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Motivation


ut − ∂

∂x
Dαu = 0 in Qs,T ,

ux (0, t) = 0, u(t, s(t)) = 0 for t ∈ (0,T ),
u(x , 0) = u0(x) for 0 < x < s(0) = b,
ṡ(t) = −(Dαu)(s(t), t) for t ∈ (0,T ),

(1)

Qs,T := {(x , t) : 0 < x < s(t), 0 < t < T}.

(Dαu)(x) =
1

Γ(1− α)

∫ x

0

(x − p)−αu′(p)dp.

V. Voller, Fractional Stefan Problems, 2017.

V. Voller, On a fractional derivative form of the Green-Ampt in�ltration model,
2011.
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Fractional operators

Let α ∈ (0, 1). For integrable function u we de�ne the fractional integral

(Iαu)(x) =
1

Γ(α)

∫ x

0

(x − p)α−1u(p)dp.

The Riemann-Liouville fractional derivative is de�ned by the formula

(∂αu)(x) = (
∂

∂x
I 1−αu)(x) =

1

Γ(1− α)

∂

∂x

∫ x

0

(x − p)−αu(p)dp

and the Caputo derivative

(Dαu)(x) = (∂α(u − u(0)))(x) =
∂

∂x
(I 1−α[u − u(0)])(x) =

=
1

Γ(1− α)

∂

∂x

∫ x

0

(x − p)−α[u(p)− u(0)]dp.

For u absolutely continuous we have

(Dαu)(x) =
1

Γ(1− α)

∫ x

0

(x − p)−αu′(p)dp.
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Let us de�ne the operator of integration on Lp(0, L) for p ∈ [1,∞] by

(If )(x) =

∫ x

0

f (p)dp for f ∈ Lp(0, L). (2)

Proposition

Let L > 0, p ∈ [1,∞] and λ ∈ C, λ 6= 0. If u, v ∈ L1(0, L), then

(λE + I )v(t) = u(t) ⇐⇒ v(t) = λ−1u(t)− λ−2
∫ t

0

u(s)e
s−t
λ ds. (3)

Furthermore, I + λE : Lp(0, L) −→ Lp(0, L) is an isomorphism and there holds the
following estimate

‖(λE + I )−1‖B(Lp(0,L)) ≤ (1 +
√
2)|λ|−1 for λ ∈ Σ, (4)

where
Σ = {z ∈ C : Re z > | Im z|}.
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De�nition

[1, De�nition 1.1.1] We say that A is non-negative if (−∞, 0) ⊆ ρ(A) and there exists
M > 0 such that ∥∥(λE + A)−1

∥∥
B(X )

≤
M

λ
for every λ > 0.

Let A be a non-negative operator. We de�ne for 0 < Reα < 1 operator Jα as follows
D(Jα) = D(A)

Jαu =
sinαπ

π

∫ ∞
0

λα−1(λ+ A)−1Audλ.

De�nition

[1, De�nition 5.1.1] If A is non-negative and bounded we de�ne Aα = Jα for Reα > 0.

De�nition

[1, De�nition 5.1.2] Let A be an unbounded and positive operator (nonnegative and
0 ∈ ρ(A)). We de�ne for Reα > 0

Aα = ((A−1)α)−1.

Here, the domain of Aα consists of u ∈ X such that u ∈ R((A−1)α).
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Let us discuss 0 < Reα < 1.

Jαu =
sinαπ

π

∫ ∞
0

λα−1(λE + I )−1Iudλ.

By Proposition 1 we note that

(λE+I )−1Iu(t) = λ−1
∫ t

0

u(τ)dτ−λ−2
∫ t

0

∫ s

0

u(τ)dτe
s−t
λ ds = λ−1

∫ t

0

u(τ)e
τ−t
λ dτ.

Hence,

Jαu =
sinαπ

π

∫ ∞
0

λα−2
∫ t

0

u(τ)e
τ−t
λ dτdλ.

Applying the Fubini theorem and then the substitution t−τ
λ

= p we arrive at

Jαu =
sinαπ

π

∫ t

0

u(τ)(t − τ)α−1
∫ ∞
0

p−αe−pdpdτ

=
sinαπ

π

∫ t

0

u(τ)(t − τ)α−1dτΓ(1− α) =
1

Γ(α)

∫ t

0

u(τ)(t − τ)α−1dτ.

Proposition

Let Reα, L > 0, p ∈ [1,∞]. Then the operator Iα de�ned as an operator acting on
Lp(0, L) coincides with the fractional power of integration operator de�ned by (2).
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Let us de�ne the operator of di�erentiation

∂

∂x
: D(

∂

∂x
) := 0W

1,p(0, L)→ Lp(0, L),
∂

∂x
u := u′. (5)

We will show that this operator is positive.

Indeed, we �x v ∈ Lp(0, L), p ∈ [1,∞] and
we search for a solution to

λu +
∂

∂x
u = v , Reλ > 0,

belonging to D( ∂
∂x

). We multiply the equation by eλx .

∂

∂x
(ueλx ) = veλx .

Since u(0) = 0, we get

u =

∫ x

0

e−λ(x−p)v(p)dp

and by the Young inequality for convolution

‖u‖Lp(0,L) ≤ ‖v‖Lp(0,L)

∥∥∥e−λx∥∥∥
L1(0,L)

≤
‖v‖Lp(0,L)

Reλ
for Reλ > 0.

Obviously, zero belongs to the resolvent set of ∂
∂x

and ( ∂
∂x

)−1 = I , where I is an
integration operator de�ned in (2).
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D((
∂

∂x
)α) = {u ∈ Lp(0, L) : u ∈ R(Iα)}

and

(
∂

∂x
)α := (((

∂

∂x
)−1)α)−1.

Making use of ( ∂
∂x

)−1 = I we arrive at(
∂

∂x

)α
= I−α.

Let us recall

Proposition

[1, Theorem 7.1.1] Let α, β ∈ C and let A be a non-negative and injective operator.
If u ∈ D(Aα+β) ∩ D(Aβ), then Aβu ∈ D(Aα) and AαAβu = Aα+βu.

If u ∈ D(I−α), then u ∈ D(I 1−α) = Lp(0, L). We apply Proposition with parameters
α = −1 and β = 1− α and we obtain that I 1−αu ∈ D(I−1) and I−αu = I−1I 1−αu.
Furthermore,

I−1I 1−αu =
∂

∂x
I 1−αu = ∂αu.

Summing up the results, we obtain that

(
∂

∂x
)αu = ∂αu for every u ∈ D((

∂

∂x
)α) = D(I−α) = R(Iα).
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Theorem

[1, Theorem 12.1.9] Let ∂
∂x

be de�ned by (5) and p ∈ (1,∞). Then,∥∥∥∥(
∂

∂x
)iτ
∥∥∥∥
Lp(0,L)

≤ c(1 + |τ |)e
π|τ|
2 for τ 6= 0.

Proposition

For L > 0, α ∈ (0, 1), p ∈ (1,∞) the operators Iα : Lp(0, L) −→ 0Hα,p(0, L) and
∂α : 0Hα,p(0, L) −→ Lp(0, L) are isomorphism and the following inequalities hold

c−1‖u‖
0Hα,p(0,L) ≤ ‖∂αu‖Lp(0,L) ≤ c‖u‖

0Hα,p(0,L) for u ∈ 0H
α,p(0, L),

c−1‖Iαf ‖
0Hα,p(0,L) ≤ ‖f ‖Lp(0,L) ≤ c‖Iαf ‖

0Hα,p(0,L) for f ∈ Lp(0, L).

Here by 0Hα,p(0, L) we denote the fractional Lebesgue space de�ned by

0H
α,p(0, L) := [Lp(0, L), 0W

1,p(0, L)]α

and c denotes a positive constant dependent on α, p, L.
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Proposition

[1, Theorem 3.1.8 and Corollary 5.1.12] Let Reα > 0 and A be an non-negative
operator. Then, Jα is closable and Aα = Jα if and only if A is densely de�ned.

Proposition

Let L > 0 and 0 < α < 1. Let us discuss the operator ∂
∂x

de�ned in (5). Then, the

Balakrishnan operator Jα of ∂
∂x

coincides with the Caputo derivative Dα.
Furthermore, the operator ∂α de�ned on 0Hα,p(0, L) is the closure of Dα de�ned on

0W 1,p(0, L).

Let us calculate the Balakrishnan operator of ∂
∂x

. For u ∈ D( ∂
∂x

) we have

Jαu =
sinαπ

π

∫ ∞
0

λα−1(λ+
∂

∂x
)−1

∂

∂x
udλ

=
sinαπ

π

∫ ∞
0

λα−1
∫ x

0

e−λ(x−p)u′(p)dpdλ

=
sinαπ

π

∫ x

0

u′(p)

∫ ∞
0

λα−1e−λ(x−p)dλdp.

Applying substitution λ(x − p) = w we get

Jαu =
1

Γ(1− α)

∫ x

0

(x − p)−αu′(p)dp = Dαu.
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De�nition

0H
α(0, 1) =


Hα(0, 1) for α ∈ (0, 1

2
),

{u ∈ H
1
2 (0, 1) :

∫
1

0

|u(t)|2
t

dt <∞} for α = 1

2
,

{u ∈ Hα(0, 1) : u(0) = 0} for α ∈ ( 1
2
, 1).

Theorem

The operators ∂α : 0Hα(0, 1)→ L2(0, 1), Iα : L2(0, 1)→ 0Hα(0, 1) are isomorphism
and

c−1α ‖u‖0Hα(0,1) ≤ ‖∂αu‖L2(0,1) ≤ cα‖u‖0Hα(0,1) for u ∈ 0H
α(0, 1),

cα‖Iαf ‖0Hα(0,1) ≤ ‖f ‖L2(0,1) ≤ cα‖Iαf ‖0Hα(0,1) for f ∈ L2(0, 1).

We have to deal with
∂

∂x
Dαu =

∂

∂x
I 1−αux = ∂αux .

We de�ne the domain of ∂
∂x

Dα by

D(
∂

∂x
Dα) ≡ Dα := {u ∈ H1+α(0, 1) : ux ∈ 0H

α(0, 1), u(1) = 0}.
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Theorem

Operator ∂
∂x

Dα : Dα ⊆ L2(0, 1)→ L2(0, 1) generates an analytic semigroup.

Idea of the proof:
∂
∂x

Dα : Dα ⊆ L2(0, 1)→ L2(0, 1) generates a C0 semigroup of contractions.

Re(− ∂
∂x D

αu, u) ≥ 0

R(λI − ∂
∂x D

α) = L2(0, 1) for λ > 0.

Proposition

Let us discuss ∂
∂x

Dα : Dα → L2(0, 1). Then, for every λ ∈ C belonging to the sector

ϑα := {z ∈ C \ {0} : |arg z| ≤
π(α+ 1)

2
} ∪ {0} (6)

there holds

R(λE −
∂

∂x
Dα) = L2(0, 1).

σ(
∂

∂x
Dα) = {λ ∈ C : Eα+1(λ) = 0}.
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∂
∂x
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Re(− ∂
∂x D

αu, u) ≥ 0

R(λI − ∂
∂x D

α) = L2(0, 1) for λ > 0.
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Let us discuss ∂
∂x

Dα : Dα → L2(0, 1). Then, for every λ ∈ C belonging to the sector
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2
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The solution to

λu −
∂

∂x
Dαu = g

is given by

u(x) = (Eα+1(λ))−1(g∗yαEα+1,α+1(λyα+1))(1)Eα+1(λxα+1)−g∗xαEα+1,α+1(λxα+1).

An analytic extension of C0- semigroup on a sector of complex plane.

Proposition

For u ∈ Dα we have

Re(−
∂

∂x
Dαu, u) ≥ cα ‖u‖2

H
1+α
2 (0,1)

(7)

and ∣∣∣∣(− ∂

∂x
Dαu, u)

∣∣∣∣ ≤ bα ‖u‖2
H
1+α
2 (0,1)

, (8)

where cα, bα are positive constant which depends only on α.
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Theorem

Let us consider problem ut − ∂
∂x

Dαu = 0 in (0, 1)× (0,T ),
ux (0, t) = 0, u(1, t) = 0 for t ∈ (0,T ),
u(x , 0) = u0(x) in (0, 1).

If we assume that u0 ∈ L2(0, 1), then there exists exactly one solution which belongs
to C([0,T ]; L2(0, 1)) ∩ C((0,T ];Dα) ∩ C1((0,T ]; L2(0, 1)). Furthermore, there exists
a positive constant c = c(T ), such that the following estimate holds for every
t ∈ (0,T ]

‖u(·, t)‖L2(0,1) + t ‖ut(·, t)‖L2(0,1) + t

∥∥∥∥ ∂∂x Dαu(·, t)

∥∥∥∥
L2(0,1)

≤ c ‖u0‖L2(0,1) .

Nevertheless, u ∈ C∞((0,T ]; L2(0, 1)) and for every t ∈ (0,T ], for very k ∈ N we
have u(·, t) ∈ D(( ∂

∂x
Dα)k ). The last property implies that u(·, t) ∈ C∞(0, 1) for

every t ∈ (0,T ], however u has a singularity of the form xα+1 at the left endpoint of
the interval.
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Case with Dirichlet boundary conditions

 ut − ∂
∂x

Dαu = f in (0, 1)× (0,T ),
u(0, t) = 0, u(1, t) = 0 for t ∈ (0,T ),
u(x , 0) = u0(x) in (0, 1),

(9)

Let us introduce

Dα := {u = w − w(1)xα, where w ∈ 0H
1+α(0, 1)}.

We equip Dα with the following norm

‖u‖Dα = ‖w‖H1+α(0,1) for α ∈ (0, 1) \ {
1

2
}

and

‖u‖Dα =

(
‖w‖2

H
3
2 (0,1)

+

∫
1

0

|wx (x)|2

x
dx

) 1
2

for α =
1

2
.

Theorem

The operator ∂
∂x

Dα : Dα ⊆ L2(0, 1)→ L2(0, 1) is a densely de�ned sectorial operator,
thus it generates an analytic semigroup.
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Case with prescribed �ux at the left boundary

 ut − ∂
∂x

Dαu = f in (0, 1)× (0,T ),
(Dαu)(0, t) = h(t), u(1, t) = 0 for t ∈ (0,T ),
u(x , 0) = u0(x) in (0, 1).

(10)

Proposition

Let F be an absolutely continuous function and f := F ′. Then we denote

(DαF )(0) := lim
x→0

1

Γ(1− α)

∫ x

0

(x − p)−αf (p)dp.

1 If (DαF )(0) exists and (DαF )(0) = c, then limy→0

F (y)
yα

= c
Γ(1+α)

,

2 if the limit limy→0

f (y)

yα−1
exists and limy→0

f (y)

yα−1
= c

Γ(α)
, then (DαF )(0) = c.

Hence, it is natural to search for a solution to (10) in the form

u =
h(t)

Γ(1 + α)
xα + v , vx ∈ 0H

α(0, 1). (11)
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Solution to the Stefan problem

Theorem

Let b,T > 0 and α ∈ (0, 1). Let us assume that

u0 ∈ H1+α(0, b), u′
0
∈ 0Hα(0, b), u0(b) = 0 and u0 ≥ 0, u0 6≡ 0.

∃M > 0 ∀x ∈ [0, b] u0(x) ≤
MΓ(2− α)

b1−α
(b − x).

Then, there exists exactly one (u, s) a solution to the system (1), s.t.

s ∈ C1([0,T ]) and 0 < ṡ(t) ≤ M for all t ∈ [0,T ],

u,Dαu ∈ C(Qs,T ), ut ,
∂
∂x

Dαu ∈ C(Qs,T ),

ux ∈ C(Qs,T ) in the case α ∈ ( 1
2
, 1) and ux ∈ C(Qs,T \ ({t = 0} × [0, b])) in the

case α ∈ (0, 1
2

].

There exists β ∈ (α, 1), such that for every t ∈ (0,T ] and every

0 < ε < ω < s(t) we have u(·, t) ∈W
2, 1

1−β (ε, ω).
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The idea of the proof

The solution to parabolic type problem in non-cylindrical domain with given
boundary s, where

s ∈ C0,1[0,T ], 0 < ṡ ≤ M for a.a. t ∈ (0,T ). (12)

Transformation to cylindrical domain p = x
s(t) , v(p, t) := u(s(t)p, t) = u(x, t) vt − x ṡ(t)

s(t) vx −
1

s1+α(t)
∂
∂x D

αv = 0 for 0 < x < 1, 0 < t < T ,

vx (0, t) = 0, v(1, t) = 0 for t ∈ (0,T ),
v(x, 0) = v0(x) for 0 < x < 1.

(13)

Existence and regularity of the solution by means of evolution operator theory.

t 7→ A(t) :=
1

s1+α(t)

∂

∂x
Dα ∈ C0,1([0,T ]; B(Dα, L2(0, 1)))

and A(t) is sectorial for every t ∈ [0,T ] and A(t) have common domain.

v(x, t) = G(t, 0)v0(x) +

∫ t

0
G(t, σ)

ṡ(σ)

s(σ)
xvx (x, σ)dσ.

Higher spatial regularity in the interior of the domain.
We note that vx (t, 1) need not to vanish.
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ṡ(σ)

s(σ)
xvx (x, σ)dσ.

Higher spatial regularity in the interior of the domain.
We note that vx (t, 1) need not to vanish.

Katarzyna Ryszewska A semigroup approach to the space-fractional di�usion



The idea of the proof

The solution to parabolic type problem in non-cylindrical domain with given
boundary s, where
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t 7→ A(t) :=
1

s1+α(t)

∂

∂x
Dα ∈ C0,1([0,T ]; B(Dα, L2(0, 1)))

and A(t) is sectorial for every t ∈ [0,T ] and A(t) have common domain.

v(x, t) = G(t, 0)v0(x) +

∫ t

0
G(t, σ)

ṡ(σ)

s(σ)
xvx (x, σ)dσ.

Higher spatial regularity in the interior of the domain.

We note that vx (t, 1) need not to vanish.
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The maximum principles

Lemma

Let f ∈ AC [0, L] and for every ε ∈ (0, L) f ∈W
1, 1

1−β (ε, L) for some β ∈ (0, 1]. Then,
if f attains its maximum at the point x0 ∈ (0, L], then for every α ∈ (0, β) there holds
the inequality (Dαf )(x0) ≥ 0. Furthermore, if f is not constant on [0, x0], then
(Dαf )(x0) > 0.

Lemma

Let f ∈ AC [0, L] and f ′ ∈W
1, 1

1−β (ε, L) for every ε > 0 and for �xed β ∈ (0, 1). If f
attains its maximum at x0 ∈ (0, L), then ( ∂

∂x
Dαf )(x0) ≤ 0 for every α ∈ (0, β).

Furthermore, if f is not constant on [0, x0], then ( ∂
∂x

Dαf )(x0) < 0.
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Space-fractional version of the Hopf's, lemma, i.e. Dαu(s(t), t) < 0.

Proposition

Let u be a nonnegative solution to ut − ∂
∂x

Dαu = 0 in Qs,T , where s satis�es (12).

We assume that u has the following regularity u ∈ C(Qs,T ), ut ∈ C(Qs,T ),

u(·, t) ∈ AC [0, s(t)] for every t ∈ (0,T ), ∂
∂x

Dαu ∈ C(Qs,T ). Furthermore, for every

t ∈ (0,T ), for every 0 < ε < ω < s(t) we have u(·, t) ∈W
2, 1

1−β (ε, ω) for some
β ∈ (α, 1]. Let t0 ∈ (0,T ] be �xed. Then if u(s(t0), t0) = 0, then either
(Dαu)(s(t0), t0) < 0 or u ≡ 0 on Qs,t0 .

Estimates

(Dαu)(s(t), t) ≥ −M, 0 ≤ u(x , t) ≤ MΓ(2− α)sα−1(t)(s(t)− x).

Solution of the space-fractional Stefan problem by means of Schauder �xed point
theorem.

Σ := {s ∈ C0,1[0,T ], 0 < ṡ ≤ M, s(0) = b}.

(Ps)(t) = b −
∫ t

0

(Dαu)(s(τ), τ)dτ = . . .

· · · = b +

∫ b

0

u0(x)dx −
∫ s(t)

0

u(x , t)dx .

P : Σ→ Σ and P is continuous in maximum norm.
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(Ps)(t) = b −
∫ t

0

(Dαu)(s(τ), τ)dτ = . . .

· · · = b +

∫ b

0

u0(x)dx −
∫ s(t)

0

u(x , t)dx .

P : Σ→ Σ and P is continuous in maximum norm.

Katarzyna Ryszewska A semigroup approach to the space-fractional di�usion



Space-fractional version of the Hopf's, lemma, i.e. Dαu(s(t), t) < 0.

Proposition

Let u be a nonnegative solution to ut − ∂
∂x

Dαu = 0 in Qs,T , where s satis�es (12).

We assume that u has the following regularity u ∈ C(Qs,T ), ut ∈ C(Qs,T ),

u(·, t) ∈ AC [0, s(t)] for every t ∈ (0,T ), ∂
∂x

Dαu ∈ C(Qs,T ). Furthermore, for every

t ∈ (0,T ), for every 0 < ε < ω < s(t) we have u(·, t) ∈W
2, 1

1−β (ε, ω) for some
β ∈ (α, 1]. Let t0 ∈ (0,T ] be �xed. Then if u(s(t0), t0) = 0, then either
(Dαu)(s(t0), t0) < 0 or u ≡ 0 on Qs,t0 .

Estimates

(Dαu)(s(t), t) ≥ −M, 0 ≤ u(x , t) ≤ MΓ(2− α)sα−1(t)(s(t)− x).

Solution of the space-fractional Stefan problem by means of Schauder �xed point
theorem.

Σ := {s ∈ C0,1[0,T ], 0 < ṡ ≤ M, s(0) = b}.

(Ps)(t) = b −
∫ t

0

(Dαu)(s(τ), τ)dτ = . . .

· · · = b +

∫ b

0

u0(x)dx −
∫ s(t)

0

u(x , t)dx .

P : Σ→ Σ and P is continuous in maximum norm.

Katarzyna Ryszewska A semigroup approach to the space-fractional di�usion



The monotone dependence upon data

Theorem

Let (ui , si ) be a solution to (1) corresponding to bi and ui
0
for i = 1, 2. If b1 ≤ b2 and

u1
0
≤ u2

0
, then for every t ∈ [0,T ] we have s1(t) ≤ s2(t).
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Self-similar solution

 ut − ∂
∂x

Dαu = 0 in {(x , t) : 0 < x < s(t), 0 < t <∞},
u(0, t) = c1, u(t, s(t)) = 0 for t ∈ (0,∞),
ṡ(t) = −(Dαu)(s(t), t) for t ∈ (0,∞),

(14)

where we assume that s(0) = 0 and c1 > 0.

similarity variable ξ = xt−
1
α+1 ,

F (ξ) = F (xt−
1
α+1 ) := u(x , t),

∂αF ′(ξ) = −
ξ

α+ 1
F ′(ξ).
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Proposition

Let us consider the problem for �xed c1 > 0, R > 0, c2 < 0.{
∂αF ′(ξ) = − ξ

α+1
F ′(ξ) for 0 < ξ < R,

F (0) = c1, I 1−αF ′(0) = c2,
(15)

There exists exactly one solution to (15) which belongs to

XR,c1,c2 := {v ∈ C1((0,R]) : ξ1−αv ′ ∈ C([0,R]), v(0) = c1, I 1−αv ′(0) = c2}.

Furthermore, the solution is given by the formula

F (ξ) = c1 +
c2

Γ(α+ 1)

[
ξα + Γ(α+ 1)ξα

∞∑
k=1

(
−ξ1+α

1 + α

)k ∏k
i=1

(iα+ i − 1)

Γ((α+ 1)(k + 1))

]
, (16)

where the series is uniformly convergent on [0,R]. Finally, if we de�ne

u(x , t) := F (xt−
1

1+α ), (17)

then u(0, t) = c1 and u satis�es (14)1 on {(x , t) : 0 < x < Rt
1
α+1 , 0 < t <∞}.
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In the next lemma we obtain the family (uR , sR)R>0 of solutions to (14)1 and (14)3.

Proposition

For every c1 > 0 and every R > 0 the functions

sR(t) = Rt
1

1+α , (18)

uR(x , t) = c1 +
c̃2

Γ(α+ 1)
[xαt−

α
α+1

+Γ(α+ 1)xαt−
α
α+1

∞∑
k=1

(
−x1+α

(1 + α)t

)k ∏k
i=1

(iα+ i − 1)

Γ((α+ 1)(k + 1))
] (19)

where

c̃2 = −
R

(1 + α)

[
1 +

∑∞
k=1

(
−R1+α

1+α

)k ∏k
i=1(iα+i−1)

Γ((α+1)k+1)

] (20)

satisfy the equation (14)3. Moreover, uR is a solution to (14)1 with s(t) = sR(t) and
uR(0, t) = c1.
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It remains to choose R > 0 such that the pair (uR , sR) given by Lemma (12) satis�es
uR(sR(t), t) = 0.

Theorem

For every c1 > 0 there exists c0 > 0 such that the pair (u, s) := (uc0 , sc0 ), where
(uc0 , sc0 ) come from Lemma 12 with R = c0, satis�es the system (14). Furthermore,

∀x > 0 u(x , ·), ut(x , ·), ux (x , ·) ∈ C([s−1(x),∞)) (21)

∀t > 0 u(·, t), ut(·, t) ∈ C([0, s(t)]), ux (·, t) ∈ C((0, s(t)]) (22)

and

∀t > 0
∂

∂x
Dαu(·, t) ∈ C([0, s(t)]). (23)

Finally, u > 0, ut > 0, ux < 0 on {(x , t) : 0 < x < s(t), 0 < t <∞}.
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