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Abstract

This paper investigates a hypothesis that in case of hard optimization prob-
lems, selection of the proper search space is more relevant than the choice of
the solving algorithm. Dynamic Vehicle Routing Problem is used as as a test
problem and the hypothesis is veri�ed experimentally on the well-known set of
benchmark instances. The paper compares Particle Swarm Optimization (PSO)
and Di�erential Evolution (DE) operating in two continuous search spaces (giv-
ing in total four distinctive approaches) and a state-of-the art discrete encoding
utilizing Genetic Algorithm (GA).

The advantage of selected continuous search space over a discrete one is
veri�ed on the basis of quality of the �nal solution and stability of intermediate
partial solutions. During stability analysis it has been observed that practical
level of uncertainty, resulting from the dynamic nature of the problem, is lower
than could be expected from a popular degree of dynamism measure. In order
to challenge that issue, benchmark problems have been solved also with a higher
level of dynamism and an empirical degree of dynamism has been proposed as
an additional measure of the amount of uncertainty of the problem.

The results obtained by both continuous algorithms outperform those of
state-of-the-art algorithms utilizing discrete problem representation, while the
performance di�erences between them (PSO and DE) are minute.

Apart from higher numerical e�ciency in solving DVRP, the use of continu-
ous problem encoding proved its advantage over discrete encoding also in terms
of intermediate solutions stability. Requests-to-vehicles assignment sequences
generated by the proposed approach were approximately 40% more accurate
with respect to the �nal solution than their counterparts generated with a dis-
crete encoding. Analysis of these sequences of intermediate solutions for several
benchmark sets resulted in designing a penalty term taking into account a spe-
ci�c dynamic nature of the optimized problem. An addition of this penalty term
improved the above-mentioned stability of partial solutions by another 10%.
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1. Introduction

Vehicle Routing Problem (VRP) has been introduced by Dantzig and Ramser
in 1959 [1] as a mathematical model for transport management. Its dynamic
version (DVRP) was proposed by Psaraftis in 1988 [2]. DVRP gained wide
recognition as a suitable platform for studyimg application of metaheuristic op-5

timization methods after presentation of the set of benchmark problems by Kilby
et al. in 1998 [3] and subsequent publication of GRASP and Ant Colony Sys-
tem (ACS) algorithms by Montemanni et al. in 2005 [4]. Since then, one of the
most prominent lines of DVRP research relied on development of Computational
Intelligence (CI) metaheuristic algorithms, including Ant Colony Optimization10

(e.g. [5, 6]), genetic and evolutionary approaches (e.g. [7, 8, 9, 10]) or Particle
Swarm Optimization (PSO)-based solutions [11, 12]. Other recent approaches
to DVRP include, among others, market-based optimization [13], look-ahead
approaches [14] or generic dynamic optimization methods (e.g. [15, 16, 17]). A
detailed overview of recent CI-based approaches to various VRP formulations15

can be found in a dedicated survey paper [18].
DVRP, as an example of a discrete dynamic problem, o�ers a great oppor-

tunity for enhancing optimization metaheuristic methods with prediction based
techniques. The problem is worth studying, as it combines complexity of solving
NP-hard static VRP with an additional challenge of making on-line decisions20

against the unknown �nal state of the problem, i.e. with no knowledge about
time, space and volume distributions of future requests. Studying dynamic
problems of discrete nature may potentially help in making methodological im-
provement in existing metaheuristic approaches. To a certain extent prediction-
based methods have been neglected in the �eld of discrete problems [19] with25

much more attention being paid to techniques of tracking changing optima while
solving continuous dynamic problems [15]. It should also be noted that the ideas
related to Worst Case Optimization [20] or Robust Optimization [21] have been
utilized within metaheuristic approach only to a small degree [22, 23].

Another related research topic within the �eld of discrete dynamic problems30

is the impact of problem representation [19] on both the algorithm performance
and the dynamic characteristics of the problem. While it is quite typical to
analyze performance di�erences between algorithms [24], the impact of the uti-
lized problem encoding on the results is somewhat neglected [25]. Moreover,
since dynamic nature of an optimization problem being solved poses additional35

challenges for the design of the problem encoding, it should be worthwhile to
observe how changes in the problem state actually a�ect the achieved solu-
tion [26, 27, 28].

In our previous work the 2-Phase Multi-Swarm Particle Swarm Optimization
(2MPSO) algorithm for solving DVRP [11, 29] has been proposed and tested,40
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excelling the (then) state-of-the-art discrete algorithms. In this paper we intro-
duce a generalized version of the 2MPSO and apply it to solve DVRP with the
main focus on discussing, in a general perspective, the consequences

of using continuous encodings for discrete dynamic problems. It is
shown in the paper that while DVRP is a discrete optimization problem, using45

its graphical representation and solving it as a clustering problem on a contin-
uous R2 plane proves to be bene�cial over applying discrete encodings. Apart
from the improvement of results obtained for widely-used Kilby et al.'s bench-
mark set [3], the motivation for using continuous representation is twofold:

• First of all, continuous encoding allows usage of a population-based con-50

tinuous optimization algorithms of any kind, what makes the proposed
approach truly general.

• Furthermore, solving requests-to-vehicles assignment as a continuous clus-
tering problem naturally leads to inducing a division of the �eet operating
area into subareas. This way the method mimics manual requests-to-55

vehicles assignment made by domain experts in their everyday professional
routine.

This paper is intended as the continuation of the studies reported in [11]
and introduces generalization of the aforementioned 2MPSO algorithm. The
research concentrates on the impact of selecting a problem encoding, a meta-60

heuristic optimization algorithm and an additional penalty term on the quality
of results, while treating a solution initialization and helper heuristics as given
(described in full detail in [11]). 2MPSO approach is in this work generalized
mainly in the two following aspects:

• A continuous population-based optimization algorithm and the solution65

encoding utilized by that algorithm are considered to be the method's
parameters, thus converting the 2MPSO into a general, algorithm-free
continuous optimization approach.

• Both continuous and discrete encoding based optimization algorithms can
be applied in the proposed generalized parallel optimization framework.70

This new general optimization framework will be referred to as Parallel Ser-
vices, while any form of continuous DVRP encoding considered in this frame-
work will be referred to as ContDVRP .

1.1. Related work

The review of current taxonomy and solution methods for DVRP, although75

currently slightly outdated, was provided by Pillac et al. [30]. An updated
survey including various aspects of DVRPs has been conducted by Psaraftis et
al. [31] and concentrated on the advancements made during the 30 years prior
to its publication in 2016. That survey discussed the areas of technology (avail-
able localization and communication systems, computational power), problem80

taxonomy and solution methods. A very recent survey by Mavrovouniotis et al.
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[32] considers DVRP as one of many Dynamic Optimization Problems (DOP)
and discusses various Swarm Intelligence approaches within the DOP domain.
Finally, Marinakis et al. [33] present a review of applications of PSO across the
whole VRP domain, including the DVRP variant considered in this paper.85

1.1.1. Continuous search spaces for VRPs

Except for our previous papers which considered continuous search space
for DVRP [34, 29, 11], other continuous encodings have been proposed for
the related VRP models, most notably Stochastic VRP [35] and Capacitated
VRP [36].90

An approach described in [35] concentrates on presentation of the VRP as
a giant TSP route problem [37] and focuses on changes in the PSO position
update formula imposed by the chosen encoding. A distinctive feature of the
continuous encoding presented in [36] is simultaneous coding of requests order
and requests assignment. The order of requests is coded in the form of a rank95

vector, while assignment of requests is derived from vectors of cluster centers
corresponding to the respective vehicles.

In this work we integrate the idea of simultaneous order and assignment
encoding [36] with the �exibility of assignment stemming from a multicluster
approach [29]. A detailed description of the integrated multicluster encoding is100

presented in section 4.

1.1.2. Other geometric approaches

Although we are not aware of any other continuous encodings for VRP,
there are several approaches that take into account geometric properties of the
problem. For instance, the method proposed in [38] selects vehicle routes from105

the set of convex route propositions (called petals), while algorithms presented
in [39, 40] utilize Voronoi tessellation based on request locations.

1.1.3. State-of-the-art algorithms for DVRP

Previous state-of-the-art approaches to DVRP (before introduction of our
2MPSO continuous algorithm) included: (a) discrete and distributed PSO (called110

MEMSO) [12] and (b) Genetic Algorithm (GA) [7]. Since the latter was tested
in [7] under time limit constraints on Pentium IV processor its e�cacy cannot
be directly compared with other methods using contemporary computing re-
sources. For this reason we reimplemented the GA algorithm and tested it with
the stopping criterion relying on the number of �tness function evaluations. In115

such a setting the method proved to be competitive to MEMSO (cf. Table 6).
Therefore, GA has been chosen in this paper as a baseline discrete search space
algorithm for solving DVRP. For a detailed comparison under both computation
time limit and number of �tness function evaluation limit, between the original
GA, MEMSO and our continuous 2MPSO method, please refer to [11].120

1.1.4. Recent works on DVRP

This section brie�y mentions recent attempts at solving DVRP with a par-
ticular focus on papers that utilized Kilby et al.'s benchmark instances [3], so as

4



to make them comparable with 2MPSO [11] and MEMSO [12] algorithms, which
still hold together the largest number of best average results for this benchmark125

set.
Seemingly, the most prominent approaches are based on the Monarch But-

ter�y Optimization [41] and Genetic Algorithm [42], which respectively achieved
the results only 4.6% and 5.3% worse on average then 2MPSO, with better av-
erage results in the case of 6 and 2 (out of 21) benchmark instances, resp. Still,130

the results cannot be compared directly, as the authors of both [41] and [42] had
not normalized computational power with the state-of-the-art GA approach [7],
yet used computational time as stopping criterion.

In terms of the average solution quality, 5.6% worse average results than
2MPSO were reported in [43], with better average result for 5 (out of 21)135

benchmarks, but with signi�cantly smaller number of �tness function evalu-
ations. Again, a direct comparison of those results with our approach is not
possible, since in [43] an unknown amount of additional computation time is
utilized during solution learning phase.

Less promising approaches were proposed in [44] and [45], utilizing respec-140

tively Variable Neighborhood Search and another type of GA implementation.
Those results have been worse, on average, by 6.7% and 7.4%, resp. than those
of 2MPSO. Additionally, Hybrid GA [46] and Enhanced Ant Colony Optimiza-
tion [47] approaches were proposed, but with the average solution quality more
than 10% worse compared to 2MPSO.145

It is also worth to mention a GPU implementation of the GA method [48]
which reported around 70 times speedup over original CPU implementation [7]
together with some new best results. Unfortunately, the average results are not
reported in [48] what hinders a thorough comparison with other methods.

1.2. Main contribution150

The main contribution of this paper is �vefold:

• Proposition of a continuous optimization approach � ContDVRP. On a
general note, ContDVRP can be parametrized with any type of continuous
optimization method, eg. PSO or DE.

• Experimental veri�cation of a high degree of independence of the quality of155

DVRP results from the utilized optimization method (PSO or DE) within
the ContDVRP framework (section 6.2).

• Optimization of obtained solutions by means of handling dynamic features
of a DVRP instance in the form of a speci�cally designed penalty term.
This term estimates the total number of vehicles to be utilized during the160

whole working day (section 5.1.2)

• General discussion on the degree of dynamism of the popular and widely
utilized Kilby et al.'s benchmark sets [3] and providing results for their
more dynamic customization (section 6.5)
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• Combining priorities and single-cluster encoding [36] with a multi-cluster165

encoding [11] and investigating its performance against a sole multi-cluster
approach section 6.2).

The rest of the paper is organized as follows. Section 2 brie�y presents
PSO and DE algorithms utilized independently in the proposed ContDVRP
framework. Section 3 discusses the properties of DVRP along with its main170

operational parameters. The next section introduces various types of continuous
DVRP encodings and section 5 presents the ContDVRP algorithm and Parallel
Services environment in which ContDVRP is utilized. The following section
provides ContDVRP results on a set of benchmark instances and discusses their
stability. The last section concludes the paper.175

2. Population based optimization algorithms for solving DVRP

Population based approaches have proven to be successful in solving hard
optimization problems such as Vehicle Routing Problem or Job Shop Scheduling
Problem [24]. Two of the most popular and successful algorithms in that area,
PSO and DE, are brie�y discussed in the remainder of this section.180

2.1. Particle Swarm Optimization

PSO is an iterative global optimization metaheuristic method proposed in [49]
and further studied and developed by many other researchers, e.g., [50, 51, 52].
The underlying idea of the method consists in maintaining the swarm of par-
ticles moving in the search space. For each particle the set of neighboring185

particles which communicate their positions and function values to this particle
is de�ned. Furthermore, each particle keeps track of its current position and
velocity, as well as remembers its historically best (in terms of solution quality)
visited location. More precisely, in each iteration t, each particle i updates its
position xit and velocity vit according to the following formulas [53, 50]:190

xit+1 = xit + vit. (1)

vit+1 = u
(1)
U [0;g](x

neighborsi
best − xit) + u

(2)
U [0;l](x

i
best − xit) + a · vit (2)

where g is a neighborhood attraction factor, xneighborsibest represents the best posi-
tion (in terms of optimization) found hitherto by the particles belonging to the
neighborhood of the ith particle, l is a local attraction factor, xibest represents
the best position (in terms of optimization) found hitherto by particle i, a is an195

inertia coe�cient, u(1)U [0;g], u
(2)
U [0;l] are random vectors with uniform distribution

from the intervals [0, g] and [0, l], respectively.
In this study we use the Standard Particle Swarm Optimization 2007 (SPSO-

07) [53] with random star neighborhood topology, in which, for each particle,

6



we randomly assign its neighbors, each of them independently, with a given200

probability1.

2.2. Di�erential Evolution

DE is an iterative global optimization algorithm introduced in [54]. In DE,
the population is moving in the search space of the objective function by means
of testing new locations for each specimen created by cross-over operation. More205

precisely, we use a standard DE/rand/1/bin con�guration in which in each
iteration t and for each specimen xit in the population a random specimen x(3)t

is chosen and mutated with a di�erence vector between random specimens x(1)t

and x(2)t scaled by F ∈ R:

y
(3)
t = x

(3)
t + F × (x

(2)
t − x

(1)
t ) (3)

All randomly selected specimens x(1)t , x(2)t , x(3)t are di�erent from each other210

and from xit. Subsequently, the mutant y
(3)
t is crossed-over with xit by binomial

recombination with probability p:

yit = Binp(x
i
t, y

(3)
t ) (4)

Finally, the new location yit replaces the original xit location i� it provides a
better solution in terms of the objective function f :

xit+1 =

{
yit if f(yit) < f(xit)
xit otherwise

(5)

3. Dynamic Vehicle Routing Problem215

Vehicle Routing Problem (VRP), a static version of the problem discussed in
this paper was introduced in [1] as a problem of �nding a set of routes for a �eet
of gasoline delivery trucks, thus generalizing the Traveling Salesman Problem
(TSP). Both TSP and VRP are NP-hard problems [55].

Dynamic VRP (DVRP) considered in this paper, unlike its static version,220

deals with a subset of requests to be served by the vehicles, which is not fully
known a priori. Some requests are revealed when the optimization process is
already in operation [30]. In this section we formally de�ne the DVRP and look
at this problem from the operations research perspective.

3.1. Problem formulation225

In DVRP one considers:

• a �eet V of n vehicles,

1Please, note that the �neighboring� relation is not symmetrical, i.e. the fact that particle
y is a neighbor of particle x, does not imply that x is a neighbor of y.
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• a series C of m clients (requests) to be served, and

• a depot from which vehicles start their routes.

The �eet V is homogeneous, i.e. vehicles have identical capacity cap ∈ R and230

the same speed ∈ R. The depot d is de�ned by:

• its location l0 ∈ R2 and

• working hours (tstart, tend), where 0 ≤ tstart < tend.

Each client cl ∈ C (l = 1, . . . ,m) is de�ned by the following set of attributes:

• location ll ∈ R2,235

• time tl ∈ R, which is a point in time when their request becomes available
(tstart ≤ tl ≤ tend),

• unload time ul ∈ R, which is the time required to unload the cargo at the
client's site,

• size sl ∈ R, which is the requests size (sl ≤ cap).240

A travel distance ρ(i, j) is the Euclidean distance between li and lj in R2,
i, j = 0, 1, . . . ,m.

During the solving process, for each vehicle vi, ri = (ri,1, ri,2, . . . , ri,mi
) is a

sequence of mi indices of requests assigned to this vehicle, with depot being the
�rst and the last elements of ri. Therefore, ri de�nes the route of the ith vehicle245

beginning and ending in the depot. The arvri,j is the time of arrival to the jth
location assigned to the ith vehicle. arvri,j is induced by the permutation ri,
by the time when requests become available - see eqs. (7) and (8), and by the
time arvri,j−1

at which vehicle leaves the previous location.
The optimization goal is to serve all clients with their requested demands,250

with minimal total cost (travel distance) within the time constraints imposed
by the working hours of the depots. In other words, the goal is to �nd such
a set R = {r∗1 , r∗2 , . . . , r∗n} of vehicles' routes that minimizes the following cost
function:

COST (r1, r2, . . . , rn) =

n∑
i=1

mi∑
j=2

ρ(ri,j−1, ri,j) (6)

under the following constraints (7) - (12).255

Vehicle vi, i = 1, 2, . . . , n cannot arrive at location lri,j until the time required
for traveling from the last visited location lri,j−1 (after receiving an information
about the new request) is completed:

∀i∈{1,2,...n}∀j∈{2,3...mi} arvri,j ≥ tri,j + ρ(ri,j−1, ri,j) (7)

Please recall that for j = 2, lri,j−1 denotes the location of the initial depot.
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A vehicle cannot arrive at location lri,j before serving the request cri,j−1 and260

traveling to the next location:

∀i∈{1,2,...n}∀j∈{2,3...mi} arvri,j

≥ arvri,j−1
+ uri,j−1

+ ρ(ri,j−1, ri,j)
(8)

Each of the vehicles must not leave the depot before its opening and must return
to the depot before its closing:

∀i∈{1,2,...n} arvri,1 ≥ tstartri,1 (9)

∀i∈{1,2,...n} arvri,mi
≤ tendri,mi

(10)

A sum of requests' sizes between consecutive visits to the depots must not265

exceed vehicle's capacity:

∀i∈{1,2,...n}∀j1<j2∈{1,2...mi} (ri,j1 and ri,j2 are two

subsequent depots in route ri) ⇒ (

j2−1∑
j=j1+1

sri,j ≤ cap)
(11)

Each client must be assigned to exactly one vehicle:

∀j∈{1,...m}∃!i∈{1,2,...n} j ∈ ri (12)

Note 1. Without loss of generality, in all benchmarks used in this paper speed
is de�ned as one distance unit per one time unit.

3.2. Dynamic features270

According to [15], a truly dynamic optimization problem is the one in which
decisions regarding the optimized solution need to be made during the optimiza-
tion process. These decisions have an impact on the possible future states of
the problem and values of the cost function. The DVRP is not only a dynamic
optimization problem in the above-described sense, but has also two distinctive275

additional features:

• the number of requests available for optimization is decremented with each
ultimate commitment of any vehicle to any request,

• the number of requests available for optimization may grow until a certain
time threshold - the so-called cut-o� time - discussed below is reached.280

The fact that some requests became unavailable for optimization does not usu-
ally need to be addressed in any other way than blocking any changes concerning
them in the candidate solution. However, the possibility of additional requests
appearance makes the DVRP an interesting and particularly challenging exam-
ple of a dynamic optimization problem.285
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3.3. Measuring a degree of problem dynamism

In order to compare various approaches and choose suitable optimization
techniques for a dynamic problem it is useful to observe and measure its degree
of dynamism. In practice, the most critical operation performed on an inter-
mediate DVRP solution R is reassignment of requests between vehicles, which290

leads to structural changes in the currently planned routes. Therefore, opti-
mization processes which generate fewer such changes during the working day
(with respect to subsequently developed solutions) are generally preferable in
practice and considered more stable and robust.

For a given DVRP instance its degree of dynamism is measured according295

to the following de�nition.

De�nition 1. Degree of dynamism (DoD) [56] of a given DVRP instance
is the ratio of the number of unknown requestsmu at the beginning of the solution
process to the total number of requests m of that instance.

dod =
mu(tstart)

m
(13)

3.4. Operational parameters in�uencing the DoD300

In a typical approach to solve DVRP, regardless of particular optimization
method used, a vehicles' dispatcher (event scheduler) module is usually uti-
lized, which is responsible for communication issues. In particular, the event
scheduler collects information about new clients' requests, generates the current
problem instance and sends it to the optimization module and, afterwards, uses305

the obtained solution to commit vehicles. A technical description of such an
information technology system can be found, for instance, in [57].

The event scheduler maintains the following three parameters:

• Tco - cut-o� time,

• nts - number of time slices,310

• Tac - advanced commitment time,

which a�ect the DoD of a given problem instance and control the latest possible
dispatch time of the vehicles.

3.4.1. Cut-o� time
The cut-o� time (Tco), in real business situations, can be interpreted as a315

time threshold for not accepting any new requests that arrive after Tco and
treating them as the next-day's requests, available at the beginning of the next
working day. In a one-day simulation horizon considered in this paper, likewise
in the referenced works [58, 59, 12, 7, 34, 29, 11], the requests that arrive after
the Tco are treated as being known at the beginning of the current day, i.e. they320

actually compose the initial problem instance. In benchmark sets the cut-o�
time value is typically set at half of the working day [3], i.e. Tco = 0.5.
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(a) Dynamism of available requests - their
variation in time.

(b) Dynamism of utilized vehicles - their
variation in time.

Figure 1: Dynamism of two main DVRP parameters with respect to various cut-o� time
values (TCO = {0.5, 0.6, 0.7}).

Figure 1 presents the in�uence of the cut-o� time on the number of available
requests and required vehicles in a sample algorithm run. Please observe the
peak of the available requests' number curve in Figure 1a. For a standard325

setting of Tco = 0.5, almost 80% of requests are available for rescheduling at
that time. This observation inspired us to devise yet another metric of dynamism
(discussed in detail in Section 6.4) and perform experiments for higher values
of Tco (presented in Section 6.5).

3.4.2. Number of time slices330

The number of time slices (nts) decides how often the dispatcher sends a
new version of the problem to the optimization module. The initial research
presented in [3] suggested setting this value to 50, while [60] proposed division
into 25 time slices (which was adopted as a standard value in subsequent ap-
proaches), claiming the optimal trade-o� between the quality of solutions and335

computation time. Parameter tuning for 2MPSO algorithm [11] resulted in
choosing nts = 40. Generally speaking, dividing the day into greater number
of time slices allows optimization module to react faster to the newly-arrived
requests since it is informed sooner about the introduced changes. On the other
hand, with the �tness function evaluation (FFE) budget �xed, the chances for340

optimizing the solution within each time slice decrease proportionally.

3.4.3. Advanced commitment time

The advanced commitment time (Tac) in�uences the set of vehicles-to-be-
dispatched. Formally, a set of vehicles that need to be dispatched in the closest
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time slice (denoted Vtbd) is de�ned in the following way:345

Vtbd =

{
vi : arvri,mi

≥ tendri,mi
− (Tac +

1

nts
)
(
tendri,mi

− tstartri,1
)}

(14)

Consequently, requests scheduled to be served by any vehicle from Vtbd are
treated as ultimately approved and cannot be rescheduled to another vehicle.
During the 2MPSO parameter tuning process [11] it has been observed that ap-
propriate choice of Tac allows greater �exibility in assigning requests to vehicles
in the phase of a day just before the Tco, when appropriate handling of potential350

arrival of a big-size request is a critical issue.

3.4.4. Summary

Despite extensive research e�orts, the problem of varying in time instance
characteristics (cf. Fig. 1) is still a challenging issue and, to the best of our
knowledge, not handled e�ciently by any of the existing approaches. Some355

recent studies in this area include the look-ahead approach [14] and the use of
Monte Carlo simulations [61].

4. VRP in continuous search space

After introduction to the continuous global optimization algorithms pre-
sented in section 2 and description of a general characteristics of the DVRP360

provided in section 3, this section addresses the issue of handling VRP (and
DVRP in particular) by a continuous optimization algorithm. Please note that
while the research presented in this paper is focused on dynamic version of the
VRP, proposed problem encodings are universal across the VRP domain and
applicable to vast majority of possible VRP variants discussed in the literature.365

4.1. Continuous VRP encodings

The following three types of continuous encodings are utilized in the VRP
literature: joint requests priorities and cluster centers - originally proposed in
the context of the Capacited VRP (CVRP) and VRP with Time Windows
(VRPTW) [36, 62], giant TSP tours (requests priorities) - introduced in [35] for370

solving Stochastic VRP (SVRP), and separate multi-cluster centers and requests
priorities - proposed in our previous research regarding DVRP [29, 11].

4.1.1. Priorities and clusters centers

Each candidate solution in the search space proposed in [36] is in the form
of a vector of m request priorities and a vector of request cluster centers (2D co-375

ordinates) assigned to each of the estimated number of vehicles (n̂). Therefore,
candidate solutions belong to Rm+2n̂ search space. This type of candidate so-
lution is unambiguously transformed into a discrete VRP solution R. Requests
belonging to the same cluster are assigned to a common vehicle and the route
is formed by ordering them according to their priorities. Please note that there380

exist route sets R which cannot be represented in this search space.
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(a) A rough division of the working area
imposed by one cluster of requests per ve-
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(b) A �ne-grained division of the working
area enabled by using two clusters of re-
quests per vehicle [11].
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1st vehicle 2nd vehicle 3rd vehicle 1st vehicle 2nd vehicle 3rd vehicle
1.0 1.4 1.0 0.0 -0.5 2.1 2.0 2.1 -1.9 -3.0 -0.6 -3.0

[12]
assigned vehicles identi�ers

1 3 1 2 3 2 2 2 2 3

Figure 2: Three types of continuous VRP encodings and their discrete counterparts illustrated
by a common example composed of 3 vehicles and 10 customers {1, . . . , 10}. Location indicated
by 0 represents the depot. Black and grey dots denote coordinates of the request cluster
centers, and therefore generate the Voronoi diagram (denoted by dashed lines) of the service
area. The resultant Voronoi cells generate the requests-to-vehicles assignment.

4.1.2. Priorities only

A candidate solution in the search space proposed in [35] is represented as
a vector of m requests' priorities. Therefore, candidate solutions belong to Rm

search space. Such a vector encodes the order of requests in the form of a giant385

TSP tour by sorting the vector indices according to the values of the respective
elements. In order to create a VRP solution R from a giant tour representation,
consistent parts of that tour are divided among the vehicles in a way that
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complies with the time and capacity constraints. A discrete counterpart of such
an encoding has been initially proposed in [7] and, more recently, utilized in [10].390

4.1.3. Multicluster centers

In order to overcome the limitation of representing various solutions by
means of a single cluster-per-vehicle encoding in the request-to-vehicles assign-
ment [36] discussed in point 4.1.1, a multicluster approach has been proposed
in our previous works [11, 29]. In the search space, a candidate solution consist395

of k > 1 request cluster centers per each of the n̂ estimated vehicles. Therefore,
candidate solutions belong to R2kn̂ search space. In order to construct a VRP
solution, the route for each vehicle is generated at random and improved with
the 2�OPT algorithm [63]. A discrete counterpart to a multicluster requests-
to-vehicles assignment was explored in [12].400

4.1.4. Complexity of solutions decoding

A discussion of various continuous encodings must also take into account
computational complexity of decoding representation from a given search space
into the actual problem solution. While direct discrete encodings bear a de-
coding cost of O(m), for continuous priorities and multiclusters it could be as405

high as O(m logm + mkn̂). Nevertheless, even with a larger computational
cost of solution decoding, the continuous approach proved bene�cial, even in
time bounded experiments performed in [11]: �In the timebounded experiment
2MPSO outperforms the average length of the GA's [7] routes by 7.1% and
ACOLNS's [5] by 10.4% �. This phenomenon can possibly be attributed to the410

fact that having a request clustering heuristic embedded in the optimization
process creates an implicit upper bound on the possible values of a solution
cost. Meanwhile, algorithms utilizing discrete encodings might su�er from the
risk of sampling solutions of low quality, due to lesser restrictions imposed on
possible problem solutions to be encoded.415

4.1.5. Summary of encoding schemes

Figure 2 presents an example of a VRP solution composed of a set of requests
{1, . . . , 10} served by 3 vehicles stationed in a centrally located depot (denoted
by 0). The �gure graphically illustrates the solution (top part of the �gure) and
its possible encodings in the three above-discussed cases (in each of them both420

continuous and discrete solution representations are listed). Please observe the
increasing �exibility in subareas de�nition along with the increasing number of
request clusters per vehicle.

4.1.6. Final remarks

On a general note, the main di�erence between application of continuous and425

discrete encodings to discrete problems lies in di�erent focus of these methods.
Continuous approaches mainly concentrate on deriving a suitable model of

the optimization problem, while discrete approaches rely more on proposing
e�cient search operators. Since our aim in this study is the application of
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generic continuous optimization metaheuristics to solving DVRP, we shall focus430

on the problem encodings proposed in [36] and [11, 29].

5. The Parallel Services approach and the ContDVRP algorithm

This section presents a brief technical summary of the implemented opti-
mization system - Parallel Services (PS). This system is a general optimiza-
tion framework, while any type of continuous DVRP encoding within PS is435

referred to as ContDVRP. A .NET Framework implementation of the Par-
allel Services, together with ContDVRP and GA code is available at https:

//sourceforge.net/projects/continuous-dvrp/

Figure 4 presents the overall view of the generic optimization process within
the PS environment. Particular activities within a single optimization process440

are depicted in Figure 5. The main activities in PS are described in Figure 3

1. Load the initial state of the DVRP
2. Spawn as many parallel processes as there are available processing units

(VCPUs)2

3. For each of the spawned processes:

(a) Estimate the number of required vehicles
(b) Create the initial population for the optimization algorithm (incor-

porate heuristic solution, historic solution and random solutions)
(c) Perform requests-to-vehicles assignment optimization3 with one of

the following algorithms (the same in all parallel processes):
• PSO with multiclusters encoding (= previous 2MPSO algorithm)

• DE with multiclusters encoding
• PSO with priorities and multiclusters encoding
• DE with priorities and multiclusters encoding
• GA with discrete giant TSP route encoding

4. Select the best solution
5. Assign requests
6. Update problem state with new requests
7. Go back to step 3 if there are new requests available or previous requests

are not yet ultimately assigned

Figure 3: Overall activities of the Parallel Process during optimization of a DVRP instance.

Observe that each of the parallel processes in PS is identically parametrized,
utilizes the same problem encoding and optimization algorithm. The
details of activities of a single optimization processes in a single time step are
presented in Figure 5.445
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Get available
requests and vehicles

[No new requests
and

all requests ultimately assign]

Optimize the problem 
on CPU#1

Optimize the problem 
on CPU#2

Optimize the problem 
on CPU#P

Select
the best solution

...

Figure 4: An activity diagram presenting a high level view of the DVRP optimization process
within the Parallel Services framework.

5.1. Key features of ContDVRP

The two key aspects of the ContDVRP algorithm are e�cient transfer of
knowledge (partial solutions) between subsequent time slices and a method of
handling unknown clients' requests which are likely to appear in future time
slices. Both these issues are discussed in the reminder of this section, respec-450

tively in points 5.1.1 and 5.1.2.

5.1.1. Solution transfer between problem states (time slices)

Already in the initial works on DVRP [60, 4, 7] some form of passing best
solutions from previous time slices to the current one was used. While such a
policy seems to be rather obvious and natural, what comes as a surprise is the455

lack of more sophisticated methods which take into account particular dynamic
features of DVRP.

Discrete GA [7] and MEMSO [12] approaches to solving DVRP migrate

a solution from the previous time step and adapt it to a new state

of the problem. ContDVRP, on the contrary, mainly follows the path of460

Ant Colony System (ACS), where the rules for creating the solution are
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1. Cluster available requests with a 
modified Kruskal algorithm

4b. Compute centroids from 
tentatively assigned requests 

to the same vehicle in 
previous solution

4c. Pass requests centroids 
from previous solution 

enhanced by new random 
centroids for new vehicles

7a. Optimize 
requests-to-

vehicles 
assignment by 

clustering requests 
with PSO

4a. Compute centroids from 
requests assigned to the 
same vehicle in heuristic 

solution

6. Incorporate heuristic based and history 
based solutions in a random population

2. Optimize each route by ordering requests 
with 2-OPT

3. Estimate the number of necessary 
vehicles on the basis of heuristic solution

[PSO]

7c. Optimize 
complete VRP 

solution with PSO

[Okulewicz, Mańdziuk encoding]

7b. Optimize 
requests-to-

vehicles 
assignment by 

clustering requests 
with DE

[DE]

After each successful 
improvement of a solution giant 

route formed from requests 
priorities is stored as a system's 
state on which 2-OPT operates 
before evaluating assignment

7d. Optimize 
complete VRP 

solution with DE

7e. Optimize giant TSP 
route with GA

[Hanshar, Ombuki-Berman encoding
and GA algorithm]

[PSO] [DE]

New time step (new problem state)

Ultimately assign closest requests

[Ai, Kachitvichyanokul
encoding]

Encoding and algorithm 
choice is manualy made 
before the start of the 

whole optimization 
process

Figure 5: An activity diagram presenting a simpli�ed view of the possible execution paths
of a single optimization service process within a single time step within the PS optimization
framework.

migrated and adapted. In ACS [60, 4] this idea is implemented by means
of migrating and adapting pheromone levels of the edges. In ContDVRP [11] it
consists in transferring the centers of request clusters assigned to vehicles during
the optimization process. Continuous search space expands as necessary while465

the number of required vehicles increases during the course of the working day.
Cluster centers representing newly-added vehicles are positioned randomly and

17



0

7

9 4

6

3

2

1

8

5

10

(a) A solution found in
the ith time slice.

0

7

9 4

6

3

2

1

8

5

10

11

(b) An ultimate assign-
ment of requests number
�5�, �8� and �9� and ap-
pearance of a new pend-
ing request (�11�).

0

7

9 4

6

3

2

1

8

5

10

11

(c) Routes generated at
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time slice based on the so-
lution transferred directly
from the ith slice.

Figure 6: A high quality solution found immediately at the beginning of the next time slice
thanks to application of a direct passing knowledge transfer. By preserving the
request cluster centers found in previous time slices it is possible to accelerate the optimization
process, as it does not have to search from scratch for complex, often non-linearly separable
partial solutions. Dots denote the request cluster centers utilized as a continuous encoding of
the problem, imposing the requests-to-vehicles assignment by means of Voronoi tessellation of
the vehicles' operation area.

their location is concatenated with the previous solution vector. The number
of required vehicles is estimated by the number of clusters obtained by solving
the capacitated clustering problem over the set of known requests with a fast470

heuristic algorithm [61, 11].
ContDVRP utilizes two types of cluster centers transfers: direct passing

and the approximation retrieval. Therefore, two distinct solutions, being the
output of each of those procedures, are passed to the initial population of the
subsequent step.475

Direct passing creates the initial solution for a new state of the problem di-
rectly from the best continuous solution obtained in the previous state
of the problem, supplemented with additional vehicles if necessary.

Approximation retrieval creates a continuous representation on the basis of
a discrete solution. For each cluster center assigned to a given vehicle,480

the average coordinates of all pending requests assigned to this vehicle
are computed and disturbed by adding a small random variable. These
disturbed cluster centers attempt to re�ect expected future locations of
the vehicles.

Both methods have certain advantages, which make them useful as complemen-485

tary approaches. Direct passing preserves the linearly non-separable request
clusters (cf. Figure 6) while approximation retrieval pushes the algorithm out
of the local optima, allowing for a better accommodation to future requests (cf.
Figure 7.). Our previous studies [11] have shown, that while both methods are
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(c) Routes generated at
the beginning of the i +
1 time slice by adapta-
tion of the transferred so-
lution, which takes into
account partial routes al-
ready committed to vehi-
cles.

Figure 7: A high quality solution found immediately at the beginning of the next time slice
thanks to application of an approximation retrieval knowledge transfer. Cluster
centers generated by the approximation retrieval method are located in the average coordinates
of all pending requests assigned to a given vehicle. Therefore, a new request number �11� is
assigned to a vehicle that will be operating in the proximity of its location, instead of the one
that has already served requests �8� and �5� and would have to return to serve request �11� if
assigned to. Dots denote the requests cluster centers utilized as the continuous encoding of
the problem, imposing the request-to-vehicles assignment by means of Voronoi tessellation of
the vehicles' operation area.

bene�cial for the cost of obtained solutions, direct passing has a generally higher490

impact on the solutions quality.

5.1.2. Taking into account unknown future requests

In [61] an initial method of estimating the expected number of unknown
requests and their possible locations was proposed. A simpli�ed version of
this approach is proposed in this paper. It has fewer underlying assumptions495

regarding the future distribution of requests. In consequence, it impacts the
computational cost of the whole method only by a factor of TCO

2

2 .
The approach is inspired by a robust optimization methodology and results

in adding a penalty term to the solution cost function (eq. (6)). The role of
the designed penalty term is to encourage the optimization process to provide500

solutions utilizing more vehicles than are actually necessary for the set of cur-
rently known requests. That way, future requests can be easily accommodated
into existing solutions (cf. Figure 8). The method estimates the total number
of vehicles n̂tend

required in the �nal solution. The estimate is based on the
requests appearance frequency and their size:505

• the average appearance frequency of new requests remains at the same

19



Figure 8: Comparison of partial solutions for the intermediate problem states (a)-(c) with
the shape of the �nal solution when all requests are already known (d). Known requests are
marked as discs and unknown ones as circles. The depot is marked in the square center.
Subplots (a) - (c) present solutions obtained, respectively, when a penalty term is applied (a),
when a capacity bu�er or �nish time bu�er is applied to each of the vehicles (b), and when
no changes are made to the problem or cost function (c).

level during the entire optimization period,

• the requests' size distribution of already known requests properly estimates
the �nal distribution (in the entire problem instance).

n̂tend
(t) =

⌈
TCO(tend − tstart) + tstart − t
TCO(tend − tstart)− tstart + t

∗
mt∑
i=1

si
cap

⌉
(15)

The estimate computed in (15) is (a) utilized by the heuristic clustering algo-510

rithm and (b) in the additional penalty term of the cost function. In the former
case it is used as an additional stopping criterion in the modi�ed Kruskal algo-
rithm solving the capacitated clustering problem [11]. If the number of clusters
reaches n̂tend

(t) the clustering process is stopped. In the latter case, the penalty
term (16) is added to the cost function (6) in time slice t, if the current num-515

ber of used vehicles n̂R(t) is smaller than that estimated for the �nal solution
(n̂tend

(t)):

Penalty(R, t) =
(
n̂tend(t) − n̂R

)
∗ Cost(R)

n̂R
(16)
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Figure 9: DVRP dynamics for various cut-o� time settings (TCO = {0.5, 0.6, 0.7}) after
applying the penalty term.

where R is the currently best solution. The impact of using the penalty term on
the problem dynamism and the obtained intermediate solutions is illustrated in
Figures 8 and 9, respectively.520

6. Results

This section presents experimental results of ContDVRP application to Kilby
et al.'s benchmark instances [3]. The properties of continuous approach are as-
sessed in three di�erent experiments. The �rst one veri�es the impact of selec-
tion of an optimization algorithm and a type of continuous problem encoding525

on the quality of obtained results (section 6.2). The second one is focused on
the role of the penalty term in stabilization of intermediate solutions during the
ContDVRP optimization process (section 6.3). The last one (section 6.5) pro-
vides new insights regarding various cut-o� time settings, which is a consequence
of our discovery that commonly used benchmark instances have relatively low530

empirical dynamism (em.dod), a measure introduced in section 6.4.

6.1. Experimental setup

All the experiments were conducted on 21 widely-known benchmark in-
stances [3]. Values of the main steering parameters (common for all experiments)
are presented in Table 1, and those of speci�c, experiment-related parameters535

are listed in Tables 3, 5 and 7, respectively. All values were either carefully tuned
(see Appendix A in [11]) or taken from the source literature [7]. For each pa-
rameter setting, 30 algorithm runs were performed, each of them with a limited
number of �tness function evaluations (FFEs), in order to assure comparability
with the existing literature results.540
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Table 1: Values of the main parameters in the Parallel Services based experiments.

Parameter Value
Parallel Processes

#parallel optimization processes 8
nts 40

PSO

g 0.60
l 2.20
a 0.63

P (X is a neighbor of Y ) 0.50
#iterations 140
#particles 22

DE

c 0.9
F 0.5

#iterations 195
#specimen 16

GA

P (mutate X) 0.15
tournament size 2

P (selecting lower quality solution) 0.2
elite size 2

#iterations 140
#specimen 22

In what follows, the ContDVRP variants are denoted by the type of op-
timization algorithm used (DE or PSO), the number of request clusters per
vehicle (k = 2 in all cases) and the possible usage of the penalty term (+P , if
applied). Whenever appropriate, the cut-o� time value (TCO ∈ {0.5, 0.6, 0.7})
and the type of encoding (clusters only or clusters and priorities (ranks)) will545

also be listed.

6.1.1. Results comparison

Results of various methods were compared based on the Student t-test, which
validated statistical signi�cance of their di�erences. In the case of comparison of
literature results (external implementations) with our approach, a single sample550

t-test was applied, independently for each benchmark problem. A comparison
between literature algorithms which relied on our own re-implementation with
our approach was performed using two-sample t-test.
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Table 2: A comprehensive comparison of state-of-the art CI approaches to DVRP. Statistical
signi�cance of the di�erences in the average results has been measured by t-test with Bonfer-
roni correction. Overall minimum and best average results for each benchmark problem are
resented in bold. Grey background denotes high quality results (either a signi�cantly better
performance of a literature algorithms (external implementation) compared to our best ap-
proach, or all the approaches with insigni�cant di�erences with our best approach, in the case
where no external algorithm yielded a signi�cantly better average result (cf. section 6.1.1)).

MEMSO [12] ES − L [43] H −GA [46] GA [7] ContDV RP k=2
PSO [11] ContDV RP k=2

PSO + P
106 FFE 2.25 ∗ 104 FFE 2.45 ∗ 105 FFE 106 FFE 106 FFE 106 FFE

GRID 5000 unknown unknown Intel Core i7 Intel Core i7 Intel Core i7
cluster 3.4 GHz 3.4 GHz 3.4 GHz

Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg

c50 577.60 592.95 595.43 614.44 618.36 654.41 574.71 600.56 544.11 578.31 551.34 580.56
c75 928.53 962.54 949.48 979.19 975.46 1038.53 875.34 938.20 884.43 903.72 886.42 901.05

c100b 864.19 878.81 879.39 891.19 882.29 950.68 844.69 919.17 819.56 845.80 819.56 844.56

c100 949.83 968.92 932.06 963.33 966.14 1062.97 924.42 965.65 902.00 933.46 873.77 920.69

c120 1164.63 1284.62 1283.15 1381.07 1271.06 1403.78 1208.36 1282.52 1053.18 1071.38 1056.70 1116.08
c150 1274.33 1327.24 1260.35 1306.26 1339.25 1514.65 1168.37 1228.99 1098.03 1134.20 1097.27 1127.04

c199 1600.57 1649.17 1545.96 1627.48 1778.55 1875.81 1476.06 1524.69 1362.65 1408.70 1374.47 1418.71
f71 283.43 294.85 273.28 278.26 295.72 335.40 286.07 307.87 274.16 298.50 270.20 275.27

f134 14814.10 16083.82 14811.60 15516.56 15079.61 16155.45 11936.42 13055.75 11746.40 11892.00 11713.20 11810.04

tai75a 1785.11 1837.00 1859.96 1887.35 1719.87 1815.51 1705.21 1787.79 1685.23 1805.03 1691.95 1782.79

tai75b 1398.68 1425.80 1376.14 1485.08 1444.63 1536.46 1365.21 1420.97 1365.36 1422.60 1356.50 1401.38

tai75c 1490.32 1532.45 1439.64 1494.18 1511.16 1644.64 1439.21 1532.23 1439.02 1510.00 1424.91 1486.78

tai75d 1342.26 1448.19 1396.55 1423.80 1448.06 1538.87 1428.75 1466.43 1408.79 1433.25 1403.85 1428.91
tai100a 2170.54 2213.75 2151.69 2203.86 2217.44 2368.73 2141.29 2230.84 2137.30 2216.23 2147.07 2226.48
tai100b 2093.54 2190.01 2088.07 2153.57 2177.04 2323.06 2110.11 2211.16 2060.65 2136.80 2041.96 2125.19

tai100c 1491.13 1553.55 1492.98 1570.38 1519.22 1609.33 1476.91 1537.92 1458.81 1494.72 1446.98 1485.47

tai100d 1732.38 1895.42 2002.09 2028.87 1806.18 1927.21 1680.29 1799.04 1663.87 1727.95 1658.48 1718.18

tai150a 3253.77 3369.48 3281.28 3369.25 3543.58 3665.33 3314.22 3471.67 3338.71 3530.82 3396.49 3526.10
tai150b 2865.17 2959.15 2857.65 2880.87 2991.52 3196.82 2919.36 3071.33 2910.06 3026.89 2931.16 3034.65
tai150c 2510.13 2644.69 2528.06 2703.04 2656.99 2843.49 2544.24 2729.26 2497.65 2603.53 2523.53 2642.82
tai150d 2872.80 3006.88 2880.68 2976.71 3035.93 3206.45 2845.01 2973.14 2869.79 3009.01 2929.91 3023.48

GA [7] ACOLNS [5] MBO [41] E −ACO [47] V NS [44] ContDV RP k=2
PSO [11]

750 seconds 1500 seconds 750 seconds unknown 125 seconds 75 seconds
Intel Pentium IV Intel Core i5 Intel Xeon Intel Core i5 Core2 Quad Intel Core i7

2.80 GHz 2.4 GHz 2.40 GHz 3.2 GHz 2.66 GHz 3.4 GHz
Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg

c50 570.89 593.42 601.78 623.09 590.73 570.89 607.21 647.21 592.60 618.44 562.70 581.46
c75 981.57 1013.45 1003.20 1013.47 909.56 1013.45 924.71 1045.44 940.25 994.89 874.08 905.95

c100b 881.92 900.94 932.35 943.05 839.93 841.44 869.22 950.17 883.91 910.67 819.56 844.90
c100 961.10 987.59 987.65 1012.30 930.38 987.59 973.40 1044.96 943.87 985.94 882.96 930.95

c120 1303.59 1390.58 1272.65 1451.60 1112.58 1153.29 1108.15 1197.68 1219.73 1319.39 1066.15 1085.46

c150 1348.88 1386.93 1370.33 1394.77 1135.85 1386.93 1378.63 1472.40 1253.66 1323.40 1147.50 1195.95

c199 1654.51 1758.51 1717.31 1757.02 1414.40 1758.51 1561.12 1836.86 1538.87 1608.40 1434.70 1503.94

f71 301.79 309.94 311.33 320.00 277.00 306.33 259.71 297.08 273.08 291.21 270.35 290.62

f134 15528.81 15986.84 15557.82 16030.53 11853.29 15528.81 20000.00 20000.00 14559.58 15423.87 11773.74 12038.02

tai75a 1782.91 1856.66 1832.84 1880.87 1799.15 1782.91 1690.91 1983.92 1833.18 1913.51 1767.64 1825.87
tai75b 1464.56 1527.77 1456.97 1477.15 1385.45 1452.26 1509.56 1647.78 1460.65 1496.77 1366.80 1419.66

tai75c 1440.54 1501.91 1612.10 1692.00 1483.41 1441.91 1329.42 1470.60 1558.05 1616.87 1427.76 1487.39
tai75d 1399.83 1422.27 1470.52 1491.84 1435.62 1422.27 1409.14 1661.73 1428.74 1452.73 1404.75 1442.45
tai100a 2232.71 2295.61 2257.05 2331.28 2212.08 2232.71 2281.70 2550.64 2134.95 2246.88 2196.91 2261.66
tai100b 2147.70 2215.39 2203.63 2317.30 2105.15 2182.61 2255.83 2500.72 2126.68 2204.05 2060.46 2151.73

tai100c 1541.28 1622.66 1660.48 1717.61 1474.32 1541.25 1442.45 1743.07 1517.57 1650.93 1476.24 1512.13

tai100d 1834.60 1912.43 1952.15 2087.96 1722.88 1912.43 1581.36 1843.82 1807.86 1950.62 1676.10 1746.44

tai150a 3328.85 3501.83 3436.40 3595.40 3539.61 3185.73 3307.63 3684.03 3274.78 3408.89 3476.48 3777.98
tai150b 2933.40 3115.39 3060.02 3095.61 3038.38 2880.57 3128.00 3439.38 2819.46 2902.42 2978.30 3120.09
tai150c 2612.68 2743.55 2735.39 2840.69 2641.62 2743.55 2583.36 2729.15 2491.58 2643.11 2532.23 2678.16
tai150d 2950.61 3045.16 3138.70 3233.39 3047.30 3045.16 2808.99 3186.08 2927.21 3006.04 2958.75 3141.63
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6.2. Relevance of the optimization algorithm selection

First experiment tests the impact of the optimization algorithm and the type555

of a problem encoding on the quality of results. Test is performed for each of
the �ve con�gurations of the optimization algorithms available within the PS
environment (cf. Figure 5). Test runtime parameters are listed in Tables 1
and 3, while its results are presented in Table 4.

Please note, that the search space of the clusters only encoding is exactly560

the one discussed in section 4.1.3 and its dimension is equal to 2kn̂. Mean-
while, clusters and priorities search space is a combination of the search spaces
discussed in sections 4.1.1 and 4.1.3, and as a result its dimension is equal to
m+ 2kn̂.

Table 3: Settings of the ContDVRP realizations used in the experiment aimed at veri�cation
of the impact of an optimization algorithm selection.

Encoding Algorithm Stopping criterion Penalty k TCO TAC

Clusters PSO #FFE No 2 0.5 0.04
Clusters and priorities PSO #FFE No 2 0.5 0.04

Clusters DE #FFE No 2 0.5 0.04
Clusters and priorities DE #FFE No 2 0.5 0.04

On a general note, two main conclusions can be easily drawn from the results.565

First of all, each of the continuous realizations of the optimization algorithm
outperformed a discrete GA-based approach which yielded only 1 best average
result and was signi�cantly worse in 16 problem instances. Second of all, the
PSO-based realizations are generally better than their DE counterparts.

On a more detailed level, however, it can be observed that none of the570

four con�gurations of ContDVRP has a clear advantage over the remaining
ones. The baseline version, ContDV RP k=2

PSO(= 2MPSO [11]) without requests
priorities, gained 7 best average results, but at the same time yielded statistically
signi�cantly worse results than the best of the competitive approaches for 5
problem instances. The same metrics were equal to 1 and 5 for ContDV RP k=2

DE575

without requests priorities, 7 and 5 for ContDV RP k=2
PSO with requests priorities,

and 5 and 3 for ContDV RP k=2
DE with requests priorities, respectively.

Finally, it is worth to note that DE-based realizations generally converged
faster than the PSO-based ones, with the average speed advantage reaching 21%
in the extreme case.580

6.3. Impact of the penalty term

The second experiment aimed at testing the e�cacy of using the penalty
term (16) within the ContDVRP approach. Tables 1 and 5 provide parameter
settings in this experiment and Table 6 compares the results of ContDVRP
approach with and without penalty term with MEMSO and GA methods. The585

�rst conclusion from the presented results is the comparable performance of
the two discrete approaches: GA and MEMSO. Furthermore, addition of the
penalty term, although improves the average results of ContDVRP, does not
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Table 4: The average results obtained by all versions of the algorithm tested in the PS
framework. For each problem instance, the best result is bolded. Grey background denotes
results which are not signi�cantly worse than the best one, according to a one-sided t-test
with α = 0.05.

Discrete Continuous - clusters only Continuous - clusters and priorities
GA ContDV RP k=2

PSO ContDV RP k=2
DE ContDV RP k=2

PSO ContDV RP k=2
DE

Name Avg Avg Avg Avg Avg
c50 600.56 578.31 580.02 583.49 581.24
c75 938.2 903.72 908.28 901.63 904.11
c100 965.65 933.46 937.07 932.76 936.92
c100b 919.17 845.8 843.83 842.85 826.82

c120 1282.52 1071.38 1104.61 1082.02 1079.75
c150 1228.99 1134.2 1140.14 1145.89 1147.87
c199 1524.69 1408.7 1414.85 1412.28 1407.8

f71 307.87 298.5 295.58 292.92 289.48

f134 13055.75 11892 11916.7 11969.68 12006
tai75a 1787.79 1805.03 1807.49 1817.41 1812.93
tai75b 1420.97 1422.6 1412.85 1411.7 1419.86
tai75c 1532.23 1510 1501.64 1501.91 1523.06
tai75d 1466.43 1433.25 1451.04 1442.31 1444.14
tai100a 2230.84 2216.23 2247.21 2251.18 2229.71
tai100b 2211.16 2136.8 2145.85 2126.98 2157.35
tai100c 1537.92 1494.72 1495.87 1494.31 1502.06
tai100d 1799.04 1727.95 1736.33 1742.27 1729.63
tai150a 3471.67 3530.82 3489.65 3528.1 3453.73

tai150b 3071.33 3026.89 3038.63 3014.45 3023.5
tai150c 2729.26 2603.53 2563.01 2574.42 2562.45

tai150d 2973.14 3009.01 2999.43 2955.65 2987.38
sum 47055.18 44982.9 45030.08 45024.21 45025.79

have a statistically signi�cant impact. On the other hand, plots of dynamic
features presented in Figure 10 show that application of continuous encoding590

results in greater stability of intermediate solutions, and adding a penalty term
enhances that property even further.

Additionally, Table 2 presents a detailed comparison of our method with
selected external approaches discussed in section 1.1.4. For the sake of clarity,
results are presented separately for the FFE bounded experiments and com-595

putation time bounded experiments. The set of comparative methods con-
sists of the state-of-the-art algorithms utilizing various CI techniques, namely:
MEMSO [12], Variable Neighbourhood Search (VNS) [44], Monarch Butter�y
Optimization (MBO) [41], Enhanced Ant Colony Optimization (E-ACO) [47],
Evolution Strategy with Learning Capabilities (ES-LC) [43], Hybrid Genetic Al-600

gorithm (H-GA) [46], and Ant Colony Optimization with Large Neighborhood
Search (ACOLNS) [5]. In principle, incomparable stopping criteria reported in
the literature (various running times and di�erent numbers od FFEs) hinder
drawing de�nite conclusions about the relative performance of discussed algo-
rithms. At the same time, please observe that since computation times of our605

method in the experiments limited by number of FFEs was between 37 and 429
seconds for baseline ContDVRP, and between 53 and 602 seconds for ContD-
VRP with applied penalty, it is safe to conclude that our continuous approach
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Table 5: Settings of the PS algorithms used in the experiment verifying the impact of the
penalty term.

Encoding Algorithm Stopping criterion Penalty k TCO TAC

Clusters PSO #FFE No 2 0.5 0.04
Clusters PSO #FFE Yes 2 0.5 0.20

Giant TSP tour GA #FFE N/A N/A 0.5 0.15

Table 6: Comparison of ContDV RP and MEMSO [12] (one of the state-of-the-art DVRP
algorithms with the constrained budget of FFEs) with our implementation of GA-based
method [7]. For each algorithm the number of FFEs is presented in parenthesis and broken
down into three components: the number of time slices, the number of optimizers (paral-
lel solving instances) and the number of FFEs for each optimizer, in each time slice. For
each problem instance, the best (minimum) and the average values are bolded. Grey back-
ground denotes average results which are not signi�cantly worse than the best average result,
according to a one-sided t-test with α = 0.05.

MEMSO [12] GA [7] ContDV RP k=2
PSO ContDV RP k=2

PSO + P
(25 ∗ 8 ∗ (0.5 ∗ 104)) (40 ∗ 8 ∗ (0.31 ∗ 104)) (40 ∗ 8 ∗ (0.31 ∗ 104)) (40 ∗ 8 ∗ (0.31 ∗ 104))

Min Avg Min Avg Min Avg Min Avg

c50 577.60 592.95 574.71 600.56 544.11 578.31 551.34 580.56
c75 928.53 962.54 875.34 938.20 884.43 903.72 886.42 901.05

c100b 864.19 878.81 844.69 919.17 819.56 845.80 819.56 844.56

c100 949.83 968.92 924.42 965.65 902.00 933.46 873.77 920.69

c120 1164.63 1284.62 1208.36 1282.52 1053.18 1071.38 1056.70 1116.08
c150 1274.33 1327.24 1168.37 1228.99 1098.03 1134.20 1097.27 1127.04

c199 1600.57 1649.17 1476.06 1524.69 1362.65 1408.70 1374.47 1418.71
f71 283.43 294.85 286.07 307.87 274.16 298.50 270.20 275.27

f134 14814.10 16083.82 11936.42 13055.75 11746.40 11892.00 11713.20 11810.04

tai75a 1785.11 1837.00 1705.21 1787.79 1685.23 1805.03 1691.95 1782.79

tai75b 1398.68 1425.80 1365.21 1420.97 1365.36 1422.60 1356.50 1401.38

tai75c 1490.32 1532.45 1439.21 1532.23 1439.02 1510.00 1424.91 1486.78

tai75d 1342.26 1448.19 1428.75 1466.43 1408.79 1433.25 1403.85 1428.91

tai100a 2170.54 2213.75 2141.29 2230.84 2137.30 2216.23 2147.07 2226.48
tai100b 2093.54 2190.01 2110.11 2211.16 2060.65 2136.80 2041.96 2125.19

tai100c 1491.13 1553.55 1476.91 1537.92 1458.81 1494.72 1446.98 1485.47

tai100d 1732.38 1895.42 1680.29 1799.04 1663.87 1727.95 1658.48 1718.18

tai150a 3253.77 3369.48 3314.22 3471.67 3338.71 3530.82 3396.49 3526.10
tai150b 2865.17 2959.15 2919.36 3071.33 2910.06 3026.89 2931.16 3034.65
tai150c 2510.13 2644.69 2544.24 2729.26 2497.65 2603.53 2523.53 2642.82
tai150d 2872.80 3006.88 2845.01 2973.14 2869.79 3009.01 2929.91 3023.48

remains a state-of-the-art method (as was initially concluded in [11]). The other
general conclusion is that none of the tested external algorithms should be con-610

sidered as the clearly preferred one, although the learning procedure of ES-LC
[43] seems to be worth further investigations as it has potential to lower the
amount of the number of FFE required to obtain high quality solutions.

6.4. Measuring stability of solutions

Observations stemming from the above experiment are concluded with a615

proposal of two new metrics for measuring the level of dynamism of a given
DVRP instance: empirical degree of dynamism and relative solutions distance.
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First of all, observe that degree of dynamism (13) de�ned in section 3.3 captures
only the initial number of available requests. An alternative measure is the ef-
fective degree of dynamism introduced in [64], which measures the average time620

of request's availability during the whole optimization process. However, in the
considered DVRP instances we have observed (cf. Section 3.4) that just before
the middle of the working day multiple requests are still available for reassign-
ment in the standard setup of TCO = 0.5. Considering the size of benchmark
instances and currently available computational power, it makes the problem far625

less dynamic then the degree of dynamism or e�ective degree of dynamism would
suggest. Therefore, we propose an empirical degree of dynamism (em.dod) as
an alternative measure, which we believe is more adequate for capturing this
phenomenon than the two aforementioned metrics.

De�nition 2. For a given DVRP instance, an empirical degree of dynamism630

(em.dod) is the minimal ratio (computed over all of the time slices) of the sum
of the number of unknown (mu) and the number of ultimately assigned (ma)
requests to the total number of requests m:

em.dod = min
i∈{0,1,...,NTS}

mu(ti) +ma(ti)

m
(17)

Figure 10 presents the relative number of pending requests and relative number
of vehicles needed to serve them. It can be concluded from the plots, that for635

Kilby et al.'s benchmark set the average value of dod is close to the value of
TCO, while the average em.dod values are much smaller, around 0.2, 0.4 and 0.55
for TCO equal to 0.5, 0.6 and 0.7 respectively. In order to measure stability of
partial (intermediate) solutions obtained during optimization process of a given
problem instance a relative solution distance is introduced.640

De�nition 3. Relative solutions distance (ρ(Rtj , Rtk)) is the number of
requests known in solutions Rtj and Rtk assigned to di�erent vehicles divided
by the total number of requests known in both solutions.

ρ(Rtj , Rtk) =

∑
i6∈CU (tj)∧i 6∈CU (tk)

∑
rl(tj)∈Rtj

I(i∈rl(tj)∧i 6∈rl(tk))

|{i : i 6∈ CU (tj) ∧ i 6∈ CU (tk)}|
, (18)

where I is an indicator function and CU (t) is a set of requests unknown at
time t.645

As stated above, the average performance of ContDVRP with and without
penalty term is roughly similar, albeit the results of ContDV RP + P are more
stable during the optimization process (cf. Figure 10). However, it should also
be noted that increased stability comes with the cost of longer computation time.
Introducing the penalty term extends the running time by 23% on average, due650

to higher number of estimated vehicles n̂ in intermediate solutions (therefore,
adequately higher search space dimensionality).
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(a) Average relative number of available
requests.
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(b) Average relative number of vehicles.
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(c) Average relative number of request re-
assignments.
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(d) Average distance of intermediate solu-
tions to the �nal solution.

Figure 10: DVRP dynamism in various optimization approaches, aggregated over all bench-
mark datasets.

6.5. Algorithm behavior for various cut-o� times

The �nal experimental evaluation was conducted in a way similar to ex-
periments presented in [47, 58] and aimed at verifying the impact of the higher655

degree of problem dynamism (in the form of greater TCO values). The respective
parameter settings are presented in Tables 1 and 7.

Table 8 presents the results achieved for di�erent cut-o� time values by
ContVRP with penalty term. A more �ne-grained results, in the relation to
the best known values for TCO = 0.5, are presented in Figure 11. The plots660
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Table 7: Settings of the PS algorithms used in the experiment verifying the impact of the
cut-o� time selection.

Encoding Algorithm Stopping criterion Penalty k TCO TAC

Clusters PSO #FFE No 2 0.5 0.04
Clusters PSO #FFE Yes 2 0.5 0.20

Giant TSP tour GA #FFE N/A N/A 0.5 0.15
Clusters PSO #FFE No 2 0.6 0.20
Clusters PSO #FFE Yes 2 0.6 0.25

Giant TSP tour GA #FFE N/A N/A 0.6 0.20
Clusters PSO #FFE No 2 0.7 0.30
Clusters PSO #FFE Yes 2 0.7 0.35

Giant TSP tour GA #FFE N/A N/A 0.7 0.35

Table 8: Summary of results of ContDVRP with penalty term, for various cut-o� times.

ContDV RP k=2
PSO + P ContDV RP k=2

PSO + P ContDV RP k=2
PSO + P

TCO = 0.5 TCO = 0.6 TCO = 0.7
Name Min Avg Min Avg Min Avg
c50 551.34 580.56 579.78 602.23 714.38 766.67
c75 886.42 901.05 886.17 944.82 950.96 1004.69
c100 873.77 920.69 934.57 988.91 1012.24 1091.49
c100b 819.56 844.56 824.38 839.56 865.18 1006.01
c120 1056.7 1116.08 1206.7 1255.44 1326.5 1416.88
c150 1097.27 1127.04 1121.12 1184.9 1194.96 1272.62
c199 1374.47 1418.71 1400.53 1445.99 1525.32 1610.45
f71 270.2 275.27 286.7 318.54 354.6 387.25
f134 11713.2 11810.04 11804.33 11963.52 11731.95 11898.52

tai75a 1691.95 1782.79 1738.86 1859.9 1847.61 1981.86
tai75b 1356.5 1401.38 1375.46 1413.49 1483.51 1566.71
tai75c 1424.91 1486.78 1453.87 1524.47 1451.14 1581.5
tai75d 1403.85 1428.91 1476.65 1520.23 1500.56 1565.57
tai100a 2147.07 2226.48 2177.51 2231.35 2315.86 2477.76
tai100b 2041.96 2125.19 2071.83 2165.51 2117.79 2302.81
tai100c 1446.98 1485.47 1551.75 1676.66 1733.95 1846.85
tai100d 1658.48 1718.18 1673.19 1719.4 1899.32 2043.63
tai150a 3396.49 3526.1 3387.75 3601.21 4048.82 4472.62
tai150b 2931.16 3034.65 2976.8 3079.57 3269.54 3632.86
tai150c 2523.53 2642.82 2464.72 2626.94 2523.54 2633.84
tai150d 2929.91 3023.48 2927.44 3133.48 3032.81 3189.79

sum 43595.72 44876.23 44320.11 46096.12 46900.54 49750.38

illustrate the impact of growing degree of problem dynamism which can be
observed regardless of the optimization algorithm used. Generally speaking,
the performance of ContDVRP exceeds that of GA by a constant margin within
the tested range of TCO values.
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7. Conclusions665

Research results presented in this paper con�rm that discrete Dynamic Ve-
hicle Routing Problem can be e�ciently solved in a continuous search space.
It has also been presented that the average quality of ContDVRP solutions is,
to a large degree, independent of the optimization algorithm, as both PSO and
DE accomplished similar results for both types of continuous encodings (clus-670

ters only and clusters and priorities). Additionally, the study revealed that
GA method run with the constrained budget of FFE yields results competitive
to those of MEMSO algorithm, and therefore can be used on equal terms as a
reference algorithm utilizing discrete search space. As for the reasons behind
the apparent advantage of the continuous encodings over the discrete one we675

may o�er a following explanation. Continuous clustering approach implicitly
includes a heuristic assumption that requests with locations close to one an-
other should be served by the same vehicle. Meanwhile, discrete encodings o�er
no such restriction and the algorithms utilizing them are theoretically prone to
exploring even the worst possible solutions. Investigation of the level of di�er-680

ence between the worst possible solutions achievable in each search space is an
interesting topic for future research.

Since standard degree of dynamism dod does not fully capture dynamic na-
ture of DVRP, we proposed the empirical degree of dynamism em.dod. This
proposed em.dod measure refers to the minimal ratio of �xed and unknown re-685

quests during the optimization process (see Figure 10 for the di�erences between
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dod and em.dod). Following the observation of persisting high availability of re-
quests (at the level of 80% of all problem requests) for the cut-o� time set in
the middle of the working day, new results for higher values of TCO have been
computed. Those experiments have been performed with ContDVRP and GA690

on the same set of benchmark instances [3] as in the rest of article and presented
in Table 8 and Figure 11.

Using continuous encoding with a representation size proportional to the
number of estimated vehicles allows for stabilization of the optimization process
(cf. Figure 10) by means of applying a robust approach to design of the penalty695

term. It can also be observed that ContDVRP generates more stable sequence
of intermediate solutions than discrete GA approach, even without application
of the penalty term.

Finally, proposed continuous encoding induces a division of the operational
area in a way familiar to human vehicles dispatchers, which can be further tuned700

using higher number of request clusters per vehicle, albeit at the cost of longer
computation time.

The most salient feature of the proposed continuous encoding scheme is
its high degree of independence of the optimization method used to solve the
DVRP. Consequently, practically any general-purpose continuous optimization705

metaheuristics can be employed for solving this problem.
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