
Inżynieria Oprogramowania
/ Inżynieria Systemów

Informatycznych

dr inż. Michał Okulewicz

Wydział Matematyki i Nauk Informacyjnych

Projekt „NERW 2 PW. Nauka – Edukacja – Rozwój – Współpraca”
współfinansowany jest ze środków Unii Europejskiej w ramach

Europejskiego Funduszu Społecznego.
Zadanie 10 pn. „Modyfikacja programów studiów na kierunkach

prowadzonych przez Wydział Matematyki i Nauk Informacyjnych”,
realizowane w ramach projektu „NERW 2 PW. Nauka – Edukacja –
Rozwój – Współpraca”, współfinansowanego jest ze środków Unii
Europejskiej w ramach Europejskiego Funduszu Społecznego.

1

Software Engineering Exercises

Maciej Bednarz Michał Okulewicz
Mateusz Zaborski

February 2021

Contents

1 User Stories 3
1.1 Syntax . 4
1.2 Examples . 5
1.3 Case Study . 5

1.3.1 Exercise 1 . 6
1.3.2 Exercise 2 . 6
1.3.3 Exercise 3 . 7

2 UML Use Case Diagrams 7
2.1 Syntax . 7
2.2 Examples . 9

2.2.1 Exercise 1 . 10
2.2.2 Exercise 2 . 10
2.2.3 Exercise 3 . 10

3 UML Class Diagrams 10
3.1 Syntax . 11
3.2 Examples . 13
3.3 Case Study . 14

3.3.1 Exercise 1 . 14
3.3.2 Exercise 2 . 14
3.3.3 Exercise 3 . 14

4 UML State Diagrams 14
4.1 Syntax . 15
4.2 Examples . 16
4.3 Exercises . 18

4.3.1 Exercise 1 . 18
4.3.2 Exercise 2 . 18
4.3.3 Exercise 3 . 18

2

5 UML Activity Diagrams 18
5.1 Syntax . 19
5.2 Examples . 21
5.3 Exercises . 22

5.3.1 ATM cash withdrawal 22
5.3.2 Coffee machine . 22
5.3.3 Extended coffee machine 22

6 UML Sequence Diagrams 23
6.1 Syntax . 23
6.2 Examples . 24

6.2.1 Example of alternatives 24
6.2.2 Example of loops and breaks 25
6.2.3 Example of parallel messages 26
6.2.4 Exercise 1 - Call 112 in case of fire (warm-up) 27
6.2.5 Exercise 2 - Drink vending machine. 28
6.2.6 Exercise 3 - Self-service cash register. 28
6.2.7 Exercise 4 - The online store payment procedure. . . 29

A User Stories hints 29
A.1 List of User Stories . 29
A.2 Prioritized User Stories . 30
A.3 Reverse side of a User Story 31

B Game Class Diagram 32

C State Diagram hints 33
C.1 Newsletter . 33
C.2 ATM transaction . 34

D Activity Diagram hints 35
D.1 ATM . 35
D.2 Coffee machine . 36

E Sequence Diagrams hints 37
E.1 Fire . 37
E.2 Vending machine . 38
E.3 Self-register . 39
E.4 Payment . 40

1 User Stories

User Stories are a tool for gathering requirements typically associated
with Agile methodologies. They focus on the needs of future users,

3

trying to capture the business justification behind each feature. A suc-
cessfully list of User Stories is prioritized and the stories (just before
implementing them) must be in the “ready” state.

1.1 Syntax

A single User Story consists of a front and reverse side. Front side
specifies:

• the role of the user

• required action / feature

• business justification of the requirement

Reverse side defines acceptance criteria and non-functional require-
ments related to that story. This criteria should be defined by a check-
list (yes/no) questions (e.g Does the website support HTTPS? Is re-
sponse time below 50ms?).

One of the methods of prioritising User Stories is called MoSCoW,
which is an acronym for Must Have, Should Have, Could Have and
Won’t Have requirements.

4

1.2 Examples

As a... I want to... so that...
Customer Order a package pickup I can return products
On-site operator View the orders on map I can assign locations to vehicles
Courier See the customer’s phone number I can contact him

Table 1: A sample list of user stories for package delivery company

ID: 02.01 TITLE: Assigning pickup locations
As a... I want to... so that...
On-site operator View the orders on map I can assign locations to vehicles

Figure 1: Front side of a User Story card

Acceptance criteria checklist
(Functionality)

• Can I assign location to any available vehicle?

• Can I reassign location to another vehicle?

• Can I preview order details at given location?

• Can I observe the expected route and vehicle load?

Non Functional Requrements
(Usability Reliability Performance Security)

• Are the locations color coded (by vehicle)?

• Is the new route computed in less than 5 seconds?

• Can other on-site operators change my assignment?

Figure 2: Reverse side of a User Story card

Table 1 presents an example of User Stories list.

1.3 Case Study

You are about to gather requirements for a studies management system
(e.g. USOS). Its main goal is to support faculty members, students
and administration in organizing, conducting and grading particular
courses.

The requirements for the system will be specified by the following
stakeholders:

5

Vice Dean - you are responsible for maximal utilization of the faculty
members with regards to their availability and costs, while main-
taining a consistent program of studies across whole program.

Administrative Worker - you are responsible for managing all non-
standard cases regarding passing the subjects and special needs
of the students (impairments, parallel studies, individual studies,
leave of absence, foreign and domestic exchange)

Schedule Coordinator - you are responsible for assigning rooms, time
slots and teachers for all conducted classes.

Senior Faculty - you are responsible for giving lectures, examining
students, maintaining consistency between lab supervisors, and
apart from that competing for research funds

Junior Faculty - you are responsible for conducting classes, grading
tests, preparing exercises and exams, and apart from that trying
to conduct research

Teachers: see Appendix A for hints.

1.3.1 Exercise 1

Work in groups of (around) 5. Assume one of the following roles: Vice
Dean, Administrative Worker, Schedule Coordinator, Senior Faculty
(professor, subject supervisor), Junior Faculty (PhD, labs supervisor).
Prepare at least 3 user stories per each role with regards to the studies
management system.

1.3.2 Exercise 2

Choose two people who will now act as part of project/development
team. Your goal is to negotiate priorities of created user stories accord-
ing to the following rules:

Must Have - without this requirements the system has no sense at all,
and is unsafe to use (e.g. allows for assigning multiple classes to
a single student at the same time without any warning)

Should Have - it would be REALLY annoying not to have those re-
quirements, however the system will be usable (e.g. there is no
possibility of editing records. However, you may delete the old
one, and create a new one in its place)

Could Have - every other feature which will be nice to have in the sys-
tem, but definitely it is not a crucial one

Won’t Have - features which seem to be out of scope of the project (at
least for now)

6

1.3.3 Exercise 3

Select 3 requirements with top priority, and create the reverse side of
the User Story card for them.

2 UML Use Case Diagrams

Use Case Diagrams are used for definition the requirements that sys-
tem must fulfill. Their purpose is similar to the purpose of the User
Stories. However, their structure is more formal and provides more in-
formation. They present actors, expected functionalities but also some
dependencies between them.

2.1 Syntax

A single Use Case Diagram includes the following:

• system boundary

• actors

• use cases

• relationships between actors (generalization)

• relationships between use cases

– � include �
– � extend �

• associations

Figure 3: Notation alternatives for actors[1]

7

Figure 4: Notation alternatives for use cases[1]

Figure 5: Example of generalization (inheritance) for actors[1]

Figure 6: Relations (extend and include) between use cases[1]

8

Figure 7: Multiplicities in associations[1]

2.2 Examples

Figure 8: Example of a Use Case Diagram[1]

9

Figure 9: Example of relationships in a Use Case Diagram[1]

2.2.1 Exercise 1

Think about system for car sharing company. Create simple Use Case
Diagram containing two actors: customer and service. Consider follow-
ing customer actions: find on the map, choose a car, rent, refuel and
park. The service is authorized to block and unblock a car.

2.2.2 Exercise 2

Please extend your diagram with extra use cases. What kind of action
is included in refueling? What are extensions of the other use cases?
Maybe reporting of a damage or sending a photo?

2.2.3 Exercise 3

Choose one use case from proposed Use Case Diagram and describe it
according to the example on p. 36 from UML@Classroom[1].

3 UML Class Diagrams

UML Class Diagram are one of the structural diagrams (other exam-
ples include package or deployment diagrams). The purpose of this
diagrams is to design the overall architecture of the system and depict
possible entanglements of the already written code.

UML Class Diagrams enable to capture API of the application and
present relation between objects.

10

3.1 Syntax

The basic purpose is to present the fields (properties) and methods of
a given class. Access levels are depicted with the usage of “+”, “#”, “∼”
and “-” symbols before the name. Field type or method return type are
given after a colon (you may use C or Java language types as commonly
recognizable). An example of single class diagram is depicted in Figure
10.

ClassNameClassName

-privateFieldName: type
+publicFieldName: type {readOnly}
+publicFieldName: type

+somePublicMethod(argument: type): returnType

Figure 10: Single class example

In order to keep the diagrams simple you can stick just to the pub-
licly accessible fields and methods as a way of discussing the API, while
private fields are implementation details which will be designed “on-
the-fly” anyway.

ParentClassParentClass

IndependentPartsClassIndependentPartsClassDependentPartsClassDependentPartsClass

RelatedClassRelatedClass

RelatedClassMultipilictyUpperBoundRelatedClassMultipilictyLowerBound

ParentClassMultipilictyUpperBoundParentClassMultipilictyLowerBound

RelatedClassMultipilictyUpperBoundRelatedClassMultipilictyLowerBound

ParentClassMultipilictyUpperBoundParentClassMultipilictyLowerBound

Figure 11: Class relations example

Another thing that can be captured in the class diagrams are re-
lation between classes (meaning that a class references another or in-

11

cludes a collection of objects of another class). When this relation is
symmetrical (the objects are of equal “hierarchy”) you can use a simple
line, depicting association. When there is some kind of parent-child re-
lation you can use aggregation (empty diamond ending), or composition
(full diamond ending). The subtle difference between those relations is
in the fact whether elements of child class have a meaningful existence
without the parent class (aggregation) or not (composition). An example
of the syntax related to the references between classes is presented in
Fig. 11.

{abstract}
BaseAbstractClass
{abstract}
BaseAbstractClass

<<Interface>>

InterfaceName

<<Interface>>

InterfaceName

{abstract}
AnotherAbstractClass
{abstract}
AnotherAbstractClass

ConcreteClass1ConcreteClass1

ConcreteClass2ConcreteClass2 ConcreteClass3ConcreteClass3

ConcreteClass4ConcreteClass4

Figure 12: Inheritance and interface implementation

Finally, Figure 12 presents how to depict interface implementation
and inheritance structure.

For more details on UML Class Diagrams please checkout Chapter
4 from UML@Classroom[1].

12

3.2 Examples

NodeNode

+weight: double

{abstract}
Edge
{abstract}
Edge

+weight: double

1
2
1
2<<creates>><<creates>>

GraphGraph

+color(noOfColor
s: int): bool

1
*

1
*

1

*

1

*
SimpleEdgeSimpleEdge

DirectedEdgeDirectedEdge

+start: Node
+end: Node

+reverse(): void

PackagePackage

+location: LatLng

+createN(): Node

1
1
1
1

+color: int

+createEdge(nod
e: Node): Edge

Figure 13: An example of a graph representation

Figure 13 gives an example of relations between Graph and its ele-
ments: Nodes and Edges. Such an abstract model might be used to
represent a business problem of package delivery, hence the example
of associating a Node with a Package.

13

3.3 Case Study

Consider a Real Time Strategy game with different types of terrain and
different types of units.

Terrain types:

• Road

• Ground

• Jungle

• Desert

• Mountains

• Rivers

Unit types:

• Walking units

– Soldier

– Medic

• Vehicle units

– Jeep

– Tank

• Flying units

– Fighter

– Bomber

For teachers: see Appendix B for hints.

3.3.1 Exercise 1

Create a UML Class Diagram for unit types and terrain types. Propose
methods for verifying possibility of attack and ability to move over cer-
tain type of terrain. Design this with the assumption that terrain types
does not change as much as unit types (with future game extension).

3.3.2 Exercise 2

Enhance class diagram with the environment (map) where units inter-
act with one another and the terrain.

3.3.3 Exercise 3

Add buildings for producing units.

4 UML State Diagrams

The Stale Machine Diagrams are a a tool for modeling the possible
states for the system or the object. Furthermore they show how state
transitions occur as a consequence of occurring events, and what be-
havior the system or object exhibits in each state

14

4.1 Syntax

Figure 14: Notation elements for the state machine diagram[1]

15

4.2 Examples

Figure 15: Example of state machine diagram of a lecture hall with
internal activities [1]

Figure 16: Example of state machine diagram of of a student’s course
participation [1]

16

Figure 17: Time triggers in state machine diagrams [1]

Figure 18: Composite state in state machine diagrams [1]

Figure 19: Orthogonal state in state machine diagrams [1]

17

4.3 Exercises

4.3.1 Exercise 1

Think about newsletter service. Please make a simple state diagram
of customer object. Assume that customer can be subscribed, unsub-
scribed and deleted. Please include states and necessary actions.

4.3.2 Exercise 2

Extend above diagram by internal activities (entry/, do/, exit/).

4.3.3 Exercise 3

Consider ATM transaction processing. Please make a state diagram
for transaction object. Consider following states: idle, card reading,
PIN entry, verification, choosing transaction, performing transaction,
ejecting card. Remember about maximum PIN trials. What kind of
internal activities can be added?

5 UML Activity Diagrams

UML Activity diagrams are a merge between flowcharts and Petri nets.
They can be utilized to depict execution paths within a single method, a
flow of activity through the system (say methods called when a system
functionality is utilized) or an algorithm.

In connection with other diagrams it can be thought as

• an orthogonal view to State Diagrams

• in depth view of Use Case diagrams

• an addendum to Sequence Diagrams

18

5.1 Syntax

Figure 20: Notation elements for the activity diagram[1]19

Figure 21: Notation elements for the activity diagram[1]

20

5.2 Examples

Figure 22: Example of activity diagram [1]

Figure 23: Example of activity diagram with partitions[1]

21

5.3 Exercises

5.3.1 ATM cash withdrawal

Think again about ATM machine from state diagrams (you may check
Fig. 31 in the appendix for reference). Please create activity diagram
for the cash withdrawal. What is the relation of this diagram to state
diagram?

5.3.2 Coffee machine

Create the diagram of activity for a simple coffee machine, performing
the actions in compliance with a description:

• self test

• parallel check if water and the coffee beans are available

• information printed on the screen that procedure has been started

• parallel water pressurisation and coffee grinding

• coffee brewing

• information printed on the screen that coffee is ready

When any resource is ended, a message should be printed on a screen
and once it has been refilled the procedure is continued.

5.3.3 Extended coffee machine

Create or enrich the diagram created in a last exercise, taking into ac-
count that the following device components are taking the contribution
in a coffee brewing process.

• pump (makes water pressure)

• coffee grinder (grinds the coffee)

• brewing block (brews the grinds coffee)

• milk frother (prepare foamed milk)

• screen (prints the messages)

• controller (do the other job)

The components listed above should be also shown on the diagram.
There should be added an additional action when (parallel with brewing
the coffee), a milk foam is made.

22

6 UML Sequence Diagrams

The interaction diagrams provide important information: how the mes-
sages are exchanged between interaction partners (human and non-
human beings like servers or a software) and what is the order of send-
ing them. Thanks that we know when a one side of the interaction
should receive a message and when messages A must not appear be-
fore a message C.

6.1 Syntax

The notation of the mostly used graphical elements is presented below.

23

Figure 24: Notation elements for the sequence diagram[1]

6.2 Examples

6.2.1 Example of alternatives

Consider the situation when a user (presented as an actor on the left
side of the diagram) wants to buy any identifiable product (this, con-
crete instance of the product with an id no 157) and pay for it. But the
money transfer may be done when once the concrete product will have
been blocked (to avoid the situation when two or more customers pay
for the same concrete item). Bear in mind that here the actor talks with
a server API and is not interested on how the server will do it. He sends
a request only and does not take care on synchronization with any

24

other possible requests in the case. The alternatives covers the cases
when something wrong was with a payment or a blocking process.

Figure 25: Notation elements for the sequence diagram describing the
alternatives[1]

6.2.2 Example of loops and breaks

Think about a game machine. The user tries to guess the number three
times. When hit the value, the information about the win is send to the
player. Otherwise after three unsuccessful probes (a loop element) the
flow is terminated (by a break element) and "game over" message is
sent back.

25

Figure 26: Notation elements for the sequence diagram describing
loops and breaks [1]

6.2.3 Example of parallel messages

Try to imagine a virtual system for voting. We have a box and a three
voters among whom we can distinguish one more important (Main
voter) and two less important (voter A and voter B). We have a three
votes. During the first one it does not matter who vote as first. All vot-
ers may send a message parallel and the order is not important. The
second one demands to main voter to vote as first, the first voter to
vote as second and the last voter to vote as last. The last vote needs
to give a voice by Main voter and Voter A (no matter which is first) and
then the Voter B may cast a vote. This case shows that some mes-
sages must can occur in a specific order and are dependent form the
situation when one specific one has been sent earlier.

26

Figure 27: Notation elements for the sequence diagram describing par-
allel messages [1]

6.2.4 Exercise 1 - Call 112 in case of fire (warm-up)

Please read carefully the task description and create a sequence dia-
gram for the case described below.

There is a protocol for exchanging the information while calling 112
in case of fire and saving the valuable time. Draw a diagram for two
actors (a fire reporter and an 112 operator) with a sequence of the
messages exchanged between them. The case is that a reporter calls
the emergency number and answers the following messages (ques-
tions/information) asked/sent by the operator.

• Where is the fire (what floor if apply)?

• What is burning?

• Is human life at stake?

• Fire alarm accepted

27

6.2.5 Exercise 2 - Drink vending machine.

Please read carefully the task description and create a sequence dia-
gram for the case described below.

Consider a situation when a person orders something from a drink
vending machine. In this case we have two actors performing a se-
quence of exchanging messages (described further). Let‘s name the
person ordering a drink as Frank. Frank presses a button to order the
chosen drink, thus he sends a message "over the wires" to the machine
controller. The machine shows the price to pay, which can be treated
as sending the message via "light signal" to the buyer. We assume
that a person has enough cash to pay the price. When the coins have
been inserted and the buyer has informed machine about that fact by
pressing a button (sending a signal), the machine gives a change (if it
is needed) or informs the user that it should be, but it is not possible
(lack of change money). Frank may accept it (finish transaction with-
out receiving a change) or not. Once all conditions have been met, the
machine asks itself to drop the bought beverage down.

6.2.6 Exercise 3 - Self-service cash register.

Please read carefully the task description and create a sequence dia-
gram for the case described below.

Imagine a self-service cash register installed in almost every super-
market. It consists of the following components: a bar code scanner,
controller, screen and a scale. All elements contacts with each other
by a messages. We are not considering human that is operating this
system and assuming that a scanner and a scale are the eyes and ears
of the system. The flow is to scan and add a single product to a bas-
ket, provided it does exist in the system and the weight of it has been
confirmed (to avoid a fraud). When a bar code scanner detects a new
product code, it asks the controller (by sending a message with a code
value) to check if it does exist in the system. If not, the screen is asked
to print the information ("Call the store staff"), otherwise it prints an
order to put the product on the scaled basked. After the scale checks
the weight, it sends an information to the controller with the result.
The controller compares the weight of the product from the scale with
a reference value in the system. If the values are very close (let‘s say
that equal) a screen is asked to print the information ("scan next prod-
uct"). Otherwise is asked to print the message: "weigh it again". The
maximal possible number of approaches is 3. Once all of them will be
used and the weight is still not compliant with expected one the screen
is asked to print the message ("Call the store staff").

28

