocity is updated as a result (as not all the optimizers utilize the concept
of velocity needed by PSO). After each iteration the restart conditions are
verified, and if necessary the algorithm is restarted and the found best value
is stored in a set of local optima.

On a final note, GAPSO is maintained as an open source application on
the MIT license and is available at:
https://bitbucket.org/pl-edu-pw-mini-optimization/basic-pso-de-hybrid/.

3.2. Samples archive
In order to store and efficiently retrieve samples, M-GAPSO utilizes a

multi-dimensional R-Tree index [34]. Due to performance reasons capacity of
the R-Tree index is limited and set by the user. After reaching the maximum
capacity, the index is restarted from scratch.

Samples archive is utilized in two scenarios. Mainly, for efficient retrieval
of the nearest samples as described in Section 2.3. Subsequently those sam-
ples are utilized to fit a quadratic or polynomial function model. Secondly,
samples archive serves as a cache memory, so that in the event of the algo-
rithm trying to sample the same location (as it does happen when the swarm
has nearly collapsed), it retrieves the function value from memory, saving
some budget of the fitness function computations.

3.3. Restart management
M-GAPSO uses an enhanced version of JADE [5] restart manager. In

M-GAPSO the RestartManager registers iteration count intervals between
global optimum updates, considers a spread of personal best locations of
particles (eq. (10)) and additionally a spread of personal best locations val-
ues (eq. (11)). The last feature was added in order to better handle step
functions, where the population spread can be quite large, even though the
population reached a sort of a frozen state, with each particle having exactly
the same personal best value.

∀i,j=1,...,N
Dmax

d=1
(|particlei.best[d]− particlej.best[d]|) < Θlocations (10)

14

https://bitbucket.org/pl-edu-pw-mini-optimization/basic-pso-de-hybrid/

∀i,j=1,...,N |f(particlei.best)− f(particlej.best)| < Θvalues (11)
Restart will be performed if eq. (10) or eq. (11) is satisfied and the global

best value has not been improved for a certain number of evaluations.

3.4. Initialization scheme
The initialization scheme relies on selecting a smaller bounding box as

the initial search area on the basis of previously estimated function optima.
The process of creating the bounding boxes can be summarized as follows:

1. Restart Manager detects that algorithm is stuck
2. The best sample x found during the last run is selected and considered

an estimation of a local optimum location
3. If x is different from all previously found local optima estimations, then

(a) x is added to the collection of local optima estimations
(b) The bounding box (hyper-rectangle) B containing this sample is

selected from the collection of bounding boxes created so far
(c) Dimension d in which B has the maximal difference between upper

and lower bound is selected
(d) B is split into B1 and B2 by a plain defined by coordinate d of x
(e) B is removed from the collection of bounding boxes
(f) B1 and B2 are added to the collection of bounding boxes

This way, after each algorithm restart, there is a smaller non-degenerated D-
dimensional search space. This encourages the algorithm to explore regions
were no significant local optima have been detected so far.

Figure 3 presents a sample step of M-GAPSO re-initialization and mul-
tiple local optima estimations as the final result of such a procedure. The
initialization procedure includes the following possibilities:

• starting from the original (full) bounding box defined for the optimized
function,

• starting from a random bounding box defined by boundaries derived
from locations of the local optima estimations,

• starting from a small bounding box centered around the high-quality
optimum estimation.

15

Figure 3 M-GAPSO outer loop sampling scheme. Black dots mark locations
of local optima estimations, a black rectangle marks the area for initial swarm
location in a given run, and a red rectangle marks the resulting distribution
of samples in that run

-6 -4 -2 0 2 4 6

-4
-2

0
2

4

bbob_f015_i05_d02

0
X1

X
2

7

Std. dev.
Init. BBOX

-6 -4 -2 0 2 4 6

-4
-2

0
2

4

bbob_f015_i05_d02

 estimated local optima locations
X1

X
2

Figure 4 Possible M-GAPSO initialization bounding boxes generated during
the optimization process for the functions with (f15) and without (f24) a
general structure

-5 0 5

-4
-2

0
2

4

bbob_f015_i01_d02

X1

X
2

Complete BBOX
Local optima BBOXes
Hiqh quality BBOXes

Optima locations
Global optimum

-5 0 5

-4
-2

0
2

4

bbob_f024_i72_d02

X1

X
2

Complete BBOX
Local optima BBOXes
Hiqh quality BBOXes

Optima locations
Global optimum

One of those actions is selected at random with probabilities set by the
user of M-GAPSO. Figure 4 visualizes possible bounding boxes for initializing
the M-GAPSO population, created on the basis of optima estimations during
the previous optimization process.

16

3.5. Optimization behaviors
One of the main conclusions from the authors’ initial work on GAPSO

[27] was that the highest synergy among optimization behaviors could be
observed when DE and PSO are utilized, instead of a pool of various PSO
variants (i.e. Standard PSO, Charged PSO, Fully-Informed PSO). Addi-
tionally, the authors already tested the ability to improve the results by
adding model-based optimizers into the mix [28, 29]. Therefore, the behav-
ior pool implemented in M-GAPSO consists of SPSO-2007, DE/best/1/bin
and quadratic and polynomial function model-based optimizers.

In order to ensure generality of the proposed framework particle’s location
and velocity are managed in the following way:

particle.xt+1 ← behavior.sample(particle, swarm, samples.archive) (12)

particle.vt+1 ← particle.xt+1 − particle.xt (13)
The sample obtained in eq. (12) comes either from PSO velocity and loca-

tion update (eqs. (1) and (2)), DE mutation and crossover (eqs. (3) and (4))
or an (estimated) optimum from a fitted function model (eq. (8)). Although
some algorithms may have already computed the particles velocity internally,
for the sake of uniformity, the velocity is also computed in eq. (13). Observe,
that one of the consequences of the above approach is the loss of previously
computed velocity, resulting in its reset. However, the new velocity still
makes sense from the point of view of SPSO-2007 behavior. If a particle’s
move has been successful (i.e. particle.xbest is updated) and in next iteration
PSO behavior is applied to this particle, it will continue to move roughly in
the direction that already improved its value - which is the purpose of PSO’s
velocity. This direction might be perturbed only by the attraction vector of
the best neighbor location.

Subsequent steps include:

1. Computing the value for new sample particle.valt+1 ← f(particle.xt+1)
2. Exchanging particle.xbest for particle.xt+1 if particle.valt+1 is better

than particle.valbest

3. Storing particle.valt+1 and f(particle.xt+1) in an R-Tree indexed mem-
ory (samples archive)

17

3.6. Adaptation scheme
Adaptation scheme in M-GAPSO for each optimization behavior takes

into account its contributions to the improvement of the global best value
(with respect to that value at the beginning of each iteration). These con-
tributions are aggregated by a moving average scheme (separately for each
optimization behavior) and are normalized in order to account for the number
of times a given behavior was applied.

In implementing this adaptation scheme the authors have followed one
of the methods discussed in [47] presented in Section 2.6. In order to adapt
the number of behaviors (algorithms) applied within a single M-GAPSO
iteration, proposed method first computes the impact of each behavior b
before iteration t, while taking into account past history.depth iterations:

wb,t =

t−1∑
i=t−history.depth

(∑
xb,i,j∈{sampled by behavior b}

max(0, f(gbest,i)− f(xb,t,j))
)

t−1∑
i=t−history.depth

|{sampled by behavior b}|
(14)

Therefore, the probability of selecting behavior b in iteration t is equal
to:

pb,t = wb,t∑
b′∈{behaviors}

wb′,t
(15)

with the following additional rules:

1. Each behavior must be applied to at least one particle in any given
iteration

2. If ∑
b′∈{behaviors}

wb′,t = 0 then ∀b′∈{behaviors}pb′,t = 1
|{behaviors}|

Note, that this procedure is different from the initial GAPSO adaptation
scheme [27], which considered the average improvement of the local optimum
estimation (i.e. against the former value of f(particle.xbest) for each particle).

Figure 5 presents the effects of applying adaptation scheme in a single
run of the algorithm. In the first few iterations the fractions of using various
behaviors oscillate around predefined values set by the user. Afterwards the
currently best performing behavior starts to dominate over the others in
terms of the frequency of its application. In the final phase, all behaviors

18

Figure 5 Fractions of using various behaviors during an example algorithm’s
run (i.e. till a restart). Black dots denote whether in a given iteration a global
optimum value was improved

●

●

●●●

●●●

●

●●

●

●●

●●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●●

●

●

●●●●

●

●●●

●●

●●

●●

●

●

●●●●

●

●●●●●●

●

●●●●●

●

●

●

●●

●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●0

5

10

15

20

0 25 50 75 100

Iteration

C
ou
nt

Behavior

DEBest1BinBehaviour

ModelBehaviour

PolynomialModelBehaviour

SLPSO2007Behaviour

Quadratic

have pairwise equal probabilities of their application due to prolonged lack
of improvement. If such a situation lasts for a certain number of iterations,
the algorithm is reset (cf. Section 3.3).

19

Table 2 COCO noiseless functions used in experimental evaluation (all
within the range [−5, 5]D and fully described in [48])

Id Function Rotated
f1 Sphere No
f2 Elipsoidal No
f3 Rastrigin No
f4 Büche-Rastrigin No
f5 Linear Slope No
f6 Attractive Sector Yes
f7 Step Ellipsoidal Yes
f8 Rosenbrock No
f9 Rosenbrock Yes
f10 Ellipsoidal Yes
f11 Discus Yes
f12 Bent Cigar Yes
f13 Sharp Ridge Yes
f14 Different Powers Yes
f15 Rastrigin Yes
f16 Weierstrass Yes
f17 Schaffers f7 Yes
f18 Schaffers f7 Functions Yes
f19 Composite Griewank-Rosenbrock f8f2 Yes
f20 Schwefel Yes
f21 Gallagher’s Gaussian 101-me Peaks Yes
f22 Gallagher’s Gaussian 21-hi Peaks Yes
f23 Katsuura Yes
f24 Lunacek bi-Rastrigin Yes

4. Experimental evaluation of M-GAPSO

The assessment of M-GAPSO performance was made on 24 continuous
functions from the COCO benchmark set, described comprehensively in [49],
and 29 functions of CEC-2017 benchmark set [50]. Additionally, possible
relations between an optimal algorithm set and the function classes of the
COCO test set are discussed in the last subsection.

20

4.1. Performance analysis of M-GAPSO components on COCO test set
For each function in COCO set the algorithm has been run once for each

of 15 functions’ instances in each dimension, which is a standard procedure
for this benchmark set. Each function instance has different parameters for
scaling, transition and rotation (except for the separable functions), hence
in this setup the results are aggregated across various instances of the same
function instead of multiple runs for a single instance.

The instances differ mainly due to the search space translations, which
results in the presence of optima in various locations and diverse objective
function values. Among search space translations there are both linear and
non-linear ones. Moreover, rotations of selected functions are applied in
the process of creating instances. All functions used in the evaluation are
presented in Table 2, with an annotation if the function has been subject to
rotation transformations or not.

Using this particular benchmark allows for a straightforward comparison
with results obtained by various other optimization algorithms, as the bench-
mark comes with a database of results sent for evaluation in BBOB workshops
accompanying GECCO (and occasionally CEC) conference series.

The goal of the experiments was to assess the efficacy of adaptation mech-
anism implemented within M-GAPSO framework in conjunction with PSO,
DE and model-based optimizers hybridization.

M-GAPSO is compared with the PSO implementation from [51] and DE
implementation from [5], which were also tested on the COCO, thus offering a
fair baseline results. The following four M-GAPSO configurations are tested:

PD - simple PSO-DE hybrid,

PDa - PSO-DE hybrid with adaptation,

PDLP - PSO-DE and model based optimizers hybrid,

PDLPa/PDLa - PSO-DE and model based optimizers hybrid with adap-
tation1.

The goal of testing these four configurations is to address the following
questions:

1for 40 and more dimensions functions, due to long computation time, only PSO-DE
and quadratic function model-based optimizer hybrid with adaptation (denoted PDLa)
was computed

21

• How performance of the algorithm is affected by an addition of model
based optimization behaviors?

• How does performance of the algorithm change when adaptation is
applied?

Table 3 M-GAPSO framework settings with all possible features (PDLPa)
Core M-GAPSO parameters

Population size (COCO set) 10D
Population size (CEC-2017 set) max(4D, 100)
Fitness function evaluations budget 0.5 ∗ 105D
Initial PSO behavior weight wP SO,0 1000
Initial DE behavior weight wDE,0 1000
Initial quadratic model–based behavior weight wLM,0 1
Initial polynomial model–based behavior weight wP M,0 1
Samples archive index size (COCO set) 20000
Samples archive index size (CEC-2017 set) 5000

Auxiliary techniques parameters
Adaptation iterations count history.depth 10
Stagnation iterations count 20
Population convergence threshold Θlocations 10−4

Values convergence threshold Θvalues 10−8

High-quality optimum estimation bounding box relative size 3%
Optimization algorithms parameters

PSO cognitive factor c1 1.4
PSO social factor c2 1.4
PSO velocity inertia factor ω 0.64
DE cross-over probability 0.9
DE mutation scaling factor F 0.0 - 1.4
Samples archive size 2 ∗ 105

Quadratic model nearest samples count 5D
Polynomial model degree 4
Polynomial model nearest samples count 4D + 1

Table 3 presents the default values of M-GAPSO parameters for the full
features configuration (PDLPa). Parameter history.depth controls the al-
gorithm adaptation mechanism described in Section 3.6. If no adaptation is

22

to be performed the history.depth is set to 0. If the model based optimizers
are not to be used both wLM,0 and wP M,0 need to be set to 0. The core M-
GAPSO parameters and the parameters of auxiliary techniques are meant
to be user defined, as their settings shape the hyper-heuristic. Particular
methods parameters were set to follow reasonable parameter settings from
the literature.

Figs. 6–11 present the average convergence plots of M-GAPSO optimiza-
tion process on 2D, 3D, 5D, 10D, 20D and 40D COCO benchmark functions.
Tables 4 and 5 present the number of functions with at least one successful
trial within the maximal optimization budget and total ratio of successful
trials. A successful trial means obtaining the function value which differs
less from the optimal value than the designated target threshold. Thresholds
101, 10−1, 10−4 and 10−8 are analyzed, which is the standard approach within
COCO benchmark set noiseless functions testbed.

Table 4 Number of distinct function types obtained by each algorithm for
the respective optimization precision target (∆ Value) on 5D and 20D COCO
benchmark functions, respectively for 0.5× 105D evaluations

Adapted Adapted
Dim. ∆Val. PSO DE PSO+DE PSO+DE PSO+DE PSO+DE

+LM+PM +LM+PM
5D 101 24 24 24 24 24 24
5D 10−1 22 23 23 23 23 23
5D 10−4 17 23 22 21 22 22
5D 10−8 13 23 21 20 21 20

20D 101 20 19 20 20 22 22
20D 10−1 9 14 12 13 13 14
20D 10−4 8 9 12 11 11 13
20D 10−8 5 8 10 10 10 11

23

Table 5 Percentage rates of successfully completed runs by each algorithm
for the respective optimization precision target (∆ Value) on 5D and 20D
COCO benchmark functions, respectively for 0.5× 105D evaluations

Adapted Adapted
Dim. ∆Val. PSO DE PSO+DE PSO+DE PSO+DE PSO+DE

+LM+PM +LM+PM
5D 101 0.95 1.00 1.00 1.00 1.00 1.00
5D 10−1 0.54 0.91 0.86 0.86 0.90 0.92
5D 10−4 0.38 0.88 0.79 0.72 0.83 0.84
5D 10−8 0.28 0.82 0.73 0.69 0.78 0.77

20D 101 0.66 0.75 0.82 0.83 0.87 0.92
20D 10−1 0.22 0.44 0.47 0.51 0.47 0.50
20D 10−4 0.15 0.30 0.44 0.44 0.44 0.44
20D 10−8 0.09 0.28 0.40 0.40 0.39 0.39

Figure 6 Results of various M-GAPSO configurations against baseline PSO
[51] and DE [52] on 2D functions from COCO benchmark set.

●

● ● ● ●

1e−07

1e−04

1e−01

0 25000 50000 75000 100000
Evaluation count

M
ea

n
va

lu
e

+
 s

ta
nd

ar
d

er
ro

r
(lo

ga
rit

hm
ic

 s
ca

le
)

Algorithm

● PSO−el−Abd−2009

DE−Posik−2012

PD

PDa

PDLP

PDLar

PDLPar

mean convergence on 2D functions

24

Figure 7 Results of various M-GAPSO configurations against baseline PSO
[51] and DE [52] on 3D functions from COCO benchmark set.

●

● ● ● ●

0.01

0.10

1.00

0 50000 100000 150000
Evaluation count

M
ea

n
va

lu
e

+
 s

ta
nd

ar
d

er
ro

r
(lo

ga
rit

hm
ic

 s
ca

le
)

Algorithm

● PSO−el−Abd−2009

DE−Posik−2012

PD

PDa

PDLP

PDLar

PDLPar

mean convergence on 3D functions

Figure 8 Results of various M-GAPSO configurations against baseline PSO
[51] and DE [52] on 5D functions from COCO benchmark set.

●

●
●

● ●

0.1

1.0

10.0

0 50000 100000 150000 200000 250000
Evaluation count

M
ea

n
va

lu
e

+
 s

ta
nd

ar
d

er
ro

r
(lo

ga
rit

hm
ic

 s
ca

le
)

Algorithm

● PSO−el−Abd−2009

DE−Posik−2012

PD

PDa

PDLP

PDLar

PDLPar

mean convergence on 5D functions

25

Figure 9 Results of various M-GAPSO configurations against baseline PSO
[51] and DE [52] on 10D functions from COCO benchmark set.

●

●

●
● ●

1

10

100

1000

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05
Evaluation count

M
ea

n
va

lu
e

+
 s

ta
nd

ar
d

er
ro

r
(lo

ga
rit

hm
ic

 s
ca

le
)

Algorithm

● PSO−el−Abd−2009

DE−Posik−2012

PD

PDa

PDLP

PDLar

PDLPar

mean convergence on 10D functions

Figure 10 Results of various M-GAPSO configurations against baseline PSO
[51] and DE [52] on 20D functions from COCO benchmark set.

● ● ● ● ●

10

100

1000

10000

0 250000 500000 750000 1000000
Evaluation count

M
ea

n
va

lu
e

+
 s

ta
nd

ar
d

er
ro

r
(lo

ga
rit

hm
ic

 s
ca

le
)

Algorithm

● PSO−el−Abd−2009

DE−Posik−2012

PD

PDa

PDLP

PDLar

PDLPar

mean convergence on 20D functions

26

Figure 11 Results of various M-GAPSO configurations against baseline PSO
[51] and DE [52] on 40D functions from COCO benchmark set.

1e+01

1e+02

1e+03

1e+04

1e+05

0 500000 1000000 1500000 2000000
Evaluation count

M
ea

n
va

lu
e

+
 s

ta
nd

ar
d

er
ro

r
(lo

ga
rit

hm
ic

 s
ca

le
) Algorithm

DE−Posik−2012

PD

PDa

PDLP

PDLar

mean convergence on 40D functions

Appendix A presents an analysis of the quality of the best solutions
obtained for various function classes. The results of various M-GAPSO con-
figurations are pair-wise compared and tested for statistical significance of
improvement.

In order to gain knowledge related to the computational requirements
introduced by adding each technique, the running time per fitness function
evaluation (RTFF) is presented in Fig. 12. Please note that RTFF reflects
a total algorithm computation time divided by the number of fitness func-
tion evaluations. Therefore, it takes into account all operations related to
adaptation, model building and model optimum selection.

With DE algorithm (with M-GAPSO’s function cache enabled) consid-
ered to be a baseline method, the following observations can be made: (1)
Switching off samples’ caching results in around 3 times faster computations.
(2) Mixing DE with PSO does not affect the speed significantly, while includ-
ing model-based behaviors leads to 4 times slower computation than that in
the baseline experiment. (3) The most significant disadvantage, in terms of
the average computation time normalized by the number of single function
evaluations, is caused by simultaneous inclusion of model based approaches
and the adaptation mechanism. The reason for that slowdown are the algo-
rithm iterations in which no improvement was observed for a certain amount
of time. As none of the four behaviors was preferred, each of them was

27

Figure 12 The average time necessary to select and evaluate a single point
within the search space for various M-GAPSO configurations with respect to
function dimension on COCO benchmark set

PSO+DE (no cache)

PSO+DE

PSO+DE+LM+PM

Adapted PSO+DE+LM+PM

DE

1e−04

1e−02

10 20 30 40

Dimension

T
im

e

selected with probability 0.25. Therefore, around a half of the function eval-
uations was a result of model based approaches (and these methods, because
of samples retrieval and model fitting, are inherently slower than sampling
based PSO and DE behaviors).

4.2. Performance analysis of M-GAPSO components on the CEC-2017 test
set

In order to validate the results obtained on the COCO test set, the M-
GAPSO has been additionally run on CEC-2017 test set, described in detail
in the technical report [50]. CEC-2017 consists of 29 bound-constraint func-
tions belonging to one of the four categories: unimodal functions (F1), simple
multimodal functions (F3 - F9), hybrid functions (F10 - F19), and composi-
tion functions (F20 - F30). Search space is bounded to [−100, 100]D. Explicit
definitions of the functions are included in the technical report. Each func-
tion comes in four variants: 10, 30, 50, and 100 dimensional. Evaluation of
the algorithm for a specific function and dimension assumes 51 independent
runs, for which the final function value is stored.

28

CEC-2017 assumes 104 · D optimization budget, where D is function
dimensionality. Default evaluation procedure, derived from the technical
report [50], was applied for plain PSO, DE and M-GAPSO in PDa and
PDLa configurations. The final measure Score, with the maximal value
of 100, is a sum of Score1 and Score2. Score1 is a transformation of the
SE value. SE represents the weighted sum of mean final function values
obtained in all problems (for each function and each dimension an average of
51 independent runs is taken). Score2 is a transformation of the SR value.
SR is calculated as a weighted ranking measure (among other algorithms)
calculated for each problem. The ranking measure is computed using an
average value of 51 independent runs.

Table 6 presents the results of PDa and PDLa variants of M-GAPSO
compared with pure DE and PSO. The advantage of the hybridization over
standalone DE and PSO algorithms is clearly visible. PDa achieved a final
score of 97.67, PDLa 95.50, while DE and PSO reached 82.92 and 67.68,
respectively. The difference between PDa and PDLa is marginal. PDa is
slightly better in the case of ranking measure, while PDLa obtained lower
mean error values.

Table 6 Scores achieved by M-GAPSO (PDa and PDLa variants) in relation
to baseline DE and PSO algorithms on the CEC-2017 benchmark set.

Score DE PSO PDa PDLa
SE 19.25 24.33 16.52 15.75
SR 73.35 87.25 61.65 67.75

Score 1 40.90 32.35 47.67 50.00
Score 2 42.02 35.33 50.00 45.50
Score 82.92 67.68 97.67 95.50

A complexity of the algorithms was computed according to the CEC-2017
technical report [50]. T0 is the time of a test program run. T1 is the time
of pure 2 · 105 evaluations of F18 function. T2 is the average running time of
the optimization algorithm for F18 function using 2 · 105 evaluation budget.
(T2 − T1)/T0 is the final complexity measure. The results are presented in
Table 7.

In addition, PDa and PDLa variants of M-GAPSO were compared with
recent RFO [15] and DOBL [9] algorithms which reported results on 30D
and 50D for the CEC-2017 test set.

29

Table 7 Complexity of M-GAPSO calculated according CEC-2017 (i.e. for
one benchmark representative). T0 is the time of a test program run. T1 -
time of pure 2 ·105 evaluations of F18 function. T2 - the average running time
of the algorithm for F18 with 2 · 105 evaluation budget. (T2 − T1)/T0 is the
final complexity.

D Algorithm T0[s] T1[s] T2[s] (T2 − T1)/T0

10

PSO

0.00285 0.21

1.27 375
DE 1.15 330
PDa 1.39 415
PDLa 8.48 2903

30

PSO

0.00285 0.49

1.86 482
DE 1.58 385
PDa 1.71 458
PDLa 9.35 3113

50

PSO

0.00285 0.90

4.63 1310
DE 2.82 991
PDa 3.81 1020
PDLa 17.12 5692

100

PSO

0.00285 2.84

15.62 4486
DE 13.39 3702
PDa 12.95 3548
PDLa 51.45 17061

DOBL results were taken directly from [9], while RFO results were com-
puted following the implementation description from [15] with a slight cor-
rection that improved the efficacy of the RFP2.

Tables 8 and 9 present the mean and the standard deviation values of final
function values from 51 repetitions of each problem for 104 · D optimiation
budget. In addition, the t-test was applied for each problem to check statis-
tically significant differences between the results. The results of M-GAPSO

2A description of RFO presented in the original paper [9] seems to have a typo in Eq (9).
This equation describes a reproduction of a new individual based on alpha couple (two
best individuals from a population). Changing the original formulation to the ordinary
interpolation significantly improved the results of this algorithm.

30

which are significantly better (p-value=0.05) than both RFO and DOBL
are marked with ?. Likewise, RFO and DOBL results are marked if they
are significantly better than the remaining results.

Table 8 Results achieved by M-GAPSO (PDa and PDLa variant) in relation
to RFO and DOBL for 30D problems using CEC-2017 benchmark. Best
mean obtained for each function is bolded. Results of M-GAPSO significantly
better (t-test) than both RFO and DOBL are marked with ?.

F. PDa PDLa RFO DOBL

Mean Std. Mean Std. Mean Std. Mean Std.
1 0.0e+00 0.0e+00 0.0e+00 0.0e+00 4.6e+03 5.2e+03 0.0e+00 0.0e+00
2 0.0e+00? 0.0e+00 0.0e+00? 0.0e+00 9.1e+02 5.9e+02 1.6e+03 2.3e+03
3 2.9e+00? 8.2e+00 1.3e+01 2.4e+01 1.0e+02 2.3e+01 1.6e+01 2.8e+01
4 4.4e+01 6.9e+00 5.8e+01 1.1e+01 2.0e+02 5.2e+01 2.8e+01? 2.5e+01
5 9.2e+00 2.8e+00 5.3e+00 6.4e+00 5.4e+01 7.8e+00 2.1e-04? 6.2e-05
6 3.9e+01? 4.0e+00 3.9e+01? 2.7e+00 6.0e+02 2.2e+02 1.2e+02 4.7e+01
7 4.1e+01 8.4e+00 5.5e+01 1.2e+01 1.8e+02 5.0e+01 3.2e+01? 3.1e+01
8 6.0e+02 3.4e+02 8.0e+02 3.9e+02 4.4e+03 1.3e+03 0.0e+00? 0.0e+00
9 3.4e+03? 7.0e+02 3.2e+03? 6.2e+02 4.8e+03 1.0e+03 6.4e+03 8.6e+02

10 6.6e+01 1.9e+01 6.9e+01 2.3e+01 2.3e+02 5.9e+01 1.3e+01? 1.3e+01
11 5.2e+03? 2.9e+03 4.7e+03? 5.0e+03 1.5e+07 1.4e+07 3.3e+04 6.8e+04
12 8.5e+02 7.7e+02 2.1e+02 1.4e+02 1.2e+05 8.7e+04 8.6e+01? 3.0e+01
13 1.0e+02 3.5e+01 9.6e+01 2.3e+01 2.4e+04 1.5e+05 1.8e+01? 1.3e+01
14 1.9e+02 8.9e+01 1.1e+02 6.6e+01 5.8e+04 3.9e+04 7.8e+00? 4.1e+00
15 1.2e+03 2.8e+02 1.1e+03 3.7e+02 1.6e+03 3.5e+02 6.9e+02? 3.3e+02
16 3.4e+02 1.8e+02 3.4e+02 1.3e+02 7.9e+02 2.4e+02 8.4e+01? 3.9e+01
17 1.6e+02? 1.3e+02 2.3e+02? 2.4e+02 1.8e+05 1.6e+05 9.2e+03 8.8e+03
18 1.0e+02 5.1e+01 5.4e+01 1.9e+01 7.5e+05 5.8e+05 1.1e+01? 6.4e+00
19 4.1e+02 1.9e+02 3.3e+02 1.3e+02 8.0e+02 2.0e+02 3.6e+01? 2.9e+01
20 2.8e+02 1.4e+01 2.8e+02 1.5e+01 3.9e+02 4.1e+01 2.3e+02? 2.1e+01
21 6.8e+02 1.4e+03 3.3e+02 9.4e+02 3.7e+03 2.5e+03 1.0e+02? 6.1e-12
22 4.9e+02 3.7e+01 5.1e+02 4.2e+01 5.7e+02 6.8e+01 3.6e+02? 7.7e+00
23 4.9e+02 1.4e+01 5.4e+02 3.5e+01 5.9e+02 4.4e+01 4.3e+02? 9.2e+00
24 3.9e+02 1.8e+00 3.9e+02 1.8e+00 4.2e+02 2.5e+01 3.8e+02 3.1e+00
25 2.4e+03 5.0e+02 1.3e+03 1.1e+03 3.9e+03 1.1e+03 4.8e+02? 3.2e+02
26 5.7e+02 3.0e+01 5.9e+02 2.8e+01 6.0e+02 4.8e+01 5.4e+02? 2.0e+01
27 3.1e+02? 3.4e+01 3.1e+02? 2.5e+01 4.6e+02 3.4e+01 3.3e+02 4.9e+01
28 1.0e+03 1.9e+02 1.1e+03 2.2e+02 1.7e+03 6.3e+02 5.8e+02? 7.8e+01
29 2.6e+03 5.1e+02 2.7e+03 5.1e+02 2.4e+06 1.7e+06 2.6e+03 3.4e+02

6/7? 5/6? 0/0? 21/19?

31

Table 9 Results achieved by M-GAPSO (PDa and PDLa variant) in relation
to RFO and DOBL for 50D problems using CEC-2017 benchmark. Best
mean obtained for each function is bolded. Results of M-GAPSO significantly
better (t-test) than both RFO and DOBL are marked with ?.

F. PDa PDLa RFO DOBL

Mean Std. Mean Std. Mean Std. Mean Std.
1 0.0e+00? 0.0e+00 1.4e-09? 6.0e-09 2.5e+06 2.1e+06 9.0e+02 1.2e+03
2 1.9e-02? 6.8e-02 0.0e+00? 0.0e+00 1.9e+04 5.8e+03 4.5e+04 9.5e+03
3 1.6e+01? 2.6e+01 1.8e+01? 3.1e+01 2.4e+02 4.4e+01 1.0e+02 5.2e+01
4 8.3e+01 9.9e+00 1.4e+02 1.7e+01 3.8e+02 6.3e+01 5.1e+01? 4.2e+01
5 1.3e+01 3.2e+00 1.5e+01 1.2e+01 6.2e+01 7.2e+00 4.1e-02? 1.1e-02
6 7.3e+01? 9.3e+00 7.2e+01? 5.8e+00 1.4e+03 4.9e+02 2.0e+02 7.2e+01
7 8.0e+01 1.2e+01 1.4e+02 1.9e+01 3.9e+02 5.1e+01 5.6e+01? 3.8e+01
8 2.9e+03 1.1e+03 3.9e+03 1.2e+03 1.3e+04 2.8e+03 8.2e-01? 5.8e+00
9 6.2e+03? 9.9e+02 6.1e+03? 8.8e+02 8.6e+03 1.2e+03 1.2e+04 6.2e+02

10 1.2e+02 2.5e+01 1.5e+02 4.5e+01 4.4e+02 9.3e+01 5.5e+01? 1.8e+01
11 1.5e+04? 9.2e+03 7.1e+03? 5.1e+03 1.1e+08 8.3e+07 7.1e+05 4.0e+05
12 1.9e+03 8.1e+02 6.3e+02? 3.1e+02 1.6e+05 1.8e+05 8.3e+02 8.9e+02
13 1.6e+02 4.2e+01 2.1e+02 3.7e+01 7.4e+04 4.9e+04 5.0e+01? 1.2e+01
14 3.7e+02 1.4e+02 2.6e+02 1.1e+02 5.9e+04 3.9e+04 8.6e+01? 4.2e+01
15 2.0e+03 4.7e+02 2.0e+03 4.4e+02 2.8e+03 8.3e+02 5.0e+02? 3.9e+02
16 1.4e+03 3.5e+02 1.5e+03 4.0e+02 2.3e+03 8.0e+02 1.1e+03? 2.9e+02
17 1.3e+03? 1.2e+03 6.5e+02? 5.9e+02 7.3e+05 5.0e+05 1.6e+05 2.0e+05
18 1.2e+02? 3.7e+01 9.3e+01? 2.4e+01 2.2e+06 1.6e+06 5.7e+02 1.3e+03
19 9.2e+02 3.0e+02 9.0e+02 2.3e+02 1.6e+03 3.3e+02 8.4e+02? 3.2e+02
20 3.8e+02 2.1e+01 3.8e+02 2.4e+01 6.2e+02 9.6e+01 2.5e+02? 2.4e+01
21 6.5e+03 1.8e+03 6.8e+03 1.3e+03 9.1e+03 1.2e+03 1.2e+03? 3.2e+03
22 7.4e+02 6.6e+01 8.0e+02 9.7e+01 9.3e+02 1.5e+02 4.5e+02? 1.4e+01
23 6.7e+02 2.2e+01 7.3e+02 7.4e+01 8.8e+02 9.0e+01 5.3e+02? 1.2e+01
24 4.9e+02? 2.9e+01 5.0e+02? 3.3e+01 6.2e+02 4.3e+01 5.1e+02 4.1e+01
25 3.8e+03 4.8e+02 2.5e+03 2.0e+03 6.7e+03 1.5e+03 1.7e+03? 1.5e+02
26 1.1e+03 1.5e+02 1.2e+03 2.1e+02 1.1e+03 1.5e+02 5.3e+02? 1.7e+01
27 4.8e+02? 2.1e+01 4.8e+02? 2.7e+01 1.0e+03 1.1e+03 4.9e+02 2.1e+01
28 1.7e+03 4.1e+02 2.0e+03 4.3e+02 4.1e+03 2.3e+03 5.3e+02? 2.8e+02
29 6.4e+05? 6.2e+04 6.2e+05? 4.8e+04 6.7e+07 1.6e+07 2.3e+06 4.6e+05

4/11? 8/12? 0/0? 17/17?

For 30 dimensional functions PDa obtained the lowest mean for 6 func-
tions, while PDLa for 5 functions. At the same time, PDa and PDLa were
significantly better than RFO and DOBL for 7 and 6 functions, respectively.
The best overall algorithm was DOBL which achieved the lowest mean in
21 cases and statistically significant advantage, compared to all other algo-
rithms, in 19 cases. RFO never obtained the best result but was comparative

32

to DOBL and M-GAPSO for a few functions.
Generally, the results for 50 dimensional functions are similar to those

for 30 dimensional. DOBL is still the best algorithm in the comparison.
It reached the best mean for 17 functions and was significantly better than
the remaining metaheuristics in each of these 17 cases. Both M-GAPSO
variants improved their results over the 30 dimensional problems. PDa was
significantly better than both DBOL and RFO in 11 cases, while PDLa
in 12 cases. The results of RFO, when comparing to both M-GAPSO con-
figurations and DBOL, remained at the same level as in the case of 30
dimensions.

4.3. Analysis of the adaptation module results
This section discusses the ratio of behaviors applied while running M-

GAPSO in PDLPa configuration on the COCO test set. This ratio reflects
the impact of a given behavior on the results during a given algorithm’s
run. These ratios are aggregated into five function classes and presented
in Table 10. Please note that f1 and f5 are excluded from this analysis
since they were solved within the first iteration and the data gathered by the
adaptation mechanism was insufficient.

Please refer to Table 2 for the list of functions within each of the five
classes (separable, low conditioned, high conditioned, multimodal, and mul-
timodal without global structure).

The following observations can be made based on the collected data:
1. Overall, in average, DE behavior is superior within all function classes.
2. For functions with non-separable variables (f10 - f14) all other behav-

iors are almost useless.
3. For all other function classes PSO is utilized at the level similar to DE.
4. Model-based optimizers are particularly useful for separable functions,

because in order to keep the models small they do not include any
interactions between variables.

5. For the other two classes of multimodal functions (f15 - f24) model-
based optimizers are useful in precise locating the local optima when
their estimated location is known [29].

5. Conclusions

The work presents a successful attempt at designing a hyper-heuristic
framework able to accommodate various optimization algorithms. The frame-

33

Table 10 Average behavior application ratio within M-GAPSO on
the COCO benchmark set
Functions Function class PSO DE QM PM
f2 - f4 separable 0.14 0.38 0.26 0.23
f6 - f9 low-condition 0.15 0.64 0.10 0.10

f10 - f14 high-condition 0.08 0.80 0.06 0.05
f15 - f19 multimodal with global structure 0.17 0.50 0.20 0.14
f20 - f24 multimodal without global structure 0.19 0.44 0.20 0.16

work is designed in an extendable way, thanks to the abstract approach to
algorithm programming interface. Additionally, the knowledge required by
the adaptation module is limited to the information about the performance
of the algorithm only.

Achieved results support the claim that hybridizing PSO and DE could
improve the performance (especially for functions of at least 10D) in com-
parison with applying each of these methods alone. Adding model-based
optimizer visibly improves PSO-DE hybrid in higher dimensions, while for
5D (and less), simple DE still comes better off in some cases. Good scal-
ing properties are confirmed by experiments on the CEC-2017 test set, with
PDLa configuration achieving the results comparable to DOBL algorithm
for 50D functions. On COCO benchmark set, adding adaptation mech-
anism improves the results in either case (i.e. PDa configuration is more
effective than PD, and PDLPa is superior to PDLP). However, it should be
noted that while PSO-DE hybridization and adaptation does not significantly
impact computational load, the same cannot be said about the algorithms
incorporating the model-based optimizer.

In the case of CEC-2017 benchmarking, the outcomes are similar to those
for COCO. The concept of hybridization proved to be beneficial also for this
benchmark. Both variants of M-GAPSO (PDa and PDLa) outperformed
standalone DE and PSO algorithms. The final results of PDa and PDLa are
similar, although PDa is slightly better in the ranking measure, while PDLa
is better regarding the averaged error.

Significant part of the improvement comes from changing the underly-
ing philosophy of the method. In the initial version of GAPSO [27] reset
and adaptation mechanisms focused on preventing the potential swarm col-
lapse (during the algorithm’s run), which was motivated by a theoretical per-

34

spective of global optimization algorithms. Within this view, the algorithm
should be constructed in a way which ensures that the limit of probability
P (x∗ ∈ Xn) of including a global optimum x∗ in the set of tested solutions Xn

approaches 1, as the number of algorithm’s iterations n approaches infinity
[17].

M-GAPSO approaches this differently, with individual particles focus-
ing only on the task at hand (relatively quick convergence to high-quality
local optimum), and the burden of exploration lies on higher level mech-
anisms: the convergence detector (RestartManager) and re-initialization
module (SearchSpaceManager).

The authors’ future research will be concentrated on utilization of the
knowledge of multiple local optima estimations. As could have been observed
in Fig. 3 positions of local optima gathered during the optimization process
may form predictable structures which the authors plan to exploit in their
future research.

M-GAPSO should greatly benefit from a more structured approach to
selecting search space boundaries in subsequent algorithm runs. There-
fore, the authors believe that multiple and relatively short algorithm
runs, combined with predictive setup of the algorithm search space
boundaries are the key factors in further improvement of M-GAPSO
results.

Acknowledgments

The authors would like to thank Miko laj Ma lkiński, Piotr Podbielski and
 Lukasz Lepak, students of the Faculty of Mathematics and Information Sci-
ence Faculty of Warsaw University of Technology, for their help in porting
CEC-2017 benchmark functions as a Java library using JNI technology.

References

[1] Kenneth Alan De Jong. Analysis of the behavior of a class of genetic adaptive
systems. Phd thesis, University of Michigan, 1975.

[2] John Henry Holland. Adaptation in natural and artificial systems: an
introductory analysis with applications to biology, control, and artificial
intelligence. MIT Press, 1992.

35

[3] Rainer Storn and Kenneth Price. Differential Evolution – A Simple and Ef-
ficient Heuristic for global Optimization over Continuous Spaces. Journal of
Global Optimization, 11(4):341–359, 1997.

[4] Nikolaus Hansen, Sibylle D. Müller, and Petros Koumoutsakos. Reducing the
Time Complexity of the Derandomized Evolution Strategy with Covariance
Matrix Adaptation (CMA-ES). Evolutionary Computation, 11(1):1–18, mar
2003.

[5] Petr Poáık and Václav Klema. JADE, an adaptive differential evolution al-
gorithm, benchmarked on the BBOB noiseless testbed. In Proceedings of the
fourteenth international conference on Genetic and evolutionary computation
conference companion - GECCO Companion ’12, page 197, New York, New
York, USA, 2012. ACM Press.

[6] Ilya Loshchilov, Marc Schoenauer, and Michele Sèbag. BI-population CMA-
ES Algorithms with Surrogate Models and Line Searches. In GECCO ’13
Companion Proceedings of the 15th annual conference companion on Genetic
and evolutionary computation, pages 1177–1184, 2013.

[7] Janez Brest, Mirjam Sepesy Maucec, and Borko Boskovic. iL-SHADE: Im-
proved L-SHADE algorithm for single objective real-parameter optimization.
In 2016 IEEE Congress on Evolutionary Computation (CEC), pages 1188–
1195. IEEE, jul 2016.

[8] Takahiro Yamaguchi and Youhei Akimoto. Benchmarking the novel CMA-
ES restart strategy using the search history on the BBOB noiseless testbed.
In GECCO ’17 Proceedings of the Genetic and Evolutionary Computation
Conference Companion, pages 1780–1787, 2017.

[9] Jiahang Li, Yuelin Gao, Kaiguang Wang, and Ying Sun. A dual opposition-
based learning for differential evolution with protective mechanism for engi-
neering optimization problems. Applied Soft Computing, 113:107942, 2021.

[10] Vladimir Stanovov, Shakhnaz Akhmedova, and Eugene Semenkin. NL-
SHADE-RSP Algorithm with Adaptive Archive and Selective Pressure for
CEC 2021 Numerical Optimization. In 2021 IEEE Congress on Evolutionary
Computation (CEC), pages 809–816, 2021.

[11] Nikolaus Hansen. A global surrogate assisted cma-es. In Proceedings of the
genetic and evolutionary computation conference, pages 664–672, 2019.

36

[12] Nikolaus Hansen. Benchmarking a bi-population cma-es on the bbob-2009
function testbed. In Proceedings of the 11th annual conference companion
on genetic and evolutionary computation conference: late breaking papers,
pages 2389–2396, 2009.

[13] Mateusz Zaborski and Jacek Mańdziuk. Improving LSHADE by means of a
pre-screening mechanism. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’22, pages 884–892. Association for Com-
puting Machinery, 2022.

[14] Mateusz Zaborski and Jacek Mańdziuk. LQ-R-SHADE: R-SHADE with
quadratic surrogate model. In Proceedings of the 21st International
Conference on Artificial Intelligence and Soft Computing (ICAISC’22), 2022.

[15] Dawid Po lap and Marcin Woźniak. Red fox optimization algorithm. Expert
Systems with Applications, 166:114107, 2021.

[16] David H. Wolpert and William G. Macready. No free lunch theorems for
optimization. IEEE transactions on evolutionary computation, 1(1):67–82,
1997.

[17] A. E. Eiben, E. H. L. Aarts, and K. M. Van Hee. Global convergence of genetic
algorithms: A markov chain analysis. In Hans-Paul Schwefel and Reinhard
Männer, editors, Parallel Problem Solving from Nature, pages 3–12, Berlin,
Heidelberg, 1991. Springer Berlin Heidelberg.

[18] R. Poli. Mean and Variance of the Sampling Distribution of Particle
Swarm Optimizers During Stagnation. IEEE Transactions on Evolutionary
Computation, 13(4):712–721, aug 2009.

[19] Frans Van Den Bergh and Andries Petrus Engelbrecht. A convergence proof
for the particle swarm optimiser. Fundamenta Informaticae, 105(4):341–374,
2010.

[20] Peter Cowling, Graham Kendall, and Eric Soubeiga. A Hyperheuristic Ap-
proach to Scheduling a Sales Summit. In Practice and Theory of Automated
Timetabling III. PATAT 2000. Lecture Notes in Computer Science, pages
176–190. Springer, Berlin, Heidelberg, 2001.

[21] Edmund Burke, Graham Kendall, Jim Newall, Emma Hart, Peter Ross, and
Sonia Schulenburg. Hyper-Heuristics: An Emerging Direction in Modern
Search Technology. In Handbook of Metaheuristics, pages 457–474. Kluwer
Academic Publishers, Boston, 2003.

37

[22] José Carlos Villela Tinoco and Carlos A. Coello Coello. hypDE: A Hyper-
Heuristic Based on Differential Evolution for Solving Constrained Optimiza-
tion Problems. In EVOLVE - A Bridge between Probability, Set Oriented
Numerics, and Evolutionary Computation II pp, pages 267–282. Springer-
Verlag, 2013.

[23] Jacomine Grobler, Andries P Engelbrecht, Graham Kendall, and V S S Ya-
davalli. Heuristic space diversity control for improved meta-hyper-heuristic
performance. INFORMATION SCIENCES, 300:49–62, 2015.

[24] R. Damaševičius and M. Woźniak. State Flipping Based Hyper-Heuristic for
Hybridization of Nature Inspired Algorithms. In ICAISC 2017: Artificial
Intelligence and Soft Computing, pages 337–346, 2017.

[25] Fabio Caraffini, Ferrante Neri, and Michael Epitropakis. HyperSPAM : A
study on hyper-heuristic coordination strategies in the continuous domain.
Information Sciences, 477:186–202, 2019.

[26] Micha l Okulewicz. Finding an Optimal Team. In Position Papers of the 2016
Federated Conference on Computer Science and Information Systems, pages
205–210. Polish Information Processing Society, oct 2016.

[27] Mateusz Uliński, Adam Żychowski, Micha l Okulewicz, Mateusz Zaborski, and
Hubert Kordulewski. Generalized Self-adapting Particle Swarm Optimization
Algorithm. In Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume
3242, pages 29–40. Springer, Cham, 2018.

[28] Mateusz Zaborski, Micha l Okulewicz, and Jacek Mańdziuk. Generalized Self-
Adapting Particle Swarm Optimization algorithm with model-based optimiza-
tion enhancements. In Proceedings of 2nd PPRAI Conference, pages 380–383,
2019.

[29] Mateusz Zaborski, Micha l Okulewicz, and Jacek Mańdziuk. Analysis of statis-
tical model-based optimization enhancements in generalized self-adapting par-
ticle swarm optimization framework. Foundations of Computing and Decision
Sciences, 45, 2020.

[30] Micha l Okulewicz, Mateusz Zaborski, and Jacek Mańdziuk. Generalized Self-
Adapting Particle Swarm Optimization algorithm with archive of samples.
https://arxiv.org/abs/2002.12485, 2020. [arXiv preprint].

38

https://arxiv.org/abs/2002.12485

[31] Nikolaus Hansen, Dimo Brockhoff, Olaf Mersmann, Tea Tusar, Dejan Tusar,
Ouassim Ait ElHara, Phillipe R Sampaio, Asma Atamna, Konstantinos Vare-
las, Umut Batu, Duc Manh Nguyen, Filip Matzner, and Anne Auger. COm-
paring Continuous Optimizers: numbbo/COCO on Github, 2019.

[32] James Kennedy and Russell C. Eberhart. Particle Swarm Optimization.
Proceedings of IEEE International Conference on Neural Networks. IV, pages
1942–1948, 1995.

[33] Maurice Clerc. Standard particle swarm optimisation, 2012.

[34] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger.
The R*-tree: An efficient and robust access method for points and rectan-
gles. In Proceedings of the 1990 ACM SIGMOD international conference on
Management of data, pages 322–331, 1990.

[35] Éric D Taillard, Luca M Gambardella, Michel Gendreau, and Jean-Yves
Potvin. Adaptive memory programming: A unified view of metaheuristics.
European Journal of Operational Research, 135(1):1–16, nov 2001.

[36] Fred Glover. Tabu search and adaptive memory programming—advances,
applications and challenges. In Interfaces in computer science and operations
research, pages 1–75. Springer, 1997.

[37] Hui Liu, Zixing Cai, and Yong Wang. Hybridizing particle swarm optimiza-
tion with differential evolution for constrained numerical and engineering op-
timization. Applied Soft Computing, 10(2):629–640, mar 2010.

[38] Xiaobing Yu, Jie Cao, Haiyan Shan, Li Zhu, and Jun Guo. An adaptive hybrid
algorithm based on particle swarm optimization and differential evolution for
global optimization. The Scientific World Journal, 2014:215472, feb 2014.

[39] Riccardo Poli, William B Langdon, and Owen Holland. Extending Particle
Swarm Optimisation via Genetic Programming. In European Conference on
Genetic Programming, pages 291–300. Springer, 2005.

[40] Péricles Barbosa Miranda and Ricardo Bastos Prudêncio. GEFPSO: A frame-
work for PSO optimization based on Grammatical Evolution. In Proceedings
of the 2015 Annual Conference on Genetic and Evolutionary Computation,
pages 1087–1094, 2015.

[41] Henry Zapata, Niriaska Perozo, Wilfredo Angulo, and Joyne Contreras. A
Hybrid Swarm Algorithm for Collective Construction of 3D Structures. Int.
J. Artif. Intell., 18(1):1–18, 2020.

39

[42] CL Camacho Villalón, Marco Dorigo, and Thomas Stützle. PSO-X: A
Component-Based Framework for the Automatic Design of Particle Swarm
Optimization Algorithms. IEEE Transactions on Evolutionary Computation,
2021.

[43] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Mauro
Birattari, and Thomas Stützle. The irace package: Iterated racing for au-
tomatic algorithm configuration. Operations Research Perspectives, 3:43–58,
2016.

[44] Zhi-Hui Zhan, Jun Zhang, Yun Li, and Henry Shu-Hung Chung. Adap-
tive particle swarm optimization. IEEE transactions on systems, man, and
cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man,
and Cybernetics Society, 39(6):1362–1381, dec 2009.

[45] Ryoji Tanabe and Alex Fukunaga. Success-history based parameter adap-
tation for differential evolution. In 2013 IEEE congress on evolutionary
computation, pages 71–78. IEEE, 2013.

[46] Peter S Bullen. Handbook of means and their inequalities, volume 560.
Springer Science & Business Media, 2013.

[47] Mudita Sharma, Manuel López-Ibánez, and Dimitar Kazakov. Performance
Assessment of Recursive Probability Matching for Adaptive Operator Selec-
tion in Differential Evolution. In International Conference on Parallel Problem
Solving from Nature, pages 321–333. Springer, 2018.

[48] Ouassim Elhara, Konstantinos Varelas, Duc Nguyen, Tea Tusar, Dimo Brock-
hoff, Nikolaus Hansen, and Anne Auger. Coco: the large scale black-
box optimization benchmarking (bbob-largescale) test suite. arXiv preprint
arXiv:1903.06396, 2019.

[49] Nikolaus Hansen, Anne Auger, Raymond Ros, Olaf Mersmann, Tea Tušar,
and Dimo Brockhoff. Coco: A platform for comparing continuous optimizers
in a black-box setting. Optimization Methods and Software, 36(1):114–144,
2021.

[50] N.H. Awad, M.Z. Ali, P.N. Suganthan, Liang J.J., and Qu B.Y. Prob-
lem Definitions and Evaluation Criteria for the CEC 2017 Special Session
Competition on Constrained Real-Parameter Optimization, 2017. https:
//github.com/P-N-Suganthan/CEC2017-BoundContrained.

40

https://github.com/P-N-Suganthan/CEC2017-BoundContrained
https://github.com/P-N-Suganthan/CEC2017-BoundContrained

[51] Mohammed El-Abd and Mohamed S Kamel. Black-box optimization bench-
marking for noiseless function testbed using particle swarm optimization.
In Proceedings of the 11th Annual Conference Companion on Genetic and
Evolutionary Computation Conference: Late Breaking Papers, pages 2269–
2274, 2009.

[52] Petr Poš́ık and Václav Klemš. Benchmarking the differential evolution with
adaptive encoding on noiseless functions. In Proceedings of the 14th annual
conference companion on Genetic and evolutionary computation, pages 189–
196, 2012.

Appendix A. Detailed comparison of M-GAPSO configurations
and baseline DE results

The appendix analyses statistical significance of the results. Tables A.11 - A.15
present mean values and standard errors for each function calculated for the best
function values found. Additionally, in each table the results of Wilcoxon Signed
Rank Test between pairs of experiments are provided.

Tables A.16 - A.19 present a ranking of configurations. The lower the value the
higher the number of instances for which a given approach found better solutions.

41

Table A.11 Comparison of mean function values and standard errors for
final solutions of DE-Posik-2012 and PD with results of Wilcoxon Signed
Rank Test on COCO benchmark set. “+” denotes significantly better result
of PD, “=” denotes no significant difference, and “-” denotes significantly
better result of DE-Posik-2012

D5 DE D5 PD D5 D20 DE D20 PD D20
f1 0±0 0±0 + 0±0 0±0 +
f2 0±0 0±0 + 0±0 0±0 +
f3 0±0 0.13±0.35 = 0.46±0.64 26.4±4.6 -
f4 0±0 0.53±0.51 = 3.52±1.12 37.28±7.1 -
f5 0±0 0±0 - 0±0 0±0 -
f6 0±0 0±0 + 0±0 0±0 +
f7 0±0 0±0 = 0.68±0.83 3.15±1.23 -
f8 0±0 0±0 + 0.27±1.03 0±0 +
f9 0±0 0±0 + 11.87±0.78 0±0 +

f10 0±0 0±0 + 31214.65±12132.71 3.64±3.37 +
f11 0±0 0±0 + 16.4±6.52 0±0 +
f12 0±0 0±0 + 2.11±2.89 0±0 +
f13 0±0 0±0 + 0.98±2.11 0.06±0.09 +
f14 0±0 0±0 + 0±0 0±0 +
f15 0.13±0.35 0.99±0.53 - 86.72±8.63 37.75±6.16 +
f16 0±0 0±0 = 17.11±2.25 2.18±0.84 +
f17 0±0 0±0 - 0±0 1.65±0.92 -
f18 0±0 0±0.01 - 0.03±0.04 5.4±4.55 -
f19 0.08±0.05 0.16±0.13 = 3.6±0.37 0.61±0.32 +
f20 0±0 0.02±0.06 = 0.13±0.07 1.09±0.1 -
f21 0±0 0±0 + 0.17±0.49 0.05±0.18 +
f22 0±0 0±0 + 1.14±1.18 0.23±0.34 +
f23 0.37±0.26 0.02±0.03 + 1.96±0.21 0.28±0.1 +
f24 3.36±2.32 3.02±1.46 = 104.88±10.13 30.05±8.84 +

42

Table A.12 Comparison of mean function values and standard errors for
final solutions of PD and PDa with results of Wilcoxon Signed Rank Test on
COCO benchmark set. “+” denotes significantly better result of PD, “=”
denotes no significant difference, and “-” denotes significantly better result
of PD

D5 PD D5 PDa D5 D20 PD D20 PDa D20
f1 0±0 0±0 = 0±0 0±0 +
f2 0±0 0±0 = 0±0 0±0 +
f3 0.13±0.35 0.27±0.46 = 26.4±4.6 27±6.15 =
f4 0.53±0.51 0.86±0.35 = 37.28±7.1 35.42±6.2 =
f5 0±0 0±0 = 0±0 0±0 =
f6 0±0 0±0 + 0±0 0±0 =
f7 0±0 0±0 + 3.15±1.23 3.87±1.33 =
f8 0±0 0±0 + 0±0 0±0 +
f9 0±0 0±0 = 0±0 0±0 =

f10 0±0 0±0 = 3.64±3.37 0.12±0.17 +
f11 0±0 0±0 + 0±0 0±0 =
f12 0±0 0±0 = 0±0 0±0 =
f13 0±0 0±0 = 0.06±0.09 0.02±0.03 =
f14 0±0 0±0 = 0±0 0±0 +
f15 0.99±0.53 0.99±0.53 = 37.75±6.16 42.85±7.68 -
f16 0±0 0±0 = 2.18±0.84 2.73±0.64 =
f17 0±0 0±0 - 1.65±0.92 1.23±0.42 =
f18 0±0.01 0.01±0.01 = 5.4±4.55 4.39±1.5 =
f19 0.16±0.13 0.08±0.07 + 0.61±0.32 0.62±0.31 =
f20 0.02±0.06 0.03±0.08 = 1.09±0.1 1.04±0.11 =
f21 0±0 0±0 = 0.05±0.18 0±0 =
f22 0±0 0±0 = 0.23±0.34 0.45±0.69 =
f23 0.02±0.03 0.01±0.02 = 0.28±0.1 0.25±0.09 =
f24 3.02±1.46 1.99±1.28 + 30.05±8.84 33.99±7.68 =

43

Table A.13 Comparison of mean function values and standard errors for
final solutions of PD and PDLP with results of Wilcoxon Signed Rank Test
on COCO benchmark set. “+” denotes significantly better result of PD, “=”
denotes no significant difference, and “-” denotes significantly better result
of PD

D5 PD D5 PDLP D5 D20 PD D20 PDLP D20
f1 0±0 0±0 + 0±0 0±0 +
f2 0±0 0±0 = 0±0 0±0 =
f3 0.13±0.35 0±0 + 26.4±4.6 6.57±1.95 +
f4 0.53±0.51 0±0 + 37.28±7.1 13.2±3.39 +
f5 0±0 0±0 + 0±0 0±0 +
f6 0±0 0±0 = 0±0 0±0 =
f7 0±0 0±0 = 3.15±1.23 2.3±0.79 +
f8 0±0 0±0 = 0±0 0±0 =
f9 0±0 0±0 = 0±0 0±0 =

f10 0±0 0±0 = 3.64±3.37 2.89±4.04 =
f11 0±0 0±0 = 0±0 0±0 =
f12 0±0 0±0 = 0±0 0±0 =
f13 0±0 0±0 = 0.06±0.09 0.09±0.14 =
f14 0±0 0±0 = 0±0 0±0 =
f15 0.99±0.53 0.93±0.7 = 37.75±6.16 39.64±7.4 =
f16 0±0 0±0 = 2.18±0.84 2.21±0.7 =
f17 0±0 0±0 = 1.65±0.92 1.21±0.58 =
f18 0±0.01 0.04±0.09 = 5.4±4.55 3.79±1.82 =
f19 0.16±0.13 0.11±0.13 = 0.61±0.32 0.75±0.36 =
f20 0.02±0.06 0±0 = 1.09±0.1 0.89±0.12 +
f21 0±0 0±0 = 0.05±0.18 0.06±0.24 =
f22 0±0 0±0 = 0.23±0.34 0.4±0.69 =
f23 0.02±0.03 0±0.01 = 0.28±0.1 0.3±0.11 =
f24 3.02±1.46 4.56±1.26 - 30.05±8.84 41.08±4.07 -

44

Table A.14 Comparison of mean function values and standard errors for final
solutions of PDa and PDLPa with results of Wilcoxon Signed Rank Test on
COCO benchmark set. “+” denotes significantly better result of PD, “=”
denotes no significant difference, and “-” denotes significantly better result
of PDa

D5 PDa D5 PDLPa D5 D20 PDa D20 PDLPa D20
f1 0±0 0±0 + 0±0 0±0 +
f2 0±0 0±0 + 0±0 0±0 +
f3 0.27±0.46 0±0 + 27±6.15 1.53±1.24 +
f4 0.86±0.35 0±0 + 35.42±6.2 3.58±2.19 +
f5 0±0 0±0 + 0±0 0±0 +
f6 0±0 0±0 = 0±0 0±0 =
f7 0±0 0±0 = 3.87±1.33 3.53±1.45 =
f8 0±0 0±0 - 0±0 0±0 =
f9 0±0 0±0 = 0±0 0±0 =

f10 0±0 0±0 = 0.12±0.17 0.14±0.34 =
f11 0±0 0±0 = 0±0 0±0 =
f12 0±0 0±0 = 0±0 0±0 =
f13 0±0 0±0 = 0.02±0.03 0.02±0.03 =
f14 0±0 0±0 = 0±0 0±0 =
f15 0.99±0.53 0.8±0.77 = 42.85±7.68 40.66±9.28 =
f16 0±0 0±0 + 2.73±0.64 2.09±0.77 +
f17 0±0 0±0 + 1.23±0.42 1.39±0.49 =
f18 0.01±0.01 0.01±0.03 = 4.39±1.5 3.92±2.18 =
f19 0.08±0.07 0.04±0.03 + 0.62±0.31 0.43±0.21 =
f20 0.03±0.08 0±0 = 1.04±0.11 0.74±0.2 +
f21 0±0 0±0 = 0±0 0.05±0.18 =
f22 0±0 0±0 = 0.45±0.69 0.72±0.71 -
f23 0.01±0.02 0.01±0.03 = 0.25±0.09 0.33±0.11 =
f24 1.99±1.28 2.6±1.9 = 33.99±7.68 37.03±4.44 =

45

Table A.15 Comparison of mean function values and standard errors for final
solutions of PDLP and PDLPa with results of Wilcoxon Signed Rank Test
on COCO benchmark set. “+” denotes significantly better result of PD, “=”
denotes no significant difference, and “-” denotes significantly better result
of PDLP

D5 PDLP D5 PDLPa D5 D20 PDLP D20 PDLPa D20
f1 0±0 0±0 = 0±0 0±0 =
f2 0±0 0±0 + 0±0 0±0 +
f3 0±0 0±0 + 6.57±1.95 1.53±1.24 +
f4 0±0 0±0 + 13.2±3.39 3.58±2.19 +
f5 0±0 0±0 = 0±0 0±0 =
f6 0±0 0±0 + 0±0 0±0 =
f7 0±0 0±0 = 2.3±0.79 3.53±1.45 -
f8 0±0 0±0 = 0±0 0±0 +
f9 0±0 0±0 + 0±0 0±0 =

f10 0±0 0±0 = 2.89±4.04 0.14±0.34 +
f11 0±0 0±0 = 0±0 0±0 =
f12 0±0 0±0 = 0±0 0±0 +
f13 0±0 0±0 = 0.09±0.14 0.02±0.03 =
f14 0±0 0±0 = 0±0 0±0 +
f15 0.93±0.7 0.8±0.77 = 39.64±7.4 40.66±9.28 =
f16 0±0 0±0 + 2.21±0.7 2.09±0.77 =
f17 0±0 0±0 - 1.21±0.58 1.39±0.49 =
f18 0.04±0.09 0.01±0.03 = 3.79±1.82 3.92±2.18 =
f19 0.11±0.13 0.04±0.03 + 0.75±0.36 0.43±0.21 +
f20 0±0 0±0 = 0.89±0.12 0.74±0.2 +
f21 0±0 0±0 + 0.06±0.24 0.05±0.18 =
f22 0±0 0±0 = 0.4±0.69 0.72±0.71 =
f23 0±0.01 0.01±0.03 = 0.3±0.11 0.33±0.11 =
f24 4.56±1.26 2.6±1.9 + 41.08±4.07 37.03±4.44 +

46

Table A.16 Sum of ranks of a given methods among classes of 5D functions
of COCO benchmark set

class DE PD PDa PDLP PDLPa
separable 276 272 277 153 94

low-condition 275 176 119 199 131
high-condition 323 198 177 213 214

multimodal with global structure 150 238 279 238 189
multimodal no global structure 323 215 185 231 171

Table A.17 Sum of ranks of a given methods among 5D functions of COCO
benchmark set

f DE PD PDa PDLP PDLPa
1 70 57 53 15 15
2 67 45 48 46 19
3 64 55 43 41 22
4 54 50 63 33 20
5 21 65 70 18 18
6 71 39 33 50 32
7 61 49 27 54 34
8 71 43 23 47 41
9 72 45 36 48 24
10 68 36 28 47 46
11 68 46 30 40 41
12 54 37 44 41 49
13 71 43 32 45 34
14 62 36 43 40 44
15 28 47 42 41 36
16 45 43 58 48 31
17 16 46 75 40 48
18 15 45 60 59 46
19 46 57 44 50 28
20 65 46 38 44 32
21 71 38 35 51 30
22 71 45 31 41 37
23 70 40 46 35 34
24 46 46 35 60 38

47

Table A.18 Sum of ranks of a given methods among classes of 20D functions
of COCO benchmark set

class DE PD PDa PDLP PDLPa
separable 213 316 277 178 100

low-condition 227 188 147 176 162
high-condition 366 219 155 220 165

multimodal with global structure 255 216 236 210 208
multimodal no global structure 285 208 199 214 188

Table A.19 Sum of ranks of a given methods among 20D functions of COCO
benchmark set

f DE PD PDa PDLP PDLPa
1 74 61 45 15 15
2 73 52 30 51 19
3 18 67 68 45 26
4 23 69 66 45 18
5 25 67 68 22 22
6 64 47 33 44 37
7 16 50 64 39 56
8 72 48 22 51 32
9 75 43 28 42 37
10 75 55 24 47 24
11 75 35 35 35 45
12 75 40 30 49 31
13 66 41 43 45 30
14 75 48 23 44 35
15 75 27 46 35 42
16 75 35 47 34 34
17 15 60 48 47 55
18 15 57 55 48 50
19 75 37 40 46 27
20 15 66 64 47 33
21 69 46 34 40 35
22 51 33 31 38 42
23 75 39 33 38 40
24 75 24 37 51 38

48

	Introduction
	Contribution and organization of the paper

	Related work
	Particle Swarm Optimization
	Differential Evolution
	Model-based optimization
	Generalizing optimization algorithms
	Restarts
	Algorithms adaptation scheme

	Description of M-GAPSO
	General swarm–based optimization framework
	Samples archive
	Restart management
	Initialization scheme
	Optimization behaviors
	Adaptation scheme

	Experimental evaluation of M-GAPSO
	Performance analysis of M-GAPSO components on COCO test set
	Performance analysis of M-GAPSO components on the CEC-2017 test set
	Analysis of the adaptation module results

	Conclusions
	Detailed comparison of M-GAPSO configurations and baseline DE results

