A semigroup approach to the space-fractional diffusion

Katarzyna Ryszewska

Warsaw University of Technology, Poland

05.11.2020

Katarzyna Ryszewska 💦 A semigroup approach to the space-fractional diffusion

$$\begin{cases} u_t - \frac{\partial}{\partial x} D^{\alpha} u = 0 & \text{in } Q_{s,T}, \\ u_x(0,t) = 0, \quad u(t,s(t)) = 0 & \text{for } t \in (0,T), \\ u(x,0) = u_0(x) & \text{for } 0 < x < s(0) = b, \\ \dot{s}(t) = -(D^{\alpha} u)(s(t),t) & \text{for } t \in (0,T), \end{cases}$$
(1)

$$Q_{s,T} := \{(x,t) : 0 < x < s(t), 0 < t < T\}.$$
$$(D^{\alpha}u)(x) = \frac{1}{\Gamma(1-\alpha)} \int_{0}^{x} (x-p)^{-\alpha} u'(p) dp.$$

- V. Voller, Fractional Stefan Problems, 2017.
- V. Voller, On a fractional derivative form of the Green-Ampt infiltration model, 2011.

3 x 3

Let $\alpha \in (0,1)$. For integrable function u we define the fractional integral

$$(I^{\alpha}u)(x) = \frac{1}{\Gamma(\alpha)} \int_0^x (x-p)^{\alpha-1} u(p) dp.$$

э

Let $\alpha \in (0, 1)$. For integrable function u we define the fractional integral

$$(I^{\alpha}u)(x) = \frac{1}{\Gamma(\alpha)} \int_0^x (x-p)^{\alpha-1} u(p) dp.$$

The Riemann-Liouville fractional derivative is defined by the formula

$$(\partial^{\alpha} u)(x) = \left(\frac{\partial}{\partial x} I^{1-\alpha} u\right)(x) = \frac{1}{\Gamma(1-\alpha)} \frac{\partial}{\partial x} \int_{0}^{x} (x-p)^{-\alpha} u(p) dp$$

э

() <) <)
 () <)
 () <)
 () <)
</p>

Let $\alpha \in (0, 1)$. For integrable function u we define the fractional integral

$$(I^{\alpha}u)(x) = \frac{1}{\Gamma(\alpha)} \int_0^x (x-p)^{\alpha-1} u(p) dp.$$

The Riemann-Liouville fractional derivative is defined by the formula

$$(\partial^{\alpha} u)(x) = \left(\frac{\partial}{\partial x} I^{1-\alpha} u\right)(x) = \frac{1}{\Gamma(1-\alpha)} \frac{\partial}{\partial x} \int_{0}^{x} (x-p)^{-\alpha} u(p) dp$$

and the Caputo derivative

$$(D^{\alpha}u)(x) = (\partial^{\alpha}(u - u(0)))(x) = \frac{\partial}{\partial x}(I^{1-\alpha}[u - u(0)])(x) =$$
$$= \frac{1}{\Gamma(1-\alpha)}\frac{\partial}{\partial x}\int_{0}^{x}(x-p)^{-\alpha}[u(p) - u(0)]dp.$$

э

() <) <)
 () <)
 () <)
 () <)
</p>

Let $\alpha \in (0, 1)$. For integrable function u we define the fractional integral

$$(I^{\alpha}u)(x) = \frac{1}{\Gamma(\alpha)} \int_0^x (x-p)^{\alpha-1} u(p) dp.$$

The Riemann-Liouville fractional derivative is defined by the formula

$$(\partial^{\alpha} u)(x) = \left(\frac{\partial}{\partial x} I^{1-\alpha} u\right)(x) = \frac{1}{\Gamma(1-\alpha)} \frac{\partial}{\partial x} \int_{0}^{x} (x-p)^{-\alpha} u(p) dp$$

and the Caputo derivative

$$(D^{\alpha}u)(x) = (\partial^{\alpha}(u - u(0)))(x) = \frac{\partial}{\partial x}(I^{1-\alpha}[u - u(0)])(x) =$$
$$= \frac{1}{\Gamma(1-\alpha)}\frac{\partial}{\partial x}\int_{0}^{x}(x-p)^{-\alpha}[u(p) - u(0)]dp.$$

For *u* absolutely continuous we have

$$(D^{\alpha}u)(x) = \frac{1}{\Gamma(1-\alpha)} \int_0^x (x-p)^{-\alpha} u'(p) dp.$$

4 3 5 4 3 5 5

э

Let us define the operator of integration on $L^p(0,L)$ for $p\in [1,\infty]$ by

$$(If)(x) = \int_0^x f(p)dp \quad \text{for } f \in L^p(0,L).$$
(2)

<回ト < Eト < Eト

э

Let us define the operator of integration on $L^p(0,L)$ for $p \in [1,\infty]$ by

$$(If)(x) = \int_0^x f(p)dp \quad \text{for } f \in L^p(0,L).$$
(2)

Proposition

Let L > 0, $p \in [1, \infty]$ and $\lambda \in \mathbb{C}$, $\lambda \neq 0$. If $u, v \in L^1(0, L)$, then

$$(\lambda E + I)v(t) = u(t) \iff v(t) = \lambda^{-1}u(t) - \lambda^{-2} \int_0^t u(s)e^{\frac{s-t}{\lambda}} ds.$$
(3)

Furthermore, $I + \lambda E : L^p(0, L) \longrightarrow L^p(0, L)$ is an isomorphism and there holds the following estimate

$$\|(\lambda E + I)^{-1}\|_{B(L^{p}(0,L))} \le (1 + \sqrt{2})|\lambda|^{-1} \quad \text{for} \quad \lambda \in \Sigma,$$
(4)

where

$$\Sigma = \{ z \in \mathbb{C} : \operatorname{Re} z > |\operatorname{Im} z| \}.$$

▲ 플 → - ▲ 플 →

[1, Definition 1.1.1] We say that A is non-negative if $(-\infty, 0) \subseteq \rho(A)$ and there exists M > 0 such that

$$\|(\lambda E + A)^{-1}\|_{B(X)} \leq \frac{M}{\lambda}$$
 for every $\lambda > 0$.

4 三下

ъ

[1, Definition 1.1.1] We say that A is non-negative if $(-\infty, 0) \subseteq \rho(A)$ and there exists M > 0 such that

$$\left\| (\lambda E + A)^{-1} \right\|_{B(X)} \leq \frac{M}{\lambda} \text{ for every } \lambda > 0.$$

Let A be a non-negative operator. We define for $0 < \operatorname{Re} \alpha < 1$ operator J^{α} as follows $D(J^{\alpha}) = D(A)$

$$J^{lpha}u=rac{\sinlpha\pi}{\pi}\int_{0}^{\infty}\lambda^{lpha-1}(\lambda+A)^{-1}Aud\lambda.$$

A 34 b

[1, Definition 1.1.1] We say that A is non-negative if $(-\infty, 0) \subseteq \rho(A)$ and there exists M > 0 such that

$$\|(\lambda E + A)^{-1}\|_{B(X)} \leq \frac{M}{\lambda}$$
 for every $\lambda > 0$.

Let A be a non-negative operator. We define for $0 < {
m Re}\, lpha < 1$ operator J^lpha as follows $D(J^lpha) = D(A)$

$$J^{lpha}u=rac{\sinlpha\pi}{\pi}\int_{0}^{\infty}\lambda^{lpha-1}(\lambda+A)^{-1}Aud\lambda.$$

Definition

[1, Definition 5.1.1] If A is non-negative and bounded we define $A^{\alpha} = J^{\alpha}$ for $\operatorname{Re} \alpha > 0$.

4 3 5 4 3 5 5

[1, Definition 1.1.1] We say that A is non-negative if $(-\infty, 0) \subseteq \rho(A)$ and there exists M > 0 such that

$$\|(\lambda E + A)^{-1}\|_{B(X)} \leq \frac{M}{\lambda}$$
 for every $\lambda > 0$.

Let A be a non-negative operator. We define for $0<{
m Re}\,lpha<1$ operator J^lpha as follows $D(J^lpha)=D(A)$

$$J^{lpha}u=rac{\sinlpha\pi}{\pi}\int_{0}^{\infty}\lambda^{lpha-1}(\lambda+A)^{-1}Aud\lambda.$$

Definition

[1, Definition 5.1.1] If A is non-negative and bounded we define $A^{\alpha} = J^{\alpha}$ for $\operatorname{Re} \alpha > 0$.

Definition

[1, Definition 5.1.2] Let A be an unbounded and positive operator (nonnegative and $0 \in \rho(A)$). We define for $\operatorname{Re} \alpha > 0$

$$A^{\alpha} = ((A^{-1})^{\alpha})^{-1}.$$

Here, the domain of A^{α} consists of $u \in X$ such that $u \in R((A^{-1})^{\alpha})$.

$$J^{\alpha}u = \frac{\sin \alpha \pi}{\pi} \int_0^{\infty} \lambda^{\alpha-1} (\lambda E + I)^{-1} I u d\lambda.$$

<ロ> <四> <四> <三</p>

= 990

$$J^{\alpha}u = \frac{\sin \alpha \pi}{\pi} \int_0^{\infty} \lambda^{\alpha-1} (\lambda E + I)^{-1} I u d\lambda.$$

By Proposition 1 we note that

$$(\lambda E+I)^{-1}Iu(t) = \lambda^{-1} \int_0^t u(\tau)d\tau - \lambda^{-2} \int_0^t \int_0^s u(\tau)d\tau e^{\frac{s-t}{\lambda}} ds = \lambda^{-1} \int_0^t u(\tau)e^{\frac{\tau-t}{\lambda}} d\tau.$$

- TR

э

$$J^{\alpha}u = \frac{\sin \alpha \pi}{\pi} \int_0^{\infty} \lambda^{\alpha-1} (\lambda E + I)^{-1} I u d\lambda.$$

By Proposition 1 we note that

$$(\lambda E+I)^{-1}Iu(t) = \lambda^{-1} \int_0^t u(\tau)d\tau - \lambda^{-2} \int_0^t \int_0^s u(\tau)d\tau e^{\frac{s-t}{\lambda}} ds = \lambda^{-1} \int_0^t u(\tau)e^{\frac{\tau-t}{\lambda}} d\tau.$$

Hence,

$$J^{\alpha}u = \frac{\sin \alpha \pi}{\pi} \int_0^{\infty} \lambda^{\alpha-2} \int_0^t u(\tau) e^{\frac{\tau-t}{\lambda}} d\tau d\lambda.$$

э

.⊒⇒

∃ →

$$J^{\alpha}u = \frac{\sin \alpha \pi}{\pi} \int_0^{\infty} \lambda^{\alpha-1} (\lambda E + I)^{-1} I u d\lambda.$$

By Proposition 1 we note that

$$(\lambda E+I)^{-1}Iu(t) = \lambda^{-1} \int_0^t u(\tau)d\tau - \lambda^{-2} \int_0^t \int_0^s u(\tau)d\tau e^{\frac{s-t}{\lambda}} ds = \lambda^{-1} \int_0^t u(\tau)e^{\frac{\tau-t}{\lambda}} d\tau.$$

Hence,

$$J^{\alpha}u = \frac{\sin \alpha \pi}{\pi} \int_0^{\infty} \lambda^{\alpha-2} \int_0^t u(\tau) e^{\frac{\tau-t}{\lambda}} d\tau d\lambda.$$

Applying the Fubini theorem and then the substitution $rac{t- au}{\lambda}=p$ we arrive at

$$J^{\alpha} u = \frac{\sin \alpha \pi}{\pi} \int_0^t u(\tau) (t-\tau)^{\alpha-1} \int_0^\infty p^{-\alpha} e^{-p} dp d\tau$$

$$=\frac{\sin\alpha\pi}{\pi}\int_0^t u(\tau)(t-\tau)^{\alpha-1}d\tau\Gamma(1-\alpha)=\frac{1}{\Gamma(\alpha)}\int_0^t u(\tau)(t-\tau)^{\alpha-1}d\tau.$$

∃ 𝒫𝔅

伺 ト イヨ ト イヨト

$$J^{\alpha}u = \frac{\sin \alpha \pi}{\pi} \int_0^{\infty} \lambda^{\alpha-1} (\lambda E + I)^{-1} I u d\lambda.$$

By Proposition 1 we note that

$$(\lambda E+I)^{-1}Iu(t) = \lambda^{-1} \int_0^t u(\tau)d\tau - \lambda^{-2} \int_0^t \int_0^s u(\tau)d\tau e^{\frac{s-t}{\lambda}} ds = \lambda^{-1} \int_0^t u(\tau)e^{\frac{\tau-t}{\lambda}} d\tau.$$

Hence,

$$J^{\alpha}u = \frac{\sin \alpha \pi}{\pi} \int_0^{\infty} \lambda^{\alpha-2} \int_0^t u(\tau) e^{\frac{\tau-t}{\lambda}} d\tau d\lambda.$$

Applying the Fubini theorem and then the substitution $rac{t- au}{\lambda}=
ho$ we arrive at

$$J^{\alpha} u = \frac{\sin \alpha \pi}{\pi} \int_0^t u(\tau)(t-\tau)^{\alpha-1} \int_0^{\infty} p^{-\alpha} e^{-p} dp d\tau$$
$$= \frac{\sin \alpha \pi}{\pi} \int_0^t u(\tau)(t-\tau)^{\alpha-1} d\tau \Gamma(1-\alpha) = \frac{1}{\Gamma(\alpha)} \int_0^t u(\tau)(t-\tau)^{\alpha-1} d\tau$$

Proposition

Let $\operatorname{Re} \alpha, L > 0$, $p \in [1, \infty]$. Then the operator I^{α} defined as an operator acting on $L^{p}(0, L)$ coincides with the fractional power of integration operator defined by (2).

$$\frac{\partial}{\partial x}: D(\frac{\partial}{\partial x}):= {}_{0}W^{1,\rho}(0,L) \to L^{p}(0,L), \qquad \frac{\partial}{\partial x}u:=u'.$$
(5)

We will show that this operator is positive.

 э

B b

$$\frac{\partial}{\partial x}: D(\frac{\partial}{\partial x}):= {}_{0}W^{1,p}(0,L) \to L^{p}(0,L), \qquad \frac{\partial}{\partial x}u:=u'.$$
(5)

We will show that this operator is positive. Indeed, we fix $v \in L^p(0, L)$, $p \in [1, \infty]$ and we search for a solution to

$$\lambda u + \frac{\partial}{\partial x}u = v, \quad \operatorname{Re} \lambda > 0,$$

belonging to $D(\frac{\partial}{\partial x})$.

4 3 5 4 3 5 5

э.

$$\frac{\partial}{\partial x}: D(\frac{\partial}{\partial x}):= {}_{0}W^{1,p}(0,L) \to L^{p}(0,L), \qquad \frac{\partial}{\partial x}u:=u'.$$
(5)

We will show that this operator is positive. Indeed, we fix $v \in L^p(0, L)$, $p \in [1, \infty]$ and we search for a solution to

$$\lambda u + \frac{\partial}{\partial x}u = v, \quad \operatorname{Re} \lambda > 0$$

belonging to $D(rac{\partial}{\partial x})$. We multiply the equation by $e^{\lambda x}$.

$$\frac{\partial}{\partial x}(ue^{\lambda x})=ve^{\lambda x}.$$

Since u(0) = 0, we get

$$u = \int_0^x e^{-\lambda(x-p)} v(p) dp$$

and by the Young inequality for convolution

$$\|u\|_{L^p(0,L)} \le \|v\|_{L^p(0,L)} \left\|e^{-\lambda x}\right\|_{L^1(0,L)} \le \frac{\|v\|_{L^p(0,L)}}{\operatorname{Re}\lambda} \text{ for } \operatorname{Re}\lambda > 0.$$

프 > * 프 >

$$\frac{\partial}{\partial x}: D(\frac{\partial}{\partial x}):= {}_{0}W^{1,p}(0,L) \to L^{p}(0,L), \qquad \frac{\partial}{\partial x}u:=u'.$$
(5)

We will show that this operator is positive. Indeed, we fix $v \in L^p(0, L)$, $p \in [1, \infty]$ and we search for a solution to

$$\lambda u + \frac{\partial}{\partial x}u = v, \quad \operatorname{Re} \lambda > 0$$

belonging to $D(\frac{\partial}{\partial x})$. We multiply the equation by $e^{\lambda x}$.

$$\frac{\partial}{\partial x}(ue^{\lambda x})=ve^{\lambda x}.$$

Since u(0) = 0, we get

$$u = \int_0^x e^{-\lambda(x-p)} v(p) dp$$

and by the Young inequality for convolution

$$\|u\|_{L^{p}(0,L)} \leq \|v\|_{L^{p}(0,L)} \left\|e^{-\lambda x}\right\|_{L^{1}(0,L)} \leq \frac{\|v\|_{L^{p}(0,L)}}{\operatorname{Re}\lambda} \text{ for } \operatorname{Re}\lambda > 0.$$

Obviously, zero belongs to the resolvent set of $\frac{\partial}{\partial x}$ and $(\frac{\partial}{\partial x})^{-1} = I$, where I is an integration operator defined in (2).

$$D((\frac{\partial}{\partial x})^{\alpha}) = \{ u \in L^{p}(0,L) : u \in R(I^{\alpha}) \}$$

$$\left(\frac{\partial}{\partial x}\right)^{\alpha} := \left(\left(\left(\frac{\partial}{\partial x}\right)^{-1}\right)^{\alpha}\right)^{-1}.$$

Katarzyna Ryszewska 💦 A semigroup approach to the space-fractional diffusion

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

$$D((\frac{\partial}{\partial x})^{\alpha}) = \{ u \in L^{p}(0, L) : u \in R(I^{\alpha}) \}$$

$$\left(\frac{\partial}{\partial x}\right)^{\alpha} := \left(\left(\left(\frac{\partial}{\partial x}\right)^{-1}\right)^{\alpha}\right)^{-1}.$$

Making use of $(\frac{\partial}{\partial x})^{-1} = I$ we arrive at

$$\left(\frac{\partial}{\partial x}\right)^{\alpha} = I^{-\alpha}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

$$D((\frac{\partial}{\partial x})^{\alpha}) = \{ u \in L^{p}(0, L) : u \in R(I^{\alpha}) \}$$

$$\left(\frac{\partial}{\partial x}\right)^{\alpha} := \left(\left(\left(\frac{\partial}{\partial x}\right)^{-1}\right)^{\alpha}\right)^{-1}.$$

Making use of $(\frac{\partial}{\partial x})^{-1} = I$ we arrive at

$$\left(\frac{\partial}{\partial x}\right)^{\alpha} = I^{-\alpha}.$$

Let us recall

Proposition

[1, Theorem 7.1.1] Let $\alpha, \beta \in \mathbb{C}$ and let A be a non-negative and injective operator. If $u \in D(A^{\alpha+\beta}) \cap D(A^{\beta})$, then $A^{\beta}u \in D(A^{\alpha})$ and $A^{\alpha}A^{\beta}u = A^{\alpha+\beta}u$.

$$D((\frac{\partial}{\partial x})^{\alpha}) = \{ u \in L^{p}(0, L) : u \in R(I^{\alpha}) \}$$

$$\left(\frac{\partial}{\partial x}\right)^{\alpha} := \left(\left(\left(\frac{\partial}{\partial x}\right)^{-1}\right)^{\alpha}\right)^{-1}.$$

Making use of $(rac{\partial}{\partial x})^{-1} = I$ we arrive at

$$\left(\frac{\partial}{\partial x}\right)^{\alpha} = I^{-\alpha}.$$

Let us recall

Proposition

[1, Theorem 7.1.1] Let $\alpha, \beta \in \mathbb{C}$ and let A be a non-negative and injective operator. If $u \in D(A^{\alpha+\beta}) \cap D(A^{\beta})$, then $A^{\beta}u \in D(A^{\alpha})$ and $A^{\alpha}A^{\beta}u = A^{\alpha+\beta}u$.

If $u \in D(I^{-\alpha})$, then $u \in D(I^{1-\alpha}) = L^p(0, L)$. We apply Proposition with parameters $\alpha = -1$ and $\beta = 1 - \alpha$ and we obtain that $I^{1-\alpha}u \in D(I^{-1})$ and $I^{-\alpha}u = I^{-1}I^{1-\alpha}u$.

$$D((\frac{\partial}{\partial x})^{\alpha}) = \{ u \in L^{p}(0, L) : u \in R(I^{\alpha}) \}$$

$$\left(\frac{\partial}{\partial x}\right)^{\alpha} := \left(\left(\left(\frac{\partial}{\partial x}\right)^{-1}\right)^{\alpha}\right)^{-1}.$$

Making use of $(rac{\partial}{\partial x})^{-1} = I$ we arrive at

$$\left(\frac{\partial}{\partial x}\right)^{\alpha} = I^{-\alpha}.$$

Let us recall

Proposition

[1, Theorem 7.1.1] Let $\alpha, \beta \in \mathbb{C}$ and let A be a non-negative and injective operator. If $u \in D(A^{\alpha+\beta}) \cap D(A^{\beta})$, then $A^{\beta}u \in D(A^{\alpha})$ and $A^{\alpha}A^{\beta}u = A^{\alpha+\beta}u$.

If $u \in D(I^{-\alpha})$, then $u \in D(I^{1-\alpha}) = L^p(0, L)$. We apply Proposition with parameters $\alpha = -1$ and $\beta = 1 - \alpha$ and we obtain that $I^{1-\alpha}u \in D(I^{-1})$ and $I^{-\alpha}u = I^{-1}I^{1-\alpha}u$. Furthermore,

$$I^{-1}I^{1-\alpha}u = \frac{\partial}{\partial x}I^{1-\alpha}u = \partial^{\alpha}u.$$

$$D((\frac{\partial}{\partial x})^{\alpha}) = \{ u \in L^{p}(0, L) : u \in R(I^{\alpha}) \}$$

$$\left(\frac{\partial}{\partial x}\right)^{\alpha} := \left(\left(\left(\frac{\partial}{\partial x}\right)^{-1}\right)^{\alpha}\right)^{-1}.$$

Making use of $(rac{\partial}{\partial x})^{-1} = I$ we arrive at

$$\left(\frac{\partial}{\partial x}\right)^{\alpha} = I^{-\alpha}.$$

Let us recall

Proposition

[1, Theorem 7.1.1] Let $\alpha, \beta \in \mathbb{C}$ and let A be a non-negative and injective operator. If $u \in D(A^{\alpha+\beta}) \cap D(A^{\beta})$, then $A^{\beta}u \in D(A^{\alpha})$ and $A^{\alpha}A^{\beta}u = A^{\alpha+\beta}u$.

If $u \in D(I^{-\alpha})$, then $u \in D(I^{1-\alpha}) = L^p(0, L)$. We apply Proposition with parameters $\alpha = -1$ and $\beta = 1 - \alpha$ and we obtain that $I^{1-\alpha}u \in D(I^{-1})$ and $I^{-\alpha}u = I^{-1}I^{1-\alpha}u$. Furthermore,

$$I^{-1}I^{1-\alpha}u = \frac{\partial}{\partial x}I^{1-\alpha}u = \partial^{\alpha}u.$$

Summing up the results, we obtain that

$$(\frac{\partial}{\partial x})^{\alpha}u = \partial^{\alpha}u$$
 for every $u \in D((\frac{\partial}{\partial x})^{\alpha}) = D(I^{-\alpha}) = R(I^{\alpha}).$

Theorem

[1, Theorem 12.1.9] Let
$$\frac{\partial}{\partial x}$$
 be defined by (5) and $p \in (1, \infty)$. Then,
$$\left\| \left(\frac{\partial}{\partial x} \right)^{i\tau} \right\|_{L^p(0,L)} \leq c(1+|\tau|)e^{\frac{\pi|\tau|}{2}} \quad \text{for} \quad \tau \neq 0.$$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ● ●

Theorem

[1, Theorem 12.1.9] Let $\frac{\partial}{\partial x}$ be defined by (5) and $p \in (1, \infty)$. Then, $\left\| \left(\frac{\partial}{\partial x} \right)^{i\tau} \right\|_{L^p(0,L)} \leq c(1+|\tau|)e^{\frac{\pi|\tau|}{2}} \quad \text{for} \quad \tau \neq 0.$

Proposition

For $L > 0, \alpha \in (0, 1), p \in (1, \infty)$ the operators $I^{\alpha} : L^{p}(0, L) \longrightarrow {}_{0}H^{\alpha, p}(0, L)$ and $\partial^{\alpha} : {}_{0}H^{\alpha, p}(0, L) \longrightarrow L^{p}(0, L)$ are isomorphism and the following inequalities hold

$$c^{-1} \|u\|_{\mathbf{0}^{H^{\alpha,p}}(\mathbf{0},L)} \le \|\partial^{\alpha} u\|_{L^{p}(\mathbf{0},L)} \le c \|u\|_{\mathbf{0}^{H^{\alpha,p}}(\mathbf{0},L)} \quad \text{for } u \in {}_{\mathbf{0}}H^{\alpha,p}(\mathbf{0},L).$$

$$c^{-1} \|I^{\alpha}f\|_{\mathbf{0}H^{\alpha,p}(\mathbf{0},L)} \le \|f\|_{L^{p}(\mathbf{0},L)} \le c\|I^{\alpha}f\|_{\mathbf{0}H^{\alpha,p}(\mathbf{0},L)} \quad \text{for } f \in L^{p}(\mathbf{0},L)$$

Here by $_0H^{\alpha,p}(0,L)$ we denote the fractional Lebesgue space defined by

$$_{0}H^{\alpha,p}(0,L) := [L^{p}(0,L), {}_{0}W^{1,p}(0,L)]_{\alpha}$$

and c denotes a positive constant dependent on α , p, L.

[1, Theorem 3.1.8 and Corollary 5.1.12] Let $\operatorname{Re} \alpha > 0$ and A be an non-negative operator. Then, J^{α} is closable and $A^{\alpha} = \overline{J^{\alpha}}$ if and only if A is densely defined.

-

- **F**

[1, Theorem 3.1.8 and Corollary 5.1.12] Let $\operatorname{Re} \alpha > 0$ and A be an non-negative operator. Then, J^{α} is closable and $A^{\alpha} = \overline{J^{\alpha}}$ if and only if A is densely defined.

Proposition

Let L > 0 and $0 < \alpha < 1$. Let us discuss the operator $\frac{\partial}{\partial x}$ defined in (5). Then, the Balakrishnan operator J^{α} of $\frac{\partial}{\partial x}$ coincides with the Caputo derivative D^{α} . Furthermore, the operator ∂^{α} defined on $_{0}H^{\alpha,p}(0,L)$ is the closure of D^{α} defined on $_{0}W^{1,p}(0,L)$.

[1, Theorem 3.1.8 and Corollary 5.1.12] Let $\operatorname{Re} \alpha > 0$ and A be an non-negative operator. Then, J^{α} is closable and $A^{\alpha} = \overline{J^{\alpha}}$ if and only if A is densely defined.

Proposition

Let L > 0 and $0 < \alpha < 1$. Let us discuss the operator $\frac{\partial}{\partial x}$ defined in (5). Then, the Balakrishnan operator J^{α} of $\frac{\partial}{\partial x}$ coincides with the Caputo derivative D^{α} . Furthermore, the operator ∂^{α} defined on $_{0}H^{\alpha,p}(0,L)$ is the closure of D^{α} defined on $_{0}W^{1,p}(0,L)$.

Let us calculate the Balakrishnan operator of $rac{\partial}{\partial x}$. For $u\in D(rac{\partial}{\partial x})$ we have

$$J^{\alpha}u = \frac{\sin \alpha \pi}{\pi} \int_{0}^{\infty} \lambda^{\alpha-1} (\lambda + \frac{\partial}{\partial x})^{-1} \frac{\partial}{\partial x} u d\lambda$$

[1, Theorem 3.1.8 and Corollary 5.1.12] Let $\operatorname{Re} \alpha > 0$ and A be an non-negative operator. Then, J^{α} is closable and $A^{\alpha} = \overline{J^{\alpha}}$ if and only if A is densely defined.

Proposition

Let L > 0 and $0 < \alpha < 1$. Let us discuss the operator $\frac{\partial}{\partial x}$ defined in (5). Then, the Balakrishnan operator J^{α} of $\frac{\partial}{\partial x}$ coincides with the Caputo derivative D^{α} . Furthermore, the operator ∂^{α} defined on $_{0}H^{\alpha,p}(0,L)$ is the closure of D^{α} defined on $_{0}W^{1,p}(0,L)$.

Let us calculate the Balakrishnan operator of $rac{\partial}{\partial x}.$ For $u\in D(rac{\partial}{\partial x})$ we have

$$J^{\alpha}u = \frac{\sin\alpha\pi}{\pi} \int_{0}^{\infty} \lambda^{\alpha-1} (\lambda + \frac{\partial}{\partial x})^{-1} \frac{\partial}{\partial x} u d\lambda$$
$$= \frac{\sin\alpha\pi}{\pi} \int_{0}^{\infty} \lambda^{\alpha-1} \int_{0}^{x} e^{-\lambda(x-p)} u'(p) dp d\lambda$$

[1, Theorem 3.1.8 and Corollary 5.1.12] Let $\operatorname{Re} \alpha > 0$ and A be an non-negative operator. Then, J^{α} is closable and $A^{\alpha} = \overline{J^{\alpha}}$ if and only if A is densely defined.

Proposition

Let L > 0 and $0 < \alpha < 1$. Let us discuss the operator $\frac{\partial}{\partial x}$ defined in (5). Then, the Balakrishnan operator J^{α} of $\frac{\partial}{\partial x}$ coincides with the Caputo derivative D^{α} . Furthermore, the operator ∂^{α} defined on $_{0}H^{\alpha,p}(0,L)$ is the closure of D^{α} defined on $_{0}W^{1,p}(0,L)$.

Let us calculate the Balakrishnan operator of $rac{\partial}{\partial x}.$ For $u\in D(rac{\partial}{\partial x})$ we have

$$J^{\alpha}u = \frac{\sin \alpha \pi}{\pi} \int_{0}^{\infty} \lambda^{\alpha-1} (\lambda + \frac{\partial}{\partial x})^{-1} \frac{\partial}{\partial x} u d\lambda$$
$$= \frac{\sin \alpha \pi}{\pi} \int_{0}^{\infty} \lambda^{\alpha-1} \int_{0}^{x} e^{-\lambda(x-p)} u'(p) dp d\lambda$$
$$= \frac{\sin \alpha \pi}{\pi} \int_{0}^{x} u'(p) \int_{0}^{\infty} \lambda^{\alpha-1} e^{-\lambda(x-p)} d\lambda dp.$$

[1, Theorem 3.1.8 and Corollary 5.1.12] Let $\operatorname{Re} \alpha > 0$ and A be an non-negative operator. Then, J^{α} is closable and $A^{\alpha} = \overline{J^{\alpha}}$ if and only if A is densely defined.

Proposition

Let L > 0 and $0 < \alpha < 1$. Let us discuss the operator $\frac{\partial}{\partial x}$ defined in (5). Then, the Balakrishnan operator J^{α} of $\frac{\partial}{\partial x}$ coincides with the Caputo derivative D^{α} . Furthermore, the operator ∂^{α} defined on $_{0}H^{\alpha,p}(0,L)$ is the closure of D^{α} defined on $_{0}W^{1,p}(0,L)$.

Let us calculate the Balakrishnan operator of $rac{\partial}{\partial x}$. For $u\in D(rac{\partial}{\partial x})$ we have

$$J^{\alpha}u = \frac{\sin\alpha\pi}{\pi} \int_{0}^{\infty} \lambda^{\alpha-1} (\lambda + \frac{\partial}{\partial x})^{-1} \frac{\partial}{\partial x} u d\lambda$$
$$= \frac{\sin\alpha\pi}{\pi} \int_{0}^{\infty} \lambda^{\alpha-1} \int_{0}^{x} e^{-\lambda(x-p)} u'(p) dp d\lambda$$
$$= \frac{\sin\alpha\pi}{\pi} \int_{0}^{x} u'(p) \int_{0}^{\infty} \lambda^{\alpha-1} e^{-\lambda(x-p)} d\lambda dp.$$

Applying substitution $\lambda(x - p) = w$ we get

$$J^{\alpha}u=\frac{1}{\Gamma(1-\alpha)}\int_{0}^{x}(x-p)^{-\alpha}u'(p)dp=D^{\alpha}u.$$

$$_{0}H^{\alpha}(0,1) = \begin{cases} H^{\alpha}(0,1) & \text{for} \quad \alpha \in (0,\frac{1}{2}), \\ \{u \in H^{\frac{1}{2}}(0,1) : \int_{0}^{1} \frac{|u(t)|^{2}}{t} dt < \infty\} & \text{for} \quad \alpha = \frac{1}{2}, \\ \{u \in H^{\alpha}(0,1) : u(0) = 0\} & \text{for} \quad \alpha \in (\frac{1}{2}, 1). \end{cases}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Definition

$$_{0}H^{\alpha}(0,1) = \begin{cases} H^{\alpha}(0,1) & \text{for} \quad \alpha \in (0,\frac{1}{2}), \\ \{u \in H^{\frac{1}{2}}(0,1) : \int_{0}^{1} \frac{|u(t)|^{2}}{t} dt < \infty\} & \text{for} \quad \alpha = \frac{1}{2}, \\ \{u \in H^{\alpha}(0,1) : u(0) = 0\} & \text{for} \quad \alpha \in (\frac{1}{2}, 1). \end{cases}$$

Theorem

The operators $\partial^\alpha: {}_0H^\alpha(0,1)\to L^2(0,1),$ $I^\alpha:L^2(0,1)\to {}_0H^\alpha(0,1)$ are isomorphism and

$$c_{\alpha}^{-1} \|u\|_{\mathbf{0}H^{\alpha}(0,1)} \leq \|\partial^{\alpha}u\|_{L^{2}(0,1)} \leq c_{\alpha}\|u\|_{\mathbf{0}H^{\alpha}(0,1)} \quad \text{for } u \in {}_{\mathbf{0}}H^{\alpha}(0,1),$$

$$c_{\alpha} \|I^{\alpha}f\|_{\mathbf{0}H^{\alpha}(0,1)} \leq \|f\|_{L^{2}(0,1)} \leq c_{\alpha} \|I^{\alpha}f\|_{\mathbf{0}H^{\alpha}(0,1)} \text{ for } f \in L^{2}(0,1).$$

□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● ● ● ●

Definition

$$_{0}H^{\alpha}(0,1) = \begin{cases} H^{\alpha}(0,1) & \text{for} \quad \alpha \in (0,\frac{1}{2}), \\ \{u \in H^{\frac{1}{2}}(0,1) : \int_{0}^{1} \frac{|u(t)|^{2}}{t} dt < \infty\} & \text{for} \quad \alpha = \frac{1}{2}, \\ \{u \in H^{\alpha}(0,1) : u(0) = 0\} & \text{for} \quad \alpha \in (\frac{1}{2}, 1). \end{cases}$$

Theorem

The operators $\partial^\alpha: {}_0H^\alpha(0,1)\to L^2(0,1),\ I^\alpha: L^2(0,1)\to {}_0H^\alpha(0,1)$ are isomorphism and

$$c_{\alpha}^{-1} \|u\|_{0}^{\alpha}_{(0,1)} \le \|\partial^{\alpha} u\|_{L^{2}(0,1)} \le c_{\alpha} \|u\|_{0}^{\alpha}_{(0,1)} \quad \text{for } u \in {}_{0}H^{\alpha}(0,1),$$

$$c_{lpha} \| I^{lpha} f \|_{\mathbf{0} H^{lpha}(\mathbf{0}, 1)} \leq \| f \|_{L^{2}(\mathbf{0}, 1)} \leq c_{lpha} \| I^{lpha} f \|_{\mathbf{0} H^{lpha}(\mathbf{0}, 1)} \quad \text{for } f \in L^{2}(0, 1).$$

We have to deal with

$$\frac{\partial}{\partial x}D^{\alpha}u=\frac{\partial}{\partial x}I^{1-\alpha}u_{x}=\partial^{\alpha}u_{x}.$$

□ ト ▲ 王 ト ▲ 王 ト ○ 王 ○ の Q ()

Definition

$$_{0}H^{\alpha}(0,1) = \begin{cases} H^{\alpha}(0,1) & \text{for} \quad \alpha \in (0,\frac{1}{2}), \\ \{u \in H^{\frac{1}{2}}(0,1) : \int_{0}^{1} \frac{|u(t)|^{2}}{t} dt < \infty\} & \text{for} \quad \alpha = \frac{1}{2}, \\ \{u \in H^{\alpha}(0,1) : u(0) = 0\} & \text{for} \quad \alpha \in (\frac{1}{2}, 1). \end{cases}$$

Theorem

The operators $\partial^\alpha: {}_0H^\alpha(0,1)\to L^2(0,1),\ I^\alpha: L^2(0,1)\to {}_0H^\alpha(0,1)$ are isomorphism and

$$c_{\alpha}^{-1} \|u\|_{\mathbf{0}H^{\alpha}(0,1)} \leq \|\partial^{\alpha}u\|_{L^{2}(0,1)} \leq c_{\alpha}\|u\|_{\mathbf{0}H^{\alpha}(0,1)} \quad \text{for } u \in {}_{\mathbf{0}}H^{\alpha}(0,1).$$

$$c_{\alpha} \|I^{\alpha}f\|_{\mathbf{0}H^{\alpha}(0,1)} \leq \|f\|_{L^{2}(0,1)} \leq c_{\alpha}\|I^{\alpha}f\|_{\mathbf{0}H^{\alpha}(0,1)} \quad \text{for } f \in L^{2}(0,1).$$

We have to deal with

$$\frac{\partial}{\partial x}D^{\alpha}u=\frac{\partial}{\partial x}I^{1-\alpha}u_{x}=\partial^{\alpha}u_{x}.$$

We define the domain of $\frac{\partial}{\partial x} D^{lpha}$ by

$$D(\frac{\partial}{\partial x}D^{\alpha}) \equiv \mathcal{D}_{\alpha} := \{ u \in H^{1+\alpha}(0,1) : u_{x} \in {}_{\mathbf{0}}H^{\alpha}(0,1), \quad u(1) = 0 \}.$$

(신문) (신문)

= na0

Operator $\frac{\partial}{\partial x} D^{\alpha} : \mathcal{D}_{\alpha} \subseteq L^2(0,1) \rightarrow L^2(0,1)$ generates an analytic semigroup.

Operator $\frac{\partial}{\partial x}D^{\alpha}: \mathcal{D}_{\alpha} \subseteq L^{2}(0,1) \rightarrow L^{2}(0,1)$ generates an analytic semigroup.

Idea of the proof:

• $\frac{\partial}{\partial x}D^{\alpha}: \mathcal{D}_{\alpha} \subseteq L^{2}(0,1) \rightarrow L^{2}(0,1)$ generates a C_{0} semigroup of contractions.

<2.3.3 ∃

Operator $\frac{\partial}{\partial x}D^{\alpha}: \mathcal{D}_{\alpha} \subseteq L^{2}(0,1) \rightarrow L^{2}(0,1)$ generates an analytic semigroup.

Idea of the proof:

• $\frac{\partial}{\partial x}D^{\alpha}: \mathcal{D}_{\alpha} \subseteq L^{2}(0,1) \rightarrow L^{2}(0,1)$ generates a C_{0} semigroup of contractions.

•
$$\operatorname{Re}(-\frac{\partial}{\partial x}D^{\alpha}u,u) \geq 0$$

•
$$R(\lambda I - \frac{\partial}{\partial x}D^{\alpha}) = L^2(0,1)$$
 for $\lambda > 0$.

<2.3.3 ∃

Operator $\frac{\partial}{\partial x}D^{\alpha}: \mathcal{D}_{\alpha} \subseteq L^{2}(0,1) \rightarrow L^{2}(0,1)$ generates an analytic semigroup.

Idea of the proof:

• $\frac{\partial}{\partial x} D^{\alpha} : \mathcal{D}_{\alpha} \subseteq L^2(0,1) \to L^2(0,1)$ generates a C_0 semigroup of contractions.

• Re
$$\left(-\frac{\partial}{\partial x}D^{\alpha}u,u\right) \ge 0$$

• $R(\lambda I - \frac{\partial}{\partial x}D^{\alpha}) = L^{2}(0,1)$ for $\lambda > 0$.

Proposition

Let us discuss $\frac{\partial}{\partial x}D^{\alpha}: \mathcal{D}_{\alpha} \to L^2(0,1)$. Then, for every $\lambda \in \mathbb{C}$ belonging to the sector

$$\vartheta_{\alpha} := \{ z \in \mathbb{C} \setminus \{ 0 \} : | \arg z | \le \frac{\pi(\alpha+1)}{2} \} \cup \{ 0 \}$$
(6)

there holds

$$R(\lambda E - rac{\partial}{\partial x}D^{lpha}) = L^2(0,1).$$

$$\sigma(\frac{\partial}{\partial x}D^{\alpha}) = \{\lambda \in \mathbb{C} : E_{\alpha+1}(\lambda) = 0\}.$$

The solution to

$$\lambda u - \frac{\partial}{\partial x} D^{\alpha} u = g$$

is given by

$$u(x) = (E_{\alpha+1}(\lambda))^{-1}(g*y^{\alpha}E_{\alpha+1,\alpha+1}(\lambda y^{\alpha+1}))(1)E_{\alpha+1}(\lambda x^{\alpha+1}) - g*x^{\alpha}E_{\alpha+1,\alpha+1}(\lambda x^{\alpha+1}).$$

イロト イヨト イヨト イヨト

= 990

The solution to

$$\lambda u - \frac{\partial}{\partial x} D^{\alpha} u = g$$

is given by

$$u(x) = (E_{\alpha+1}(\lambda))^{-1}(g*y^{\alpha}E_{\alpha+1,\alpha+1}(\lambda y^{\alpha+1}))(1)E_{\alpha+1}(\lambda x^{\alpha+1}) - g*x^{\alpha}E_{\alpha+1,\alpha+1}(\lambda x^{\alpha+1}).$$

• An analytic extension of C_{0} - semigroup on a sector of complex plane.

(이 프) 이 프)

- TR

The solution to

$$\lambda u - \frac{\partial}{\partial x} D^{\alpha} u = g$$

is given by

$$u(x) = (E_{\alpha+1}(\lambda))^{-1}(g*y^{\alpha}E_{\alpha+1,\alpha+1}(\lambda y^{\alpha+1}))(1)E_{\alpha+1}(\lambda x^{\alpha+1}) - g*x^{\alpha}E_{\alpha+1,\alpha+1}(\lambda x^{\alpha+1}).$$

• An analytic extension of C_{0-} semigroup on a sector of complex plane.

Proposition

For $u \in \mathcal{D}_{\alpha}$ we have

$$\operatorname{Re}(-\frac{\partial}{\partial x}D^{\alpha}u,u) \ge c_{\alpha} \|u\|_{H^{\frac{1+\alpha}{2}}(0,1)}^{2}$$

$$\tag{7}$$

and

$$\left(-\frac{\partial}{\partial x}D^{\alpha}u,u\right)\bigg|\leq b_{\alpha}\left\|u\right\|_{H^{\frac{1+\alpha}{2}}(0,1)}^{2},$$
(8)

where c_{α}, b_{α} are positive constant which depends only on α .

Let us consider problem

$$\begin{cases} u_t - \frac{\partial}{\partial x} D^{\alpha} u = 0 & in \ (0,1) \times (0,T), \\ u_x(0,t) = 0, \ u(1,t) = 0 & for \ t \in (0,T), \\ u(x,0) = u_0(x) & in \ (0,1). \end{cases}$$

If we assume that $u_0 \in L^2(0,1)$, then there exists exactly one solution which belongs to $C([0,T]; L^2(0,1)) \cap C((0,T]; \mathcal{D}_{\alpha}) \cap C^1((0,T]; L^2(0,1))$. Furthermore, there exists a positive constant c = c(T), such that the following estimate holds for every $t \in (0,T]$

$$\|u(\cdot,t)\|_{L^{2}(0,1)}+t\|u_{t}(\cdot,t)\|_{L^{2}(0,1)}+t\left\|\frac{\partial}{\partial x}D^{\alpha}u(\cdot,t)\right\|_{L^{2}(0,1)}\leq c\|u_{0}\|_{L^{2}(0,1)}.$$

Nevertheless, $u \in C^{\infty}((0, T]; L^2(0, 1))$ and for every $t \in (0, T]$, for very $k \in \mathbb{N}$ we have $u(\cdot, t) \in D((\frac{\partial}{\partial x}D^{\alpha})^k)$. The last property implies that $u(\cdot, t) \in C^{\infty}(0, 1)$ for every $t \in (0, T]$, however u has a singularity of the form $x^{\alpha+1}$ at the left endpoint of the interval.

Case with Dirichlet boundary conditions

$$\begin{cases} u_t - \frac{\partial}{\partial x} D^{\alpha} u = f & \text{in } (0, 1) \times (0, T), \\ u(0, t) = 0, & u(1, t) = 0 & \text{for } t \in (0, T), \\ u(x, 0) = u_0(x) & \text{in } (0, 1), \end{cases}$$
(9)

Case with Dirichlet boundary conditions

$$\begin{array}{ll} u_t - \frac{\partial}{\partial x} D^{\alpha} u = f & \text{in } (0,1) \times (0,T), \\ u(0,t) = 0, & u(1,t) = 0 & \text{for } t \in (0,T), \\ u(x,0) = u_0(x) & \text{in } (0,1), \end{array}$$
(9)

Let us introduce

$$\overline{\mathcal{D}}_{lpha}:=\{u=w-w(1)x^{lpha}, ext{ where } w\in {}_{0}H^{1+lpha}(0,1)\}.$$

We equip $\overline{\mathcal{D}}_{lpha}$ with the following norm

$$\|u\|_{\overline{\mathcal{D}}_{\alpha}} = \|w\|_{H^{1+\alpha}(0,1)} \text{ for } \alpha \in (0,1) \setminus \{\frac{1}{2}\}$$

and

$$\|u\|_{\overline{\mathcal{D}}_{\alpha}} = \left(\|w\|_{H^{\frac{3}{2}}(0,1)}^{2} + \int_{0}^{1} \frac{|w_{x}(x)|^{2}}{x} dx\right)^{\frac{1}{2}} \text{ for } \alpha = \frac{1}{2}.$$

Case with Dirichlet boundary conditions

$$\begin{array}{ll} u_t - \frac{\partial}{\partial x} D^{\alpha} u = f & \text{in } (0,1) \times (0,T), \\ u(0,t) = 0, & u(1,t) = 0 & \text{for } t \in (0,T), \\ u(x,0) = u_0(x) & \text{in } (0,1), \end{array}$$
(9)

Let us introduce

$$\overline{\mathcal{D}}_{lpha}:=\{u=w-w(1)x^{lpha}, ext{ where } w\in {}_{0}H^{1+lpha}(0,1)\}.$$

We equip $\overline{\mathcal{D}}_{lpha}$ with the following norm

$$\|u\|_{\overline{\mathcal{D}}_{\alpha}} = \|w\|_{H^{1+\alpha}(\mathbf{0},\mathbf{1})} \text{ for } \alpha \in (\mathbf{0},\mathbf{1}) \setminus \{\frac{1}{2}\}$$

and

$$\|u\|_{\overline{\mathcal{D}}_{\alpha}} = \left(\|w\|_{H^{\frac{3}{2}}(0,1)}^{2} + \int_{0}^{1} \frac{|w_{x}(x)|^{2}}{x} dx\right)^{\frac{1}{2}} \text{ for } \alpha = \frac{1}{2}.$$

Theorem

The operator $\frac{\partial}{\partial x}D^{\alpha}: \overline{\mathcal{D}}_{\alpha} \subseteq L^{2}(0,1) \rightarrow L^{2}(0,1)$ is a densely defined sectorial operator, thus it generates an analytic semigroup.

Case with prescribed flux at the left boundary

$$\begin{cases} u_t - \frac{\partial}{\partial x} D^{\alpha} u = f & \text{in } (0, 1) \times (0, T), \\ (D^{\alpha} u)(0, t) = h(t), \quad u(1, t) = 0 & \text{for } t \in (0, T), \\ u(x, 0) = u_0(x) & \text{in } (0, 1). \end{cases}$$
(10)

Case with prescribed flux at the left boundary

$$\begin{cases} u_t - \frac{\partial}{\partial x} D^{\alpha} u = f & \text{in } (0, 1) \times (0, T), \\ (D^{\alpha} u)(0, t) = h(t), \quad u(1, t) = 0 & \text{for } t \in (0, T), \\ u(x, 0) = u_0(x) & \text{in } (0, 1). \end{cases}$$
(10)

Proposition

Let F be an absolutely continuous function and f := F'. Then we denote

$$(D^{\alpha}F)(0):=\lim_{x\to 0}\frac{1}{\Gamma(1-\alpha)}\int_0^x(x-p)^{-\alpha}f(p)dp.$$

• If $(D^{\alpha}F)(0)$ exists and $(D^{\alpha}F)(0) = c$, then $\lim_{y\to 0} \frac{F(y)}{y^{\alpha}} = \frac{c}{\Gamma(1+\alpha)}$. • if the limit $\lim_{y\to 0} \frac{f(y)}{y^{\alpha-1}}$ exists and $\lim_{y\to 0} \frac{f(y)}{y^{\alpha-1}} = \frac{c}{\Gamma(\alpha)}$, then $(D^{\alpha}F)(0) = c$.

Case with prescribed flux at the left boundary

$$\begin{cases} u_t - \frac{\partial}{\partial x} D^{\alpha} u = f & \text{in } (0, 1) \times (0, T), \\ (D^{\alpha} u)(0, t) = h(t), \quad u(1, t) = 0 & \text{for } t \in (0, T), \\ u(x, 0) = u_0(x) & \text{in } (0, 1). \end{cases}$$
(10)

Proposition

Let F be an absolutely continuous function and f := F'. Then we denote

$$(D^{\alpha}F)(0):=\lim_{x\to 0}\frac{1}{\Gamma(1-\alpha)}\int_0^x(x-p)^{-\alpha}f(p)dp.$$

• If $(D^{\alpha}F)(0)$ exists and $(D^{\alpha}F)(0) = c$, then $\lim_{y\to 0} \frac{F(y)}{y^{\alpha}} = \frac{c}{\Gamma(1+\alpha)}$. • if the limit $\lim_{y\to 0} \frac{f(y)}{y^{\alpha-1}}$ exists and $\lim_{y\to 0} \frac{f(y)}{y^{\alpha-1}} = \frac{c}{\Gamma(\alpha)}$, then $(D^{\alpha}F)(0) = c$.

Hence, it is natural to search for a solution to (10) in the form

$$u = \frac{h(t)}{\Gamma(1+\alpha)} x^{\alpha} + v, \quad v_{x} \in {}_{0}H^{\alpha}(0,1).$$
(11)

Let b, T > 0 and $\alpha \in (0, 1)$. Let us assume that • $u_0 \in H^{1+\alpha}(0, b), u'_0 \in {}_0H^{\alpha}(0, b), u_0(b) = 0$ and $u_0 \ge 0, u_0 \not\equiv 0$. = $M > 0 \quad \forall x \in [0, b] \quad u_0(x) \le \frac{M\Gamma(2-\alpha)}{L^{1-\alpha}}(b-x).$

Let b, T > 0 and $\alpha \in (0, 1)$. Let us assume that • $u_0 \in H^{1+\alpha}(0, b), u'_0 \in {}_0H^{\alpha}(0, b), u_0(b) = 0$ and $u_0 \ge 0, u_0 \not\equiv 0$. = $M > 0 \quad \forall x \in [0, b] \quad u_0(x) \le \frac{M\Gamma(2-\alpha)}{L^{1-\alpha}}(b-x).$

Then, there exists exactly one (u, s) a solution to the system (1), s.t. • $s \in C^1([0, T])$ and $0 < \dot{s}(t) \le M$ for all $t \in [0, T]$,

Let b, T > 0 and $\alpha \in (0, 1)$. Let us assume that • $u_0 \in H^{1+\alpha}(0, b), u'_0 \in {}_0H^{\alpha}(0, b), u_0(b) = 0$ and $u_0 \ge 0, u_0 \not\equiv 0$. = $\exists M > 0 \quad \forall x \in [0, b] \quad u_0(x) \le \frac{M\Gamma(2-\alpha)}{b^{1-\alpha}}(b-x).$

- $s \in C^1([0, T])$ and $0 < \dot{s}(t) \le M$ for all $t \in [0, T]$,
- $u, D^{\alpha}u \in C(\overline{Q_{s,T}}), u_t, \frac{\partial}{\partial x}D^{\alpha}u \in C(Q_{s,T}),$

Let b, T > 0 and $\alpha \in (0, 1)$. Let us assume that • $u_0 \in H^{1+\alpha}(0, b), u'_0 \in {}_0H^{\alpha}(0, b), u_0(b) = 0$ and $u_0 \ge 0, u_0 \not\equiv 0$. = $\exists M > 0 \quad \forall x \in [0, b] \quad u_0(x) \le \frac{M\Gamma(2-\alpha)}{L^{1-\alpha}}(b-x)$.

- $s \in C^1([0, T])$ and $0 < \dot{s}(t) \le M$ for all $t \in [0, T]$,
- $u, D^{\alpha}u \in C(\overline{Q_{s,T}}), u_t, \frac{\partial}{\partial x}D^{\alpha}u \in C(Q_{s,T}),$
- $u_x \in C(\overline{Q_{s,T}})$ in the case $\alpha \in (\frac{1}{2}, 1)$ and $u_x \in C(\overline{Q_{s,T}} \setminus (\{t = 0\} \times [0, b]))$ in the case $\alpha \in (0, \frac{1}{2}]$.

Let b, T > 0 and $\alpha \in (0, 1)$. Let us assume that

•
$$u_0 \in H^{1+\alpha}(0,b), u'_0 \in {}_0H^{\alpha}(0,b), u_0(b) = 0 \text{ and } u_0 \ge 0, u_0 \not\equiv 0.$$

$$\exists M > 0 \quad \forall x \in [0, b] \quad u_0(x) \leq \frac{M\Gamma(2 - \alpha)}{b^{1 - \alpha}}(b - x).$$

- $s \in C^1([0,T])$ and $0 < \dot{s}(t) \le M$ for all $t \in [0,T]$,
- $u, D^{\alpha}u \in C(\overline{Q_{s,T}}), u_t, \frac{\partial}{\partial x}D^{\alpha}u \in C(Q_{s,T}),$
- $u_x \in C(\overline{Q_{s,T}})$ in the case $\alpha \in (\frac{1}{2}, 1)$ and $u_x \in C(\overline{Q_{s,T}} \setminus (\{t = 0\} \times [0, b]))$ in the case $\alpha \in (0, \frac{1}{2}]$.
- There exists $\beta \in (\alpha, 1)$, such that for every $t \in (0, T]$ and every $0 < \varepsilon < \omega < s(t)$ we have $u(\cdot, t) \in W^{2, \frac{1}{1-\beta}}(\varepsilon, \omega)$.

$$s \in C^{0,1}[0,T], \quad 0 < \dot{s} \le M$$
 for a.a. $t \in (0,T).$ (12)

<回ト < Eト < Eト

$$s \in C^{0,1}[0,T], \quad 0 < \dot{s} \le M$$
 for a.a. $t \in (0,T).$ (12)

• Transformation to cylindrical domain $p = \frac{x}{s(t)}$, v(p, t) := u(s(t)p, t) = u(x, t)

() <) <)
 () <)
 () <)
 () <)
</p>

$$s \in C^{0,1}[0,T], \quad 0 < \dot{s} \le M$$
 for a a $t \in (0,T).$ (12)

• Transformation to cylindrical domain $p = \frac{x}{s(t)}$, v(p, t) := u(s(t)p, t) = u(x, t)

$$\begin{cases} v_{t} - x \frac{\dot{s}(t)}{s(t)} v_{x} - \frac{1}{s^{1} + \alpha(t)} \frac{\partial}{\partial x} D^{\alpha} v = 0 & \text{for } 0 < x < 1, 0 < t < T, \\ v_{x}(0, t) = 0, \quad v(1, t) = 0 & \text{for } t \in (0, T), \\ v(x, 0) = v_{0}(x) & \text{for } 0 < x < 1. \end{cases}$$
(13)

(E) < E)</p>

$$s \in C^{0,1}[0,T], \ \ 0 < \dot{s} \le M$$
 for a.a. $t \in (0,T).$ (12)

• Transformation to cylindrical domain $p = \frac{x}{s(t)}$, v(p, t) := u(s(t)p, t) = u(x, t)

$$\begin{array}{ll} & v_{t} - x \frac{\dot{s}(t)}{s(t)} v_{x} - \frac{1}{s^{1+\alpha(t)}} \frac{\partial}{\partial x} D^{\alpha} v = 0 & \text{ for } 0 < x < 1, 0 < t < T, \\ & v_{x}(0, t) = 0, \quad v(1, t) = 0 & \text{ for } t \in (0, T), \\ & v(x, 0) = v_{0}(x) & \text{ for } 0 < x < 1. \end{array}$$

$$(13)$$

• Existence and regularity of the solution by means of evolution operator theory.

$$t\mapsto A(t):=\frac{1}{s^{1+\alpha}(t)}\frac{\partial}{\partial x}D^{\alpha}\in C^{\mathbf{0},\mathbf{1}}([0,\,T];B(\mathcal{D}_{\alpha},L^{2}(0,\,\mathbf{1})))$$

and A(t) is sectorial for every $t \in [0, T]$ and A(t) have common domain.

(日) (日) (日)

$$s \in C^{0,1}[0,T], \quad 0 < \dot{s} \le M$$
 for a.a. $t \in (0,T).$ (12)

• Transformation to cylindrical domain $p = \frac{x}{s(t)}$, v(p, t) := u(s(t)p, t) = u(x, t)

$$\begin{array}{ll} & v_t - x \frac{\dot{s}(t)}{s(t)} v_x - \frac{1}{s^{1+\alpha(t)}} \frac{\partial}{\partial x} D^\alpha v = 0 & \text{ for } 0 < x < 1, 0 < t < T, \\ & v_x(0,t) = 0, \quad v(1,t) = 0 & \text{ for } t \in (0,T), \\ & v(x,0) = v_0(x) & \text{ for } 0 < x < 1. \end{array}$$

$$(13)$$

• Existence and regularity of the solution by means of evolution operator theory.

$$t\mapsto A(t):=\frac{1}{s^{1+\alpha}(t)}\frac{\partial}{\partial x}D^{\alpha}\in C^{0,1}([0,T];B(\mathcal{D}_{\alpha},L^{2}(0,1)))$$

and A(t) is sectorial for every $t \in [0, T]$ and A(t) have common domain.

$$v(x,t) = G(t,0)v_0(x) + \int_0^t G(t,\sigma)\frac{\dot{s}(\sigma)}{s(\sigma)}xv_x(x,\sigma)d\sigma.$$

$$s \in C^{0,1}[0,T], \ 0 < \dot{s} \le M$$
 for a a $t \in (0,T).$ (12)

• Transformation to cylindrical domain $p = \frac{x}{s(t)}$, v(p, t) := u(s(t)p, t) = u(x, t)

$$\begin{array}{ll} & (v_t - x \frac{\dot{s}(t)}{s(t)} v_x - \frac{1}{s^{1+\alpha}(t)} \frac{\partial}{\partial x} D^{\alpha} v = 0 & \text{ for } 0 < x < 1, 0 < t < T, \\ & v_x(0, t) = 0, \quad v(1, t) = 0 & \text{ for } t \in (0, T), \\ & v(x, 0) = v_0(x) & \text{ for } 0 < x < 1. \end{array}$$

$$(13)$$

• Existence and regularity of the solution by means of evolution operator theory.

$$t \mapsto A(t) := \frac{1}{s^{1+\alpha}(t)} \frac{\partial}{\partial x} D^{\alpha} \in C^{0,1}([0,T]; B(\mathcal{D}_{\alpha}, L^{2}(0,1)))$$

and A(t) is sectorial for every $t \in [0, T]$ and A(t) have common domain.

$$v(x,t) = G(t,0)v_0(x) + \int_0^t G(t,\sigma)\frac{\dot{s}(\sigma)}{s(\sigma)}xv_x(x,\sigma)d\sigma.$$

• Higher spatial regularity in the interior of the domain.

・ 同 ト ・ ヨ ト ・ ヨ ト …

$$s \in C^{0,1}[0,T], \quad 0 < \dot{s} \le M$$
 for a a $t \in (0,T).$ (12)

• Transformation to cylindrical domain $p = \frac{x}{s(t)}$, v(p, t) := u(s(t)p, t) = u(x, t)

$$\begin{array}{ll} & v_t - x \frac{\dot{s}(t)}{s(t)} v_x - \frac{1}{s^{1+\alpha}(t)} \frac{\partial}{\partial x} D^\alpha v = 0 & \text{for } 0 < x < 1, 0 < t < T, \\ & v_x(0,t) = 0, \quad v(1,t) = 0 & \text{for } t \in (0,T), \\ & v(x,0) = v_0(x) & \text{for } 0 < x < 1. \end{array}$$

$$(13)$$

• Existence and regularity of the solution by means of evolution operator theory.

$$t \mapsto A(t) := \frac{1}{s^{1+\alpha}(t)} \frac{\partial}{\partial x} D^{\alpha} \in C^{0,1}([0,T]; B(\mathcal{D}_{\alpha}, L^{2}(0,1)))$$

and A(t) is sectorial for every $t \in [0, T]$ and A(t) have common domain.

$$v(x,t) = G(t,0)v_0(x) + \int_0^t G(t,\sigma)\frac{\dot{s}(\sigma)}{s(\sigma)}xv_x(x,\sigma)d\sigma.$$

• Higher spatial regularity in the interior of the domain. We note that $v_x(t, 1)$ need not to vanish.

The maximum principles

Lemma

Let $f \in AC[0, L]$ and for every $\varepsilon \in (0, L)$ $f \in W^{1, \frac{1}{1-\beta}}(\varepsilon, L)$ for some $\beta \in (0, 1]$. Then, if f attains its maximum at the point $x_0 \in (0, L]$, then for every $\alpha \in (0, \beta)$ there holds the inequality $(D^{\alpha}f)(x_0) \ge 0$. Furthermore, if f is not constant on $[0, x_0]$, then $(D^{\alpha}f)(x_0) > 0$.

The maximum principles

Lemma

Let $f \in AC[0, L]$ and for every $\varepsilon \in (0, L)$ $f \in W^{1, \frac{1}{1-\beta}}(\varepsilon, L)$ for some $\beta \in (0, 1]$. Then, if f attains its maximum at the point $x_0 \in (0, L]$, then for every $\alpha \in (0, \beta)$ there holds the inequality $(D^{\alpha}f)(x_0) \ge 0$. Furthermore, if f is not constant on $[0, x_0]$, then $(D^{\alpha}f)(x_0) > 0$.

Lemma

Let $f \in AC[0, L]$ and $f' \in W^{1, \frac{1}{1-\beta}}(\varepsilon, L)$ for every $\varepsilon > 0$ and for fixed $\beta \in (0, 1)$. If f attains its maximum at $x_0 \in (0, L)$, then $(\frac{\partial}{\partial x}D^{\alpha}f)(x_0) \leq 0$ for every $\alpha \in (0, \beta)$. Furthermore, if f is not constant on $[0, x_0]$, then $(\frac{\partial}{\partial x}D^{\alpha}f)(x_0) < 0$. • Space-fractional version of the Hopf's, lemma, i.e. $D^{lpha}u(s(t),t)<$ 0.

2

• Space-fractional version of the Hopf's, lemma, i.e. $D^{\alpha}u(s(t), t) < 0$.

Proposition

Let u be a nonnegative solution to $u_t - \frac{\partial}{\partial x} D^{\alpha} u = 0$ in $Q_{s,T}$, where s satisfies (12). We assume that u has the following regularity $u \in C(\overline{Q_{s,T}})$, $u_t \in C(Q_{s,T})$, $u(\cdot, t) \in AC[0, s(t)]$ for every $t \in (0, T)$, $\frac{\partial}{\partial x} D^{\alpha} u \in C(Q_{s,T})$. Furthermore, for every $t \in (0, T)$, for every $0 < \varepsilon < \omega < s(t)$ we have $u(\cdot, t) \in W^{2, \frac{1}{1-\beta}}(\varepsilon, \omega)$ for some $\beta \in (\alpha, 1]$. Let $t_0 \in (0, T]$ be fixed. Then if $u(s(t_0), t_0) = 0$, then either $(D^{\alpha}u)(s(t_0), t_0) < 0$ or $u \equiv 0$ on Q_{s,t_0} . • Space-fractional version of the Hopf's, lemma, i.e. $D^{\alpha}u(s(t), t) < 0$.

Proposition

Let u be a nonnegative solution to $u_t - \frac{\partial}{\partial x} D^{\alpha} u = 0$ in $Q_{s,T}$, where s satisfies (12). We assume that u has the following regularity $u \in C(\overline{Q_{s,T}})$, $u_t \in C(Q_{s,T})$, $u_t \in C(Q_{s,T})$, $u(\cdot, t) \in AC[0, s(t)]$ for every $t \in (0, T)$, $\frac{\partial}{\partial x} D^{\alpha} u \in C(Q_{s,T})$. Furthermore, for every $t \in (0, T)$, for every $0 < \varepsilon < \omega < s(t)$ we have $u(\cdot, t) \in W^{2, \frac{1}{1-\beta}}(\varepsilon, \omega)$ for some $\beta \in (\alpha, 1]$. Let $t_0 \in (0, T]$ be fixed. Then if $u(s(t_0), t_0) = 0$, then either $(D^{\alpha}u)(s(t_0), t_0) < 0$ or $u \equiv 0$ on Q_{s,t_0} .

Estimates

 $(D^{\alpha}u)(s(t),t) \geq -M, \quad 0 \leq u(x,t) \leq M\Gamma(2-\alpha)s^{\alpha-1}(t)(s(t)-x).$

• Space-fractional version of the Hopf's, lemma, i.e. $D^{lpha}u(s(t),t) < 0$.

Proposition

Let u be a nonnegative solution to $u_t - \frac{\partial}{\partial x} D^{\alpha} u = 0$ in $Q_{s,T}$, where s satisfies (12). We assume that u has the following regularity $u \in C(\overline{Q_{s,T}})$, $u_t \in C(Q_{s,T})$, $u(\cdot, t) \in AC[0, s(t)]$ for every $t \in (0, T)$, $\frac{\partial}{\partial x} D^{\alpha} u \in C(Q_{s,T})$. Furthermore, for every $t \in (0, T)$, for every $0 < \varepsilon < \omega < s(t)$ we have $u(\cdot, t) \in W^{2, \frac{1}{1-\beta}}(\varepsilon, \omega)$ for some $\beta \in (\alpha, 1]$. Let $t_0 \in (0, T]$ be fixed. Then if $u(s(t_0), t_0) = 0$, then either $(D^{\alpha}u)(s(t_0), t_0) < 0$ or $u \equiv 0$ on Q_{s,t_0} .

Estimates

$$(D^{\alpha}u)(s(t),t) \geq -M, \quad 0 \leq u(x,t) \leq M\Gamma(2-\alpha)s^{\alpha-1}(t)(s(t)-x).$$

• Solution of the space-fractional Stefan problem by means of Schauder fixed point theorem.

• Space-fractional version of the Hopf's, lemma, i.e. $D^{\alpha}u(s(t), t) < 0$.

Proposition

Let u be a nonnegative solution to $u_t - \frac{\partial}{\partial x} D^{\alpha} u = 0$ in $Q_{s,T}$, where s satisfies (12). We assume that u has the following regularity $u \in C(\overline{Q_{s,T}})$, $u_t \in C(Q_{s,T})$, $u_t \in C(Q_{s,T})$, $u(\cdot, t) \in AC[0, s(t)]$ for every $t \in (0, T)$, $\frac{\partial}{\partial x} D^{\alpha} u \in C(Q_{s,T})$. Furthermore, for every $t \in (0, T)$, for every $0 < \varepsilon < \omega < s(t)$ we have $u(\cdot, t) \in W^{2, \frac{1}{1-\beta}}(\varepsilon, \omega)$ for some $\beta \in (\alpha, 1]$. Let $t_0 \in (0, T]$ be fixed. Then if $u(s(t_0), t_0) = 0$, then either $(D^{\alpha}u)(s(t_0), t_0) < 0$ or $u \equiv 0$ on Q_{s,t_0} .

Estimates

$$(D^{\alpha}u)(s(t),t) \geq -M, \quad 0 \leq u(x,t) \leq M\Gamma(2-\alpha)s^{\alpha-1}(t)(s(t)-x).$$

• Solution of the space-fractional Stefan problem by means of Schauder fixed point theorem.

$$\Sigma := \{ s \in C^{0,1}[0,T], 0 < \dot{s} \le M, s(0) = b \}.$$

• Space-fractional version of the Hopf's, lemma, i.e. $D^{\alpha}u(s(t), t) < 0$.

Proposition

Let u be a nonnegative solution to $u_t - \frac{\partial}{\partial x} D^{\alpha} u = 0$ in $Q_{s,T}$, where s satisfies (12). We assume that u has the following regularity $u \in C(\overline{Q_{s,T}})$, $u_t \in C(Q_{s,T})$, $u_t \in C(Q_{s,T})$, $u(\cdot, t) \in AC[0, s(t)]$ for every $t \in (0, T)$, $\frac{\partial}{\partial x} D^{\alpha} u \in C(Q_{s,T})$. Furthermore, for every $t \in (0, T)$, for every $0 < \varepsilon < \omega < s(t)$ we have $u(\cdot, t) \in W^{2, \frac{1}{1-\beta}}(\varepsilon, \omega)$ for some $\beta \in (\alpha, 1]$. Let $t_0 \in (0, T]$ be fixed. Then if $u(s(t_0), t_0) = 0$, then either $(D^{\alpha}u)(s(t_0), t_0) < 0$ or $u \equiv 0$ on Q_{s,t_0} .

Estimates

$$(D^{\alpha}u)(s(t),t) \geq -M, \quad 0 \leq u(x,t) \leq M\Gamma(2-\alpha)s^{\alpha-1}(t)(s(t)-x).$$

• Solution of the space-fractional Stefan problem by means of Schauder fixed point theorem.

$$\Sigma := \{ s \in C^{0,1}[0,T], \quad 0 < \dot{s} \le M, \quad s(0) = b \}.$$
$$(Ps)(t) = b - \int_0^t (D^{\alpha}u)(s(\tau),\tau)d\tau = \dots$$
$$\dots = b + \int_0^b u_0(x)dx - \int_0^{s(t)} u(x,t)dx.$$

• Space-fractional version of the Hopf's, lemma, i.e. $D^{lpha}u(s(t),t) < 0$.

Proposition

Let u be a nonnegative solution to $u_t - \frac{\partial}{\partial x} D^{\alpha} u = 0$ in $Q_{s,T}$, where s satisfies (12). We assume that u has the following regularity $u \in C(\overline{Q_{s,T}})$, $u_t \in C(Q_{s,T})$, $u(\cdot, t) \in AC[0, s(t)]$ for every $t \in (0, T)$, $\frac{\partial}{\partial x} D^{\alpha} u \in C(Q_{s,T})$. Furthermore, for every $t \in (0, T)$, for every $0 < \varepsilon < \omega < s(t)$ we have $u(\cdot, t) \in W^{2, \frac{1}{1-\beta}}(\varepsilon, \omega)$ for some $\beta \in (\alpha, 1]$. Let $t_0 \in (0, T]$ be fixed. Then if $u(s(t_0), t_0) = 0$, then either $(D^{\alpha}u)(s(t_0), t_0) < 0$ or $u \equiv 0$ on Q_{s,t_0} .

Estimates

$$(D^{\alpha}u)(s(t),t) \geq -M, \quad 0 \leq u(x,t) \leq M\Gamma(2-\alpha)s^{\alpha-1}(t)(s(t)-x).$$

• Solution of the space-fractional Stefan problem by means of Schauder fixed point theorem.

$$\Sigma := \{ s \in C^{0,1}[0,T], 0 < \dot{s} \le M, s(0) = b \}.$$

$$(Ps)(t) = b - \int_0^t (D^{\alpha}u)(s(\tau),\tau)d\tau = \dots$$

$$\dots = b + \int_0^b u_0(x)dx - \int_0^{s(t)} u(x,t)dx.$$

 $P:\Sigma
ightarrow \Sigma$ and P is continuous in maximum norm.

Let (u^i, s_i) be a solution to (1) corresponding to b_i and u_0^i for i = 1, 2. If $b_1 \leq b_2$ and $u_0^1 \leq u_0^2$, then for every $t \in [0, T]$ we have $s_1(t) \leq s_2(t)$.

$$\begin{cases} u_t - \frac{\partial}{\partial x} D^{\alpha} u = 0 & \text{in } \{(x, t) : 0 < x < s(t), \ 0 < t < \infty\}, \\ u(0, t) = c_1, \ u(t, s(t)) = 0 & \text{for } t \in (0, \infty), \\ \dot{s}(t) = -(D^{\alpha} u)(s(t), t) & \text{for } t \in (0, \infty), \end{cases}$$
(14)

where we assume that s(0) = 0 and $c_1 > 0$.

回 と く ヨ と く ヨ と

$$\begin{cases} u_t - \frac{\partial}{\partial x} D^{\alpha} u = 0 & \text{in } \{(x, t) : 0 < x < s(t), \ 0 < t < \infty\}, \\ u(0, t) = c_1, \ u(t, s(t)) = 0 & \text{for } t \in (0, \infty), \\ \dot{s}(t) = -(D^{\alpha} u)(s(t), t) & \text{for } t \in (0, \infty), \end{cases}$$
(14)

where we assume that s(0) = 0 and $c_1 > 0$.

• similarity variable
$$\xi = xt^{-\frac{1}{\alpha+1}}$$
,

回 と く ヨ と く ヨ と

$$\begin{cases} u_t - \frac{\partial}{\partial x} D^{\alpha} u = 0 & \text{in } \{(x, t) : 0 < x < s(t), \ 0 < t < \infty\}, \\ u(0, t) = c_1, \ u(t, s(t)) = 0 & \text{for } t \in (0, \infty), \\ \dot{s}(t) = -(D^{\alpha} u)(s(t), t) & \text{for } t \in (0, \infty), \end{cases}$$
(14)

where we assume that s(0) = 0 and $c_1 > 0$.

• similarity variable
$$\xi = xt^{-\frac{1}{\alpha+1}}$$
,

$$F(\xi) = F(xt^{-\frac{1}{\alpha+1}}) := u(x,t),$$

۲

$$\partial^{\alpha} F'(\xi) = -rac{\xi}{lpha+1} F'(\xi).$$

- TR

Proposition

Let us consider the problem for fixed $c_1 > 0$, R > 0, $c_2 < 0$.

$$\begin{cases} \partial^{\alpha} F'(\xi) = -\frac{\xi}{\alpha+1} F'(\xi) & \text{for } 0 < \xi < R, \\ F(0) = c_1, \ I^{1-\alpha} F'(0) = c_2, \end{cases}$$
(15)

There exists exactly one solution to (15) which belongs to

$$X_{R,c_1,c_2} := \{ v \in C^1((0,R]) : \xi^{1-\alpha}v' \in C([0,R]), \quad v(0) = c_1, \quad I^{1-\alpha}v'(0) = c_2 \}.$$

Furthermore, the solution is given by the formula

$$F(\xi) = c_1 + \frac{c_2}{\Gamma(\alpha+1)} \left[\xi^{\alpha} + \Gamma(\alpha+1)\xi^{\alpha} \sum_{k=1}^{\infty} \left(\frac{-\xi^{1+\alpha}}{1+\alpha} \right)^k \frac{\prod_{i=1}^k (i\alpha+i-1)}{\Gamma((\alpha+1)(k+1))} \right],$$
(16)

where the series is uniformly convergent on [0, R]. Finally, if we define

$$u(x,t) := F(xt^{-\frac{1}{1+\alpha}}),$$
(17)

then $u(0,t) = c_1$ and u satisfies $(14)_1$ on $\{(x,t) : 0 < x < Rt^{\frac{1}{\alpha+1}}, 0 < t < \infty\}$.

In the next lemma we obtain the family $(u^R, s^R)_{R>0}$ of solutions to $(14)_1$ and $(14)_3$.

Proposition

For every $c_1 > 0$ and every R > 0 the functions

$$s^{R}(t) = Rt^{\frac{1}{1+\alpha}},\tag{18}$$

$$u^{R}(x,t) = c_{1} + \frac{\tilde{c}_{2}}{\Gamma(\alpha+1)} [x^{\alpha} t^{-\frac{\alpha}{\alpha+1}}$$
$$-\Gamma(\alpha+1)x^{\alpha} t^{-\frac{\alpha}{\alpha+1}} \sum_{k=1}^{\infty} \left(\frac{-x^{1+\alpha}}{(1+\alpha)t}\right)^{k} \frac{\prod_{i=1}^{k}(i\alpha+i-1)}{\Gamma((\alpha+1)(k+1))}]$$
(19)

where

$$\tilde{c}_{2} = -\frac{R}{\left(1+\alpha\right)\left[1+\sum_{k=1}^{\infty}\left(\frac{-R^{1+\alpha}}{1+\alpha}\right)^{k}\frac{\prod_{i=1}^{k}(i\alpha+i-1)}{\Gamma((\alpha+1)k+1)}\right]}$$
(20)

satisfy the equation (14)3. Moreover, u^R is a solution to (14)1 with $s(t) = s^R(t)$ and $u^R(0,t) = c_1$.

-

It remains to choose R > 0 such that the pair (u^R, s^R) given by Lemma (12) satisfies $u^R(s^R(t), t) = 0$.

Theorem

For every $c_1 > 0$ there exists $c_0 > 0$ such that the pair $(u, s) := (u^{c_0}, s^{c_0})$, where (u^{c_0}, s^{c_0}) come from Lemma 12 with $R = c_0$, satisfies the system (14). Furthermore,

$$\forall x > 0 \quad u(x, \cdot), u_t(x, \cdot), u_x(x, \cdot) \in C([s^{-1}(x), \infty))$$
(21)

$$\forall t > 0 \quad u(\cdot, t), u_t(\cdot, t) \in C([0, s(t)]), \quad u_x(\cdot, t) \in C((0, s(t)])$$
(22)

and

$$\forall t > 0 \quad \frac{\partial}{\partial x} D^{\alpha} u(\cdot, t) \in C([0, s(t)]).$$
(23)

Finally, u > 0, $u_t > 0$, $u_x < 0$ on $\{(x, t): 0 < x < s(t), 0 < t < \infty\}$.

-

C. Martinez, M. Sanz, The theory of fractional powers of operators, *Elsevier*, 2001.

- V. Voller, *Fractional Stefan Problems*, International Journal of Heat and Mass Transfer, 74 (2017) 269-277.
- V. Voller, On a fractional derivative form of the Green-Ampt infiltration model, Advances in Water Resources, 34, (2011), 257-262.