We look for ground state solutions to the semilinear system

$$
\left\{\begin{array}{l}
-\Delta u+\lambda_{1} u=\mu_{1}|u|^{p_{1}-2} u+\beta|v|^{r}|u|^{r-2} u \tag{1}\\
-\Delta v+\lambda_{2} v=\mu_{2}|v|^{p_{2}-2} v+\beta|u|^{r}|v|^{r-2} v \\
\int_{\mathbb{R}^{N}} u^{2} d x=\rho_{1}^{2}, \quad \int_{\mathbb{R}^{N}} v^{2} d x=\rho_{2}^{2}
\end{array}\right.
$$

in $\mathbb{R}^{N}, N \geq 3$, where $\rho_{1}, \rho_{2}, \mu_{1}, \mu_{2}, \beta>0$ and $2+\frac{4}{N}<p_{1}, p_{2}, 2 r<\frac{2 N}{N-2}$.
Here $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ appear as Lagrange multipliers and are part of the unknown.

In order to obtain a ground state solution we minimize the energy functional over a smooth manifold obtained from a suitable linear combination of the Nehari and Pohožaev identities, which allows to get rid of the unknowns λ_{1}, λ_{2} in this minimization process.

A major difficulty is that the subspace of radial functions of $H^{1}\left(\mathbb{R}^{N}\right)$ does not embed compactly into $L^{2}\left(\mathbb{R}^{N}\right)$, whence we do not know if the weak limit of a minimizing sequence maintains the L^{2}-norm. This is overcome by working in the closed L^{2}-ball.

The differences with the one-equation counterpart of (1), i.e.

$$
\left\{\begin{array}{l}
-\Delta u+\lambda u=\mu|u|^{p-2} u \\
\int_{\mathbb{R}^{N}} u^{2} d x=\rho
\end{array}\right.
$$

will be presented. They are related to the coefficient of the coupling terms β and the dimension N.

This is joint work in progress with Jarosław Mederski.

