
README.md 3/14/2021

1 / 47

Projekt „NERW 2 PW. Nauka – Edukacja – Rozwój – Współpraca” współfinansowany jest ze środków Unii
Europejskiej w ramach Europejskiego Funduszu Społecznego.

Od HTMLa do PostGISa

Samouczek do laboratorium

dr inż. Michał Okulewicz

Zadanie 10 pn. „Modyfikacja programów studiów na kierunkach prowadzonych przez Wydział Matematyki i
Nauk Informacyjnych”, realizowane w ramach projektu „NERW 2 PW. Nauka – Edukacja – Rozwój –

Współpraca”, współfinansowanego jest ze środków Unii Europejskiej w ramach Europejskiego Funduszu
Społecznego.

README.md 3/14/2021

2 / 47

Introduction
The purpose of this set of tutorials is to support the technical part of the From HTML to PostGIS course
conducted at the Warsaw University of Technology.

HTML
Hyper Text Markup Language forms the backbone of any website, as it is the language describing the
structure of the document. It is a text language with a tree structure. It gives semantic meaning to the parts of
the document/application, by utilizing meaningful tag names like <section>, <nav>igation or phasis.

HTML allows for creation of rich text documents, including headers, paragraphs, figures, tables, lists etc.

Getting started
Let's start with creating a basic empty HTML website

<!DOCTYPE html> <!-- This specifies this document to be an HTML5 -->
<html lang="en">
 <head>
 <title>This will be shown in the browser tab</title>
 <meta charset="utf-8" />
 </head>
 <body>
 <!-- Website content -->
 <!-- By the way, this is an HTML comment :) -->
 </body>
</html>

You may validate this example in through the official W3C Validator

As you can observe HTML consists of <elements> and their key-value details attribute=value.

The elements within the HTML standard can be broadly categorized into inline and block elements.

Inline elements
Inline elements are generated as a part of text. They are mainly utilized to mark the function of particular parts
of the text.

Examples:

Element Role Usually rendered as

<h1> A header of the highest order large text

<h6> A header of the smallest order bold text

 A deleted or obsolete part of the text stroked-through text

https://pages.mini.pw.edu.pl/~okulewiczm/www/?Teaching:HTML2PostGIS
https://ww4.mini.pw.edu.pl/
https://validator.w3.org/

README.md 3/14/2021

3 / 47

Element Role Usually rendered as

 An important part of the text bold font

 A stressed part of the text cursive script

 A generic part of the text (to be customized by class name) like surrounding text

Block elements
Block elements take up a rectangular space, taking the whole width of the website (usually without margins).
By default they are generated as wall-of-text, so directly one after another.

Examples:

Element Role

<p> Marks a single paragraph

<section> A very important part part of the text

<nav> An important part of the text

<div> A generic block element (to be customized by id or class name)

A complete list of HTML elements can be found within HTML5 living standard description

Example
Let's consider a following example

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <title>Selection from The Lord of The Rings</title>
</head>
<body>
 <h1>Some quotes from “The Lord of the Rings”</h1>
 <h2>Life</h2>
 <blockquote
cite="https://en.wikiquote.org/wiki/The_Fellowship_of_the_Ring">
 It's a dangerous business, PippinFrodo, going out
your door.
 You step onto the road, and if you don't keep your feet,
 there's no knowing where you might be swept off to.
 </blockquote>
 <h2>Afterlife</h2>
 <blockquote cite="https://en.wikiquote.org/wiki/The_Return_of_the_King">
 <p>
 PIPPIN: <i>I didn't think it would end this way.</i>

 GANDALF: <i>End? No, the journey doesn't end here.
 Death is just another path, one that we all must take.

https://html.spec.whatwg.org/#toc-semantics

README.md 3/14/2021

4 / 47

 The grey rain-curtain of this world rolls back,
 and all turns to silver glass, and then you see it</i>¹.

 PIPPIN: <i>What? Gandalf? See what?</i>

 GANDALF: <i>White shores, and beyond,
 a far green country under a swift sunrise.</i>

 PIPPIN: <i>Well, that isn't so bad.</i>

 GANDALF: <i>No. No, it isn't.</i>
 </blockquote>
 <hr />
 <small>¹⁾Valinor</small>
</body>
</html>

This example will be rendered like this (in Google Chrome):

example-00-html/formatting-no-css.html contains the HTML code of the example.

Further reading
See also: Basic HTML template explained

Explanation about JS script location should be taken with a pinch of salt, as we are mostly discussing
SPA applications.

https://bitbucket.org/okulewicz/javascript-basic/src/master.example-00-html/formatting-no-css.html
https://www.sitepoint.com/a-basic-html5-template/

README.md 3/14/2021

5 / 47

On a less serious note:

Beware of people using HTML and semantics in the same sentence (in Polish and with strong
language): Pasta o HTMLu.

For a more international experience checkout the XKCD explanations wiki for 1144: Tags

CSS
As could be observed in HTML example, while we are able to create a text document there was not much that
we could do for it's formatting. Besides, default formatting of certain elements is only a recommendation and
might differ between browsers.

Therefore, if we want to provide a similar experience for the users of graphic browsers we need to use
Cascade Style Sheets (CSS) for specifying the formatting and the layout of HTML page elements.

Getting started
The CSS syntax consists of the following elements:

selector {
 property: value[-with-unit];
}

In order to utilize a CSS document together with HTML document an information about CSS must be added in
the <head> part of HTML

<!DOCTYPE html>
<html>
 <head>
 <!-- other metadata -->
 <link rel="stylesheet" href="css/style.css">
 </head>
 <body>
 <!-- Website content -->
 </body>
</html>

If we create a css/style.css style with such content

h1 {
 font-family: Arial, Helvetica, sans-serif;
}

and apply it to the HTML example, we will get the following result

https://www.wykop.pl/wpis/21403271/moj-stary-to-fanatyk-semantyki-htmla-pol-mieszkani/
https://www.explainxkcd.com/wiki/index.php/1144:_Tags

README.md 3/14/2021

6 / 47

As can be observed the font family of the header changes from some serif typeface (probably Times New
Roman) into the Arial.

Formatting
Let's investigate some other ways in which we can set the style for the text.

Suppose that we create the following stylesheet

h1, h2 { /* font style defined for both h1 and h2 */
 font-family: Arial, Helvetica, sans-serif;
}

h1 { /* font size larger by 1.5 factor than in parent element */
 font-size: 150%;
}

h2 { /* font size larger by 1.2 factor than in parent element */
 font-size: 120%;
}

blockquote { /* text aligned */
 text-align: justify;
}

.hero__name { /* selector for elements with given HTML class */

README.md 3/14/2021

7 / 47

 font-variant: small-caps; /* generates text as small caps */
}

.hero__name--wizard { /* gives a more fancy look to wizard's name */
 font-family: Harrington, fantasy;
}

defining font-family sequence should be ordered from most specific, to most commonly available
font ending with a generic family which will be supported by the browser with one of the default fonts
of a given style

observe that hero__name and hero__name--wizard tell us about the function of those elements, and
there is nothing related to their visual aspect (which can be changed by designer at the client request
without any confusion for developers)

In order for the above approach to work correctly we must apply the classes to HTML elements. So the dialog
between Pippin and Gandalf will now look like this.

Pippin: <i>I didn't think it would end this way.
</i>

Gandalf: <i>End? No, the journey doesn't
end here.
Death is just another path, one that we all must take.
The grey rain-curtain of this world rolls back,...

We have introduced a generic element and explained it's function with appropriate class names.

The final result will look like this:

README.md 3/14/2021

8 / 47

Some other available CSS properties for formatting:

Property Meaning Possible values

color foreground (text and its decorations) color #af1245 | red | rgba(175,18,76,0.6)

background
complex style for setting background color,
background image and its position

#af1245 url('background.png')
repeat-x fixed center center

border
width, type of border line, color; has variants for
each edge and corner

solid 1px black

font
font style, variant, weight, size, line height and
family

12pt Arial, sans-serif

text-align text alignment left | center | right | justify

text-
decoration

lines under, over and through the text and their
styles

underline dotted red

text-
transform

letter size transformations uppercase

Layout
However, from the point of view of application design a key feature of CSS is the ability to organize layout of
the website.

README.md 3/14/2021

9 / 47

This time let's start with a screenshot and then we will decompose it into particular HTML elements and CSS
properties.

README.md 3/14/2021

10 / 47

This example utilizes 4 ways of dealing with layout:

the menu and the rest of the content are managed by position property and particular coordinates
the articles are displayed as a grid
the photo gallery is displayed as flex
the figures with xkcd comic strips are defined as floating elements

The complete source code is available in example-01-css-layout

Utilizing position property

Utilizing position was the first concept which arrived as a way to create websites without relying on frames.

In this example we are utilizing two styles fixed and absolute. Fixed means that the elements are positioned
in relation to the browser window. Absolute means that they are positioned in relation to the parent
container.

Read more about the position property in the CSS level 3 specification

First let's observe the HTML setup

<nav id="page-menu">
 ...
</nav>
<section id="page-body">
 ...
</section>

and then the styles that have been applied to it:

#page-menu {
 position: fixed;
 width: 200px;
}

#page-body {
 position: absolute;
 left: 200px;
 right: 1em;
}

In this scenario we are setting particular individual elements, hence the utilization of id selectors (e.g. #page-
menu).

The effect of this styles is best observed if we scroll the page:

https://bitbucket.org/okulewicz/javascript-basic/src/master/example-01-css-layout/
https://www.w3.org/TR/css-position-3/#position-property

README.md 3/14/2021

11 / 47

The menu stayed in the same place, while the rest of the content moved.

Please note: instead of utilizing the absolute position we could have achieved the same visual result
with padding or margins.

Utilizing grid and flex

A more contemporary method is to utilize compose the general layout on the basis of grid and when needed
create a layout easily adjusting to the devices of different size with utilization of grid and flex display style
of the elements.

Both of those layouts need a similar structure of HTML with the container and items pattern:

<div class="article-organizer">
 <div class="article-item container--minor">
 </div>
 <div class="article-item container--minor">
 </div>
 ...
</div>

<div class="gallery-organizer">
 <div class="gallery-item container--minor">
 </div>
 <div class="article-item container--minor">
 </div>
 ...
</div>

You may also observe the ability to set multiple classes to a single element, hence separating the
particular aspects of being a container in grid or flex with the visual aspects of being regarded as an

README.md 3/14/2021

12 / 47

item of some container.

Here you can observe some of the properties responsible for achieving the result observed previously For grid
layout display and grid-template-columns are the basic properties (and most crucial in this context),
defining that we are going to have a grid structure with 3 columns each of the occupying 30% of available
horizontal space.

For flexbox layout the important property is flex-wrap defining what should be done when the content of
flex box is too large to fit in width.

.article-organizer {
 display: grid;
 grid-template-columns: 30% 30% 30%;
 gap: 2em 1em;
 justify-content: space-evenly;
 margin-bottom: 0.5em;
}

.gallery-organizer {
 display: flex;
 flex-wrap: wrap;
 gap: 1em;
 justify-content: space-evenly;
 margin-top: 0.5em;
}

The effect of those styles could be best observed when we stretch the website:

You may observe how the elements in grid were stretched in order to maintain their desired width, while flex
box elements all ended up in a single row.

Utilizing floating elements

README.md 3/14/2021

13 / 47

Finally, the xkcd figure elements have been placed with the use of float property. That way, the elements
that come next in HTML surround floating elements. As there is no general way to do the :nth-of-class()
we are defining our own --even class modifier.

<figure class="text-ilustration-figure">
 <img class="text-ilustration-figure__image"
src="https://imgs.xkcd.com/comics/wikileaks.png" alt="xkcd wikileaks">
 <figcaption>Fig. 3. Source: https://xkcd.com/834/</figcaption>
 </figure>
<p class="content-text">xkcd, sometimes styled XKCD, is a webcomic created in 2005
by American author Randall Munroe. The..</p>

.text-ilustration-figure {
 text-align: center;
 float: right;
}

.text-ilustration-figure--even {
 text-align: center;
 float: left;
}

Further reading
1. More about CSS class naming conventions

The example for 5-year old is very nice. However, it brings the wrong message as to the modifier part
in BEM, as it should be related to the purpose of modification rather than the resulting style. So it
would be better if it is .stick-man--ill or .stick-man--cold instead of .stick-man--red or
.stick-man--blue.

Yes, it is the semantics thing. AGAIN.

2. How to create CSS which handles both mobile and desktop devices? (apart from flexible layouts). Learn
about media queries!

3. Grid layout tutorial and cheat sheet

Client side JavaScript
For the purpose of this tutorial JavaScript's purpose within a browser environment could be summarized by 6
features:

1. Operating on the HTML's Document Object Model (DOM)

https://www.freecodecamp.org/news/css-naming-conventions-that-will-save-you-hours-of-debugging-35cea737d849/
https://www.quirksmode.org/blog/archives/2010/04/a_pixel_is_not.html
https://css-tricks.com/snippets/css/complete-guide-grid/
https://grid.malven.co/

README.md 3/14/2021

14 / 47

2. Getting feedback from the user through various events (mouse movements and buttons, keyboard
keys, tapping, drag&drop)

3. Validating form data (somewhat obsolete due to existence of pattern attribute in HTML5)
4. Working with multimedia elements of HTML5 (canvas, audio, video)
5. HTTP data exchange in the background (e.g. AJAX calls)
6. Management of threads (Web Workers)

This tutorial is going to cover the 4th one of the above.

Getting started
In order to use JavaScript within our application it has to be linked to the website. The most proper way to do
this is through the <head> section in HTML document:

<!DOCTYPE html>
<html>
 <head>
 <!-- other metadata -->
 <script type="text/javascript" src="script.js"></script>
 </head>
 <body>
 <!-- Website content -->
 </body>
</html>

Within the script.js we might place something like:

console.info('Hello!')

Document Object Model
The basic ability of client side JavaScript is operating on the elements of the website through the Document
Object Model (DOM).

Let's consider a case in which we will automatically generate a clickable table of contents on the basis of
simple document structure.

Let's assume that we have an HTML document with the body content like this:

<body>
 <h1>Introduction</h1>
 <p>The purpose of this example is to show the DOM</p>
 <h1>Discovering the existing structure</h1>
 <p>In this chapter you will learn how to traverse
 the existing structure of the HTML document.
 <h2>Searching for elements by element type</h2>
 <p>In this chapter you will learn about the <code>getElementsByTagName()

https://www.w3.org/DOM/DOMTR

README.md 3/14/2021

15 / 47

</code>
 and similar methods.</p>
 <h2>Searching for elements by class names</h2>
 <p>In this chapter you will learn about the <code>getElementsByClassName()
</code>
 and similar methods.</p>
 <h2>Searching for particular elements</h2>
 <p>In this chapter you will learn about the <code>getElementById()</code>
 and similar methods.</p>
 <h1>Creating new elements</h1>
 <p>In this chapter you will learn how to utilize
 <code>createElement()</code>,
 <code>createTextNode()</code>
 and <code>appendChild()</code> methods</p>
</body>

Let's also support it with the following CSS:

#menu {
 position: absolute;
 left: 0px;
 width: 300px;
 top: 0px;
 bottom: 0px;
 overflow: auto;
}

#content {
 position: absolute;
 left: 300px;
 right: 0px;
 top: 0px;
 bottom: 0px;
 padding: 1em 1em 1em 1em;
 overflow: auto;
 text-align: justify;
}

Let's start with properly initializing our menu generator and creating menu and content containers for the
desired output and original document.

document.addEventListener('DOMContentLoaded', buildMenu, false);

function buildMenu() {
 let menu = document.createElement('div');
 let content = document.createElement('div');
 menu.id = 'menu';
 content.id = 'content';
 content.innerHTML = document.body.innerHTML;

README.md 3/14/2021

16 / 47

 document.body.innerHTML = '';
 document.body.appendChild(menu);
 document.body.appendChild(content);

 let menuList = document.createElement('ol');
 menu.appendChild(menuList);
 menuList = traverseContentAndGenerateMenu(content, menuList);
}

We have access to the object document representing the HTML document and providing methods for
elements creation. We have utilized the createElement(name) method in order to generate 2 divs and we
set their ids to the ones matching selectors in CSS.

Additionally we moved the content of body by assigning and clearing its innerHTML property.

Finally, we have added created divs as children of the body, thus making them a part of document and visible
for the user.

The resulting HTML will look like this:

<body>
 <div id="menu">
 </div>
 <div id="content">
 <h1>Introduction</h1>
 <p>The purpose of this example is to show the DOM</p>
 <h1>Discovering the existing structure</h1>
 <p>In this chapter you will learn how to traverse
 the existing structure of the HTML document.
 <h2>Searching for elements by element type</h2>
 <p>In this chapter you will learn about the <code>getElementsByTagName()
</code>
 and similar methods.</p>
 <h2>Searching for elements by class names</h2>
 <p>In this chapter you will learn about the <code>getElementsByClassName()
</code>
 and similar methods.</p>
 <h2>Searching for particular elements</h2>
 <p>In this chapter you will learn about the <code>getElementById()</code>
 and similar methods.</p>
 <h1>Creating new elements</h1>
 <p>In this chapter you will learn how to utilize
 <code>createElement()</code>,
 <code>createTextNode()</code>
 and <code>appendChild()</code> methods</p>
 </div>
</body>

Now it will be the goal of traverseContentAndGenerateMenu() to actually create the menu items.

README.md 3/14/2021

17 / 47

function traverseContentAndGenerateMenu(content, menuList) {
 let header = content.firstElementChild;
 let lastLevel = 1;
 do {
 if (header.tagName.toLowerCase().startsWith('h')) {
 let currentLevel = Number(header.tagName[1]);
 if (currentLevel > lastLevel) {
 menuList = nestElementsOnTheBasisOfCurrentLevel(currentLevel,
lastLevel, menuList);
 } else if (currentLevel < lastLevel) {
 menuList = getBackToLastLevelInMenu(lastLevel, currentLevel,
menuList);
 }

 const headerText = header.innerHTML;
 let idFromHeader = generateIdFromText(headerText);
 header.id = idFromHeader;
 generateMenuItem(headerText, idFromHeader, menuList);

 lastLevel = currentLevel;
 }
 header = header.nextElementSibling;
 } while (header);
 return menuList;
}

This method traverses the children of content div, verifying if the element is a header by reading its tagName
property. It moves through the structure of the content with iterator approach, initializing it with
content.firstElementChild and getting the subsequent elements with header.nextElementSibling,
until there are no more siblings to be found.

It needed a few helper functions which are lister below:

function nestElementsOnTheBasisOfCurrentLevel(currentLevel, lastLevel, menuList) {
 let levelDiff = currentLevel - lastLevel;
 while (levelDiff--) {
 let tempMenuList = document.createElement('ol');
 menuList.appendChild(tempMenuList);
 menuList = tempMenuList;
 }
 return menuList;
}

function getBackToLastLevelInMenu(lastLevel, currentLevel, menuList) {
 let levelDiff = lastLevel - currentLevel;
 while (levelDiff--) {
 menuList = menuList.parentElement;
 }
 return menuList;
}

README.md 3/14/2021

18 / 47

function generateIdFromText(headerText) {
 let nonCharRegEx = /[^a-z]/g;
 let idedValue = headerText.toLowerCase().replace(nonCharRegEx, '-');
 return idedValue;
}

and the generateMenuItem function responsible for the actual generation of menu items (observe how
createTextNode() differs from createElement() function):

function generateMenuItem(headerText, headerId, menuList) {
 let menuItem = document.createTextNode(headerText);
 let menuItemLi = document.createElement('li');
 let menuItemA = document.createElement('a');
 menuItemA.href = '#' + headerId;
 menuItemA.appendChild(menuItem);
 menuItemLi.appendChild(menuItemA);
 menuList.appendChild(menuItemLi);
}

A complete code can be found in example-02-js-dom, and the generated HTML and it's render look similar to
this:

<body>
 <div id="menu">

 Introduction
 Discovering the
existing structure

 Searching
for elements by element type
 Searching for
elements by class names
 Searching for
particular elements
 Creating new elements

 </div>
 <div id="content">
 <h1 id="introduction">Introduction</h1>
 <p>The purpose of this example is to show the DOM</p>
 <h1 id="discovering-the-existing-structure">Discovering the existing
structure</h1>
 ...
 </div>
</body>

https://bitbucket.org/okulewicz/javascript-basic/src/master/example-02-js-dom/

README.md 3/14/2021

19 / 47

Debugging

In case you want to verify what exactly is happening in your JavaScript code you may use developers tools,
which are part of most browsers (Chrome example given - available on pressing F12 and tab Sources):

Events

README.md 3/14/2021

20 / 47

Sample mouse events are discussed within Drawing on canvas.

Drawing on canvas
HTML5, among other features, introduced a method of drawing within the browser environment on the
element called <canvas>. This brought the final demise of the Flash based applications and allowed to create
JS versions of such timeless games like Asteroids or Digger.

As any proper artist, in order to draw in the browser we need to prepare our... well... canvas (in HTML):

<!DOCTYPE html>
<html>
 <head>
 <!-- other metadata -->
 <link rel="stylesheet" type="text/css" href="style.css" />
 <script type="text/javascript" src="script.js"></script>
 </head>
 <body>
 <div id="canvas-container" class="canvas-container">
 <canvas id="canvas-element" class="canvas-element" width="200"
height="200"></canvas>
 </div>
 </body>
</html>

The width and height attributes of the canvas define the virtual units of the canvas. The size of the actual
element needs to be defined through the CSS (style.css file in the example).

.canvas-container {
 border: 1px solid black; /* just to see the border */
}

.canvas-element,.canvas-container {
 width: 200px;
 height: 200px;
}

Currently nothing interesting should have happend yet, and the result should be similar to the following
screenshot:

http://www.kevs3d.co.uk/dev/asteroids/index-debug.html
http://www.futrega.org/digger/

README.md 3/14/2021

21 / 47

As we do have all necessary elements in place it is time to focus on the important part: the actual JavaScript
code. The actual drawing will happen on the object called context, and for the purpose of this tutorial we are
going to focus on 2D drawing only (but true 3D is a possibility!).

Lets starting with drawing a simple figure, like a large X on the whole canvas element:

Such a product can be created by a following piece of code:

function initializeApplication() {
 var ctx = document
 //querying for an element with a given ID
 .getElementById("canvas-element")
 //getting a 2-dimensional drawing context
 .getContext('2d');
 //drawing the first line
 ctx.moveTo(0,0);
 ctx.lineTo(199,199);
 ctx.stroke();
 //drawing the second line
 ctx.moveTo(199,0);
 ctx.lineTo(0,199);
 ctx.stroke();

README.md 3/14/2021

22 / 47

}

/* Attaching initialization handler after the HTML document is loaded */
document.addEventListener("DOMContentLoaded", initializeApplication);

Supposing we would like to add a little bit more colors? Than we need to set the style of our strokes (or fills).
Let's try the following code for the body of initializeApplication function:

ctx.moveTo(0,0);
ctx.lineTo(199,199);
ctx.strokeStyle = 'blue';
ctx.lineWidth = 2;
ctx.stroke();
ctx.moveTo(199,0);
ctx.lineTo(0,199);
ctx.strokeStyle = 'green';
ctx.lineWidth = 4;
ctx.stroke();

The result should be somewhat unexpected and unsatisfying:

So what went wrong? The answer is in the way we handled the context. In order to get different colors for
those two strokes, we need to have two different paths. You may check now the following code:

 ctx.beginPath();
 ctx.moveTo(0,0);
 ctx.lineTo(199,199);
 ctx.strokeStyle = 'blue';
 ctx.lineWidth = 2;
 ctx.stroke();
 //openning new path will preserve the style
 ctx.beginPath();
 ctx.moveTo(199,0);
 ctx.lineTo(0,199);
 ctx.strokeStyle = 'green';
 ctx.lineWidth = 4;
 ctx.stroke();

README.md 3/14/2021

23 / 47

And the result? Should be the following:

Let's finish with adding user interaction into the whole picture. Now the center of X formed by the green and
blue lines should follow the location of the mouse cursor (obviously, while over canvas).

Instead of drawing on the canvas after loading the document, we need to handle mouse movement over the
canvas. Please observe, that this time we will need to handle an event argument within the event handler.

function drawX(event) {
 //actuall drawing will happen here
}

function initializeApplication() {
 //getting the HTML element
 var canvas = document.getElementById("canvas-element");
 //attaching a mouse move handler - drawX
 canvas.addEventListener("mousemove", drawX);
}

document.addEventListener("DOMContentLoaded", initializeApplication);

For the sake of actual drawing we will need to capture two properties:

the location of the canvas within the website
the location of the mouse within the website

Note Theoretically there exist offsetX and offsetY properties giving us direct access to mouse
location within the container, but as of this moment they are not considered stable (see: offsetX).

Anyway, in order to follow the mouse movement with our colorful X, we may use the following code within
the drawX function:

 //get all the necessary properties (this is THE canvas in drawX)
 var x = event.clientX - this.getBoundingClientRect().left;
 var y = event.clientY - this.getBoundingClientRect().top;
 var width = this.getBoundingClientRect().width;

https://developer.mozilla.org/en-US/docs/Web/API/MouseEvent/offsetX

README.md 3/14/2021

24 / 47

 var height = this.getBoundingClientRect().height;
 var safeDistance = Math.max(width,height);

 //please observe that now we can safely change dimensions of canvas
 //(however, simultaneously in HTML and CSS) and the result would still be
apropriate
 var ctx = this.getContext('2d');
 ctx.clearRect(0,0,width,height);
 ctx.beginPath();
 ctx.moveTo(x-safeDistance,y-safeDistance);
 ctx.lineTo(x+safeDistance,y+safeDistance);
 ctx.strokeStyle = 'blue';
 ctx.lineWidth = 2;
 ctx.stroke();
 ctx.beginPath();
 ctx.moveTo(x+safeDistance,y-safeDistance);
 ctx.lineTo(x-safeDistance,y+safeDistance);
 ctx.strokeStyle = 'green';
 ctx.lineWidth = 4;
 ctx.stroke();

As a reminder: this keyword in the context of event handler means the element that raised the event (i.e.
canvas in this case). Meanwhile, event argument as an event raised by mouse movement has the properties
connected with mouse position and mouse buttons (not used in this example).

See also:

getBoundingClientRect() -
https://developer.mozilla.org/pl/docs/Web/API/Element/getBoundingClientRect
MouseEvent - https://developer.mozilla.org/en-US/docs/Web/API/MouseEvent

for more details.

example-04-drawing-on-canvas holds the final version of the code.

I also encourage you too check a more complex example of a simple point & click game

Leaflet API

https://developer.mozilla.org/pl/docs/Web/API/Element/getBoundingClientRect
https://developer.mozilla.org/en-US/docs/Web/API/MouseEvent
https://bitbucket.org/okulewicz/javascript-basic/src/master.example-04-drawing-on-canvas
https://pages.mini.pw.edu.pl/~okulewiczm/downloads/html/js/gra/

README.md 3/14/2021

25 / 47

After introducing plain JavaScript operations we may introduce one of the custom JavaScript map APIs:
Leaflet. The other two most commonly used are: OpenLayers and GoogleMaps API. OpenLayers is an open
source library best suited for professional GIS applications, while GoogleMaps for easy to write visually
pleasing applications, with short lifespan (due to volatile nature of Google Maps API versions).

Leaflet API is also an open source library which can be downloaded from here, intended to be simple (which
means limited functionality of the core lib), but at the same type efficient and simple to use.

Basic map example

In order to place a simple map in our web application we need to setup leaflet in the <head> section and
create and style an HTML container (like <div>) for the map to be rendered.

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Basic map</title>
 <link rel="stylesheet" href="libs/leaflet.1.7.1/leaflet.css" />
 <script src="libs/leaflet.1.7.1/leaflet.js"></script>
 <script src="scripts/script.js"></script>
 <style>
 #map-panel {
 position: absolute;
 left: 0;
 top: 0;
 right: 0;
 bottom: 0;
 }
 </style>
</head>
<body>
 <div id="map-panel">
 </div>
</div>
</body>
</html>

Having this <div> container we may setup and display the map like this in JavaScript:

const mapContainerId = 'map-panel';
let map;

document.addEventListener('DOMContentLoaded', initializeApplication, false);

function initializeApplication() {
 loadMap();
}

function loadMap() {

https://leafletjs.com/download.html#download-leaflet
https://www.youtube.com/watch?v=NLbyHffKQuU

README.md 3/14/2021

26 / 47

 //add map and set its center to specific location
 map = L.map(mapContainerId).setView([52.05, 20.00], 6);
 //add OSM as background layer
 let osmLayer = L.tileLayer('https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png
', {
 attribution: 'Map data © ' +
 'OpenStreetMap contributors, ' +
 'CC-BY-
SA',
 maxZoom: 19,
 id: 'osm.tiles'
 });
 osmLayer.addTo(map);
}

The above code utilizes Open Street Map data and centers the map roughly around the territory of Poland:

The code is available as the example-03-leaflet/basic-map

Presenting external data on the map

In order to enrich the map with some additional data we shall utilize Polish geoportal data about the
protected environment sites like national and landscape parks (and enhance previous loadMap() function).

https://www.openstreetmap.org/
https://bitbucket.org/okulewicz/javascript-basic/src/master/example-03-leaflet/basic-map/

README.md 3/14/2021

27 / 47

Checkout GDOŚ WMS GetCapabilites in order to see all available layers.

function loadMap() {
 //add map and set its center to specific location
 map = L.map(mapContainerId).setView([52.05, 20.00], 6);
 //add OSM as background layer
 let osmLayer = L.tileLayer('https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png
', {
 attribution: 'Map data © ' +
 'OpenStreetMap contributors, ' +
 'CC-BY-
SA',
 maxZoom: 19,
 id: 'osm.tiles'
 });
 osmLayer.addTo(map);

 var gdosWMSNatura2000Ock = L.tileLayer.wms("https://sdi.gdos.gov.pl/wms", {
 layers: ['GDOS:ObszaryChronionegoKrajobrazu'],
 format: 'image/png',
 transparent: true,
 attribution: "GDOS"
 });
 var gdosWMSNatura2000Oso = L.tileLayer.wms("https://sdi.gdos.gov.pl/wms", {
 layers: ['GDOS:ObszarySpecjalnejOchrony'],
 format: 'image/png',
 transparent: true,
 attribution: "GDOS"
 });
 var gdosWMSNationalParks = L.tileLayer.wms("https://sdi.gdos.gov.pl/wms", {
 layers: ['GDOS:ParkiNarodowe'],
 format: 'image/png',
 transparent: true,
 attribution: "GDOS"
 });
 var gdosWMSLandscapeParks = L.tileLayer.wms("https://sdi.gdos.gov.pl/wms", {
 layers: ['GDOS:ParkiKrajobrazowe'],
 format: 'image/png',
 transparent: true,
 attribution: "GDOS"
 });

 var gdosWMSLayerGroup = L.layerGroup()
 .addLayer(gdosWMSNatura2000Ock)
 .addLayer(gdosWMSNatura2000Oso)
 .addLayer(gdosWMSNationalParks)
 .addLayer(gdosWMSLandscapeParks);
 gdosWMSLayerGroup.addTo(map);

}

https://sdi.gdos.gov.pl/wms?request=GetCapabilities&service=WMS

README.md 3/14/2021

28 / 47

The result should be similar to this:

The code is available as the [example-03-leaflet/external-wms-map]
(https://bitbucket.org/okulewicz/javascript-basic/src/master/example-03-leaflet/external-wms-map /)

Adding custom data to the map

Alternatively we may add some custom markers with simple popups.

const mapContainerId = 'map-panel';
let map;

document.addEventListener('DOMContentLoaded', initializeApplication, false);

function initializeApplication() {
 loadMap();
}

function loadMap() {
 //add map and set its center to specific location
 map = L.map(mapContainerId).setView([52.05, 20.00], 6);

README.md 3/14/2021

29 / 47

 //add OSM as background layer
 let osmLayer = L.tileLayer('https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png
', {
 attribution: 'Map data © ' +
 'OpenStreetMap contributors, ' +
 'CC-BY-
SA',
 maxZoom: 19,
 id: 'osm.tiles'
 });
 osmLayer.addTo(map);

 let marker1 = L.marker([52.2217988, 21.0071782]);
 let marker2 = L.marker([52.5617037, 19.6790427]);
 marker1.bindPopup('Warsaw University of Technology
Main Campus');
 marker2.bindPopup('Warsaw University of Technology
City of Płock
Division');

 marker1.addTo(map);
 marker2.addTo(map);
}

The result after clicking on one of the markers should be the following:

README.md 3/14/2021

30 / 47

The code is available as the example-03-leaflet/custom-markers-map

Further reading

Leaflet tutorials
Leaflet documentation
Leaflet plugins

REST APIs
After learning the basics of client side JavaScript it is time to introduce the backend (server) aspect of the web
applications. Currently the most common approach is to use Representational state transfer (REST) API, which
takes advantage of the HTTP protocol, and accesses the server as a set of resources, somewhat resembling a
CRUD model known from SQL. Additionally a mature REST service would also be self-describing, however we
are not going to get into details about that (please checkout the term HATEOAS).

The philosophy of REST websites is based on the construction of a server application in order to operate on it
as an access to resources through appropriate URI addresses.

HTTP
request

URI address Meaning

GET http://myapp.domain.org/api/users Gets a list of users

GET http://myapp.domain.org/api/users/1 Gets the user with ID 1

POST http://myapp.domain.org/api/users
Request to create a user (with user info sent in a
body of the message)

PUT http://myapp.domain.org/api/users/1
Request to update a user with id=1 (with user info
sent in a body of the message)

DELETE http://myapp.domain.org/api/users/1 Deletes the user with id=1

A good API uses HTTP protocol messages to inform about the status of the operation, for example:

HTTP
request

HTTP message
code

Meaning

GET 200 - OK The resource exists and has been returned

GET
401 -
Unauthorized

The requested resource exists but cannot be returned due to lack of
permission

GET 404 - Not Found The requested resource does not exist

POST 201 - Created The requested resource has been created

Java Example: Micronaut
To prepare REST services in Java, we need one of the libraries that allow us to run a web server and map URI
addresses to classes that support them.

https://bitbucket.org/okulewicz/javascript-basic/src/master/example-03-leaflet/custom-markers-map/
https://leafletjs.com/examples.html#leaflet-tutorials
https://leafletjs.com/reference-1.7.1.html#toc
https://leafletjs.com/plugins.html#leaflet-plugins
https://restfulapi.net/hateoas/

README.md 3/14/2021

31 / 47

Micronaut is one of the simpler frameworks supporting REST APIs.

To be able to use it, we need to perform few configuration steps .

By following the instructions from SDK MAN:

#install curl to download SDK installer
sudo apt-get update
sudo apt-get -y install curl
#download SDK installer
curl -s "https://get.sdkman.io" | bash
#install micronaut CLI (command line interface)
source "~/.sdkman/bin/sdkman-init.sh"
sdk install micronaut
#create application (first navigate to location of your choice)
mn create-app FirstMicronautOnTheMoon

For this part we are going to use IntelliJ IDEA Community Edition, which will give us enough support for Java
development.

However for HTML, CSS and JavaScript development I recommend Visual Studio Code.

After importing the project FirstMicronautOnTheMoon in IntelliJ, turn on the annotation support (search for
Annotation Processors by pressing 2xshift):

Example

https://docs.micronaut.io/snapshot/guide/index.html#cli
https://sdkman.io/
https://www.jetbrains.com/idea/download/
https://code.visualstudio.com/

README.md 3/14/2021

32 / 47

From the point of view of web applications the most important elements of the server is a controller.
Controller is responsible for mapping and deserializing HTTP requests into particular methods.

package edu.html2postgis.controllers;

import io.micronaut.http.HttpResponse;
import io.micronaut.http.annotation.Controller;
import io.micronaut.http.annotation.Get;
import edu.html2postgis.dto.User;

//this annotation defines the address where the controller will be made available
@Controller("/users")
public class UserController {
 //this annotation marks the HTTP method mapped to the Java method
 @Get()
 HttpResponse getUsers() {
 //we assume that there is a static getAllUsersList()
 //HttpResponse.ok() generates HTTP status 200 and wraps serialized
 //users list in HTTP response
 return HttpResponse.ok(User.getAllUsersList());
 }
}

The implementation for User class may look something like this

package edu.html2postgis.controllers;

import java.util.*;

public class User {
//...rest of the User class code
 public static List<User> getAllUsersList() {
 List<User> users = new ArrayList<>();
 tryAddUserToList(users, 1L, "johnny123");
 tryAddUserToList(users, 2L, "ann123");
 return users;
 }

 private static void tryAddUserToList(List<User> users, long id, String name) {
 try {
 User user = new User(id,name);
 users.add(user);
 } catch (IllegalArgumentException ex) {
 System.err.println(ex.getMessage());
 }
 }
}

View of out project in IntelliJ will look similar to this:

README.md 3/14/2021

33 / 47

If we ran our application and call http://localhost:8080/users address in the browser we should see a response
like this:

In case we want to add static resources (HTML, CSS, JavaScript, images files) to our web application we need
to allow server to serve static files we need to add router section to
src/main/resources/application.yml configuration file:

https://guides.micronaut.io/micronaut-spa-react/guide/index.html#staticResources

README.md 3/14/2021

34 / 47

micronaut:
#rest of the code is hidden
 router:
 static-resources:
 default:
 enabled: true
 mapping: "/**"
 paths: "classpath:public"

Then we add public subdirectory in src/main/resources/ and, in the case of this example an index.html
with the following content:

<!DOCTYPE html>
<html lang="pl">
<head>
 <meta charset="UTF-8">
 <title>Main page of the Micronaut based web application</title>
</head>
<body>
 <!-- link to users controller -->
 Users list [JSON]
</body>
</html>

.NET Core WebAPI
The structure of REST API based web applications in .NET is quite similar.

We are using .NET Core to make the application independent of the operating system

In order to create .NET Core application install and register snap alias for newest .NET Core SDK (Ubuntu
version below)

sudo snap install dotnet-sdk --classic`
sudo snap alias dotnet-sdk.dotnet dotnet

I also have had to add a symbolic link from $HOME/.local/bin/dotnet to /snap/dotnet-
sdk/current/dotnet

In order to create a new .NET Core WebAPI project we run:

dotnet new webapi -n RestDemo

Open the RestDemo folder with Visual Studio code. Then you may run the application from the debug panel.

README.md 3/14/2021

35 / 47

In case the necessary files to run and debug the application were not generated delete .vscode and all
its contents and try running .NET: Generate Assets for Build and Debug from View > Command
Palette.

Example

The dotnet new webapi command generates a sample project structure containing exemplar .NET Core Web
API project.

A controller in .NET Core has a following structure

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.Logging;

namespace RestDemo.Controllers
{
 [ApiController]
 [Route("[controller]")]
 public class WeatherForecastController : ControllerBase
 {
 private static readonly string[] Summaries = new[]
 {
 "Freezing", "Bracing", "Chilly", "Cool", "Mild", "Warm", "Balmy",
"Hot", "Sweltering", "Scorching"
 };

README.md 3/14/2021

36 / 47

 private readonly ILogger<WeatherForecastController> _logger;

 public WeatherForecastController(ILogger<WeatherForecastController>
logger)
 {
 _logger = logger;
 }

 [HttpGet]
 public ActionResult<IEnumerable<WeatherForecast>> Get()
 {
 var rng = new Random();
 return Ok(Enumerable.Range(1, 5).Select(index => new WeatherForecast
 {
 Date = DateTime.Now.AddDays(index),
 TemperatureC = rng.Next(-20, 55),
 Summary = Summaries[rng.Next(Summaries.Length)]
 })
 .ToArray());
 }
 }
}

[ApiController] attribute marks the class as being a controller
[Route("[controller]")] specifies that the controller will available under the URI address generated
from the class name WeatherForecastController > /weatherforecast
[HttpGet] attribute marks the method used to serve HTTP Get requests
Ok() method wraps its argument in an HTTP response and sets the response HTTP status code to 200
(other examples include NotFound(), Created() or BadRequest())

Further reading on REST APIs
REST Services Maturity Model

AJAX calls
Now, when we have established almost all the necessary elements to create our first web application, it is time
to introduce something which will bring all the following things together:

HTML and CSS for creating the interface
JavaScript for the application behavior
REST APIs for providing access to the data and computational resources of the server

In order to tie the frontend together with the backend we need a way to send data between them. For that we
need AJAX (the name comes from Asynchronous JavaScript and XML), which provides the ability to make
HTTP requests in the background (without blocking the browser interface).

Although the name comes from XML any type of data can be send with those requests and the most
popular format today is JSON as it is most natural to be processed with JavaScript (as JSON stands for:

https://martinfowler.com/articles/richardsonMaturityModel.html

README.md 3/14/2021

37 / 47

JavaScript Object Notation)

First let's introduce the example of Fetch API, which provides an interface to make the AJAX calls

let call = fetch('https://nominatim.openstreetmap.org/search' +
 '?street=1 Plac Politechniki' +
 '&city=Warsaw' +
 '&country=Poland' +
 '&postalcode=00-661' +
 '&format=json')
;
call
 .then(response => {
 if (response.ok) {
 return response.json();
 } else {
 //handle bad HTTP status
 }
 })
 .then(showLocation);

function showLocation(data) {
 if (data.length > 0) {
 let lat = data[0]["lat"];
 let lng = data[0]["lon"];
 console.info(lat);
 console.info(lng);
 let marker = L.marker([lat, lng]);
 marker.addTo(map);
 } else {
 //handle no data
 }
}

This simple example shows us the following elements:

the first argument of fetch() function is the URL to send request to
fetch() returns promise (a future object)
this first promise exposes the header of HTTP response when ready
from the first promise we can get the content by calling .text() or .json() method
we finally handle the second promise with the actual data returned from Nominatim API (which does
geocoding on the basis of Open Street Map data)

Slightly more complex example would be the case when we would like to send the obtained lat and lng data
to our custom REST endpoint /location.

fetch('/location',{
 method: 'POST',
 body: JSON.stringify({lat: lat, lng: lng}),
 headers: {

README.md 3/14/2021

38 / 47

 'Content-Type': 'application/json'
 },
 //this will come in handy in case you need to send cookies
 credentials: 'include',
 //this will come in handy when you need to deal with cross-origin requests
 mode: 'cors'
 })
});

Single Page Application example
Let's create a complete SPA application with the usage of Java Micronaut framework. We start with creating
the app from the command line with:

mn create-app POIManager

Then we set up the static resources and download the Leaflet library as discussed before and create the
following HTML, CSS and JavaScript files.

<!DOCTYPE html>
<html lang="en">
<head>
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <meta charset="UTF-8">
 <title>Point of interest manager</title>
 <link rel="stylesheet" href="libs/leaflet.1.7.1/leaflet.css" />
 <link rel="stylesheet" href="css/style.css" />
 <script src="libs/leaflet.1.7.1/leaflet.js"></script>
 <script src="scripts/script.js"></script>
</head>
<body>
<div class="general-grid">
 <div id="map-panel">
 </div>
 <div id="new-poi-panel">
 <form id="new-poi-form">
 <div id="new-poi-form--container" class="form-grid">
 <div class="no-such-place-error-inactive grid-item-two-column">No such
place</div>
 <label for="input-country">Country</label><input id="input-country"
name="country" placeholder="Poland" />
 <label for="input-city">City</label><input id="input-city"
name="city" placeholder="Warszawa" />
 <label for="input-zipcode">Zipcode</label><input id="input-zipcode"
name="zipcode" placeholder="00-661"/>
 <label for="input-street">Street</label><input id="input-street"
name="street" placeholder="Plac Politechniki" />
 <label for="input-house">House number</label><input id="input-house"

README.md 3/14/2021

39 / 47

name="house" placeholder="1" />
 <button class="grid-item-two-column">Place POI</button>
 </div>
 </form>
 </div>
</div>
</body>
</html>

.general-grid {
 display: grid;
 grid-template-rows: 1fr fit-content(10ch);
 row-gap: 1em;
 position: absolute;
 top: 0;
 bottom: 1em;
 left: 0;
 right: 0;

}

.form-grid {
 display: grid;
 grid-template-columns: fit-content(10em) fit-content(5em);
 row-gap: 0.5em;
 column-gap: 0.5em;
 justify-content: center;
 align-items: center;
}

.grid-item-two-column {
 grid-column: 1 / span 2;
}

.no-such-place-error-inactive {
 display: none;
}

.no-such-place-error-active {
 border: 1px solid darkred;
 background-color: lightpink;
 text-align: center;
}

const poiFormId = 'new-poi-form';
const mapContainerId = 'map-panel';
let map;

document.addEventListener('DOMContentLoaded', initializeApplication, false);

README.md 3/14/2021

40 / 47

function initializeApplication() {
 let form = document.getElementById(poiFormId);
 form.onsubmit = handleNewPOI;
 loadMap();
}

function handleNewPOI() {
 let form = this;

 clearErrors();
 let response = fetch('https://nominatim.openstreetmap.org/search' +
 '?street=' + this.house.value.trim() + ' ' + this.street.value.trim() +
 '&city=' + this.city.value.trim() +
 '&country=' + this.country.value.trim() +
 '&postalcode=' + this.zipcode.value.trim() +
 '&format=json')
 ;
 response
 .then(r => {
 if (r.ok) {
 return r.json();
 }
 })
 .then(showLocation);
 return false;

 function clearErrors() {
 let errorElements = form.getElementsByClassName('no-such-place-error-
active');
 for (let i = 0; i < errorElements.length; ++i) {
 let errorElement = errorElements[i];
 errorElement.classList.add('no-such-place-error-inactive');
 errorElement.classList.remove('no-such-place-error-active');
 }
 }

 function showLocation(data) {
 if (data.length > 0) {
 let lat = data[0]["lat"];
 let lng = data[0]["lon"];
 let marker = L.marker([lat, lng]);
 marker.addTo(map);
 } else {
 let errorElements = form.getElementsByClassName('no-such-place-error-
inactive');
 for (let i = 0; i < errorElements.length; ++i) {
 let errorElement = errorElements[i];
 errorElement.classList.add('no-such-place-error-active');
 errorElement.classList.remove('no-such-place-error-inactive');
 }
 }
 }
}

README.md 3/14/2021

41 / 47

function loadMap() {
 //add map and set its center to specific location
 map = L.map(mapContainerId).setView([52.05, 20.00], 6);
 //add OSM as background layer
 L.tileLayer('https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png ', {
 attribution: 'Map data © ' +
 'OpenStreetMap contributors, ' +
 'CC-BY-
SA',
 maxZoom: 19,
 id: 'osm.tiles'
 }).addTo(map);

}

Which results with the following interface:

README.md 3/14/2021

42 / 47

Our goal is to create application for storing and presenting Points of Interest (POI).

Therefore we will need to provide them from the server through the controller

package POIManager.controller;

import POIManager.dto.POI;
import POIManager.service.POIService;
import io.micronaut.http.HttpResponse;
import io.micronaut.http.annotation.Controller;
import io.micronaut.http.annotation.Get;
import io.micronaut.http.annotation.Post;

README.md 3/14/2021

43 / 47

import java.util.List;

@Controller("/poi")
public class POIController {
 private final POIService poiService;

 public POIController(POIService poiService) {
 this.poiService = poiService;
 }

 @Get
 HttpResponse<List<POI>> getPOIs() {
 return HttpResponse.ok(this.poiService.getPOIs());
 }

 @Post
 HttpResponse<POI> createPoi(POI poi) {
 POI createdPoi = this.poiService.addPoi(poi);
 if (createdPoi != null) {
 return HttpResponse.ok(createdPoi);
 } else {
 return HttpResponse.unprocessableEntity();
 }
 }
}

Additionally JavaScript loadMap() function code needs to be extended with fetch call and
placeMarker(datum) function in order to present POIs downloaded from the server

function loadMap() {
 //add map and set its center to specific location
 map = L.map('map-panel').setView([52.05, 20.00], 6);
 //add OSM as background layer
 L.tileLayer('https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png ', {
 attribution: 'Map data © ' +
 'OpenStreetMap contributors, ' +
 'CC-BY-
SA',
 maxZoom: 19,
 id: 'osm.tiles'
 }).addTo(map);

 fetch('/poi')
 .then(r => r.json())
 .then(function (data) {
 for (let i = 0; i < data.length; ++i) {
 placeMarker(data[i]);
 }
 })
}

README.md 3/14/2021

44 / 47

function placeMarker(datum) {
 let lat = datum["lat"];
 let lng = datum["lon"];
 let marker = L.marker([lat, lng]);
 marker.addTo(map);
 let message = '<h1>' + datum['city'] + '</h1>'
 + '<p>' + (datum['zipcode'] != null ? datum['zipcode'] : '00-000') +
 (datum['street'] != null ? (', ' + datum['street']) : '') +
 (datum['house'] != null ? (' ' + datum['house']) : '') + '</p>';
 marker.bindPopup(message);
 console.info(message);
}

The result would be as follows:

As we are going to store data on the server we will set up a database for the application:

We assume that we already have PostgreSQL and PostGIS installed.

create a user in the system
create a role in DB for this user (passwords need to match)
create a database for this role

README.md 3/14/2021

45 / 47

add schema to store spatial extension
install spatial extension to schema

sudo adduser html2postgis
sudo -u postgres psql -c 'CREATE ROLE html2postgis WITH LOGIN CREATEDB ENCRYPTED
PASSWORD `webapp`;'
sudo -u postgres psql -c 'CREATE DATABASE html2postgis OWNER html2postgis;'
sudo -u html2postgis psql -d html2postgis -c 'CREATE SCHEMA postgis;'
sudo -u postgres psql -d html2postgis -c 'CREATE EXTENSION postgis SCHEMA
postgis;'

And we will also run the following query in order to initialize storage for our POIs:

CREATE TABLE IF NOT EXISTS public.poi (
 id serial NOT NULL PRIMARY KEY,
 country varchar NOT NULL,
 city varchar NOT NULL,
 zipcode varchar NOT NULL,
 street varchar NOT NULL,
 house varchar NOT NULL,
 geom geometry(Point,4326) NOT NULL
);

Additionally build.gradle of the micronaut project must be extended to include libraries for handling
PostgreSQL connection.

dependencies {
 compile group: 'org.postgresql', name: 'postgresql', version: '42.2.14'

In the provided example-05-spa-map-application necessary creation of the table happens during the
start of application.

Let's go back to the Java part of our micronaut project. Apart from the POIController we will need a service
providing the objects from the database and Data Transfer Object representing POI.

The structure and the crucial part of this service can be observed within in the project structure:

https://bitbucket.org/okulewicz/javascript-basic/src/master/example-05-spa-map-application/

README.md 3/14/2021

46 / 47

Please note, that this service is marked as @Singleton and @DefaultImplementation of the POIService
interface. Hence during the initialization of the controller, an object of POIDBService would be passed to the
constructor of POIController.

Having the POIController supported by the poiService.addPoi(poi) method, we can use HTTP Post
method to send new data to the server from JavaScript application:

let response = fetch('https://nominatim.openstreetmap.org/search' +
 '?street=' + poi.house + ' ' + poi.street +
 '&city=' + poi.city +
 '&country=' + poi.country +
 '&postalcode=' + poi.zipcode +
 '&format=json');
let jsonResponse = response
 .then(r => {
 if (r.ok) {
 return r.json();
 }
 });
jsonResponse.then(getPostPOIfunction(poi));

function getPostPOIfunction(poi) {
 return function (data) {
 if (data.length > 0) {
 poi.lat = data[0]["lat"];
 poi.lon = data[0]["lon"];
 fetch('/poi', {
 method: 'POST',
 body: JSON.stringify(poi),

README.md 3/14/2021

47 / 47

 headers: {
 'Content-Type': 'application/json'
 }
 }).then(r => r.json())
 .then(placeMarker);
 }
 };
}

In the example above, first the nominatim service is called to geocode the given address and if the geocoding
returns at least one result, the first one is taken as the correct one. Then we extend poi definition with latitude
and longitude and POST them to the /poi endpoint, hence POIController.createPoi(POI poi) method.

For the details of JavaScript and Java structure of this application solution please analyze the sources of the
provided example-05-spa-map-application

https://bitbucket.org/okulewicz/javascript-basic/src/master/example-05-spa-map-application/

