A double phase problem involving the 1-Laplacian

Alexandros Matsoukas
National Technical University of Athens, Department of Mathematics

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded Lipschitz domain and $f \in L^{n}(\Omega)$. We consider the following limiting double phase problem

$$
\left\{\begin{align*}
-\operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right)-\operatorname{div}\left(a(x)|\nabla u|^{q-2} \nabla u\right) & =f \text { in } \Omega \tag{1}\\
u & =0 \text { on } \partial \Omega
\end{align*}\right.
$$

where a is a bounded function with $a(x) \geq 0$ a.e. in Ω.
As is a common theme when dealing with problems that involve the 1 Laplacian, the solution to (1) will be found as the limit of the solutions $\left(u_{p}\right)$ of intermediate double phase Dirichlet problems whose lowest exponent p goes to 1. The difficulty of giving some sense to $\frac{\nabla u}{|\nabla u|}$ is overcomed by using the ideas of Anzellotti, and thus a notion of a solution should be introduced. Due to the coexistence of the 1 and the weighted q-Laplacian in the above problem, it is natural to expect that its solution should lie simultaneously in $B V(\Omega)$ and in some suitable weighted Sobolev space.

Our aim in this talk is to discuss an existence and uniqueness result of a solution to this problem, obtained under certain conditions imposed on the weight function a and the datum.

The talk is based on joint work with Nikos Yannakakis.

