A semigroup approach to the space-fractional diffusion

Katarzyna Ryszewska

Warsaw University of Technology, Poland
05.11.2020

$$
\begin{cases}u_{t}-\frac{\partial}{\partial x} D^{\alpha} u=0 & \text { in } Q_{s, T}, \tag{1}\\ u_{x}(0, t)=0, u(t, s(t))=0 & \text { for } t \in(0, T), \\ u(x, 0)=u_{0}(x) & \text { for } 0<x<s(0)=b, \\ \dot{s}(t)=-\left(D^{\alpha} u\right)(s(t), t) & \text { for } t \in(0, T)\end{cases}
$$

$$
\begin{gathered}
Q_{s, T}:=\{(x, t): 0<x<s(t), 0<t<T\} \\
\left(D^{\alpha} u\right)(x)=\frac{1}{\Gamma(1-\alpha)} \int_{0}^{x}(x-p)^{-\alpha} u^{\prime}(p) d p
\end{gathered}
$$

- V. Voller, Fractional Stefan Problems, 2017.
- V. Voller, On a fractional derivative form of the Green-Ampt infiltration model, 2011.

Fractional operators

Let $\alpha \in(0,1)$. For integrable function u we define the fractional integral

$$
\left(I^{\alpha} u\right)(x)=\frac{1}{\Gamma(\alpha)} \int_{0}^{x}(x-p)^{\alpha-1} u(p) d p
$$

Let $\alpha \in(0,1)$. For integrable function u we define the fractional integral

$$
\left(I^{\alpha} u\right)(x)=\frac{1}{\Gamma(\alpha)} \int_{0}^{x}(x-p)^{\alpha-1} u(p) d p
$$

The Riemann-Liouville fractional derivative is defined by the formula

$$
\left(\partial^{\alpha} u\right)(x)=\left(\frac{\partial}{\partial x} I^{1-\alpha} u\right)(x)=\frac{1}{\Gamma(1-\alpha)} \frac{\partial}{\partial x} \int_{0}^{x}(x-p)^{-\alpha} u(p) d p
$$

Let $\alpha \in(0,1)$. For integrable function u we define the fractional integral

$$
\left(I^{\alpha} u\right)(x)=\frac{1}{\Gamma(\alpha)} \int_{0}^{x}(x-p)^{\alpha-1} u(p) d p
$$

The Riemann-Liouville fractional derivative is defined by the formula

$$
\left(\partial^{\alpha} u\right)(x)=\left(\frac{\partial}{\partial x} I^{1-\alpha} u\right)(x)=\frac{1}{\Gamma(1-\alpha)} \frac{\partial}{\partial x} \int_{0}^{x}(x-p)^{-\alpha} u(p) d p
$$

and the Caputo derivative

$$
\begin{gathered}
\left(D^{\alpha} u\right)(x)=\left(\partial^{\alpha}(u-u(0))\right)(x)=\frac{\partial}{\partial x}\left(I^{1-\alpha}[u-u(0)]\right)(x)= \\
=\frac{1}{\Gamma(1-\alpha)} \frac{\partial}{\partial x} \int_{0}^{x}(x-p)^{-\alpha}[u(p)-u(0)] d p
\end{gathered}
$$

Let $\alpha \in(0,1)$. For integrable function u we define the fractional integral

$$
\left(I^{\alpha} u\right)(x)=\frac{1}{\Gamma(\alpha)} \int_{0}^{x}(x-p)^{\alpha-1} u(p) d p
$$

The Riemann-Liouville fractional derivative is defined by the formula

$$
\left(\partial^{\alpha} u\right)(x)=\left(\frac{\partial}{\partial x} I^{1-\alpha} u\right)(x)=\frac{1}{\Gamma(1-\alpha)} \frac{\partial}{\partial x} \int_{0}^{x}(x-p)^{-\alpha} u(p) d p
$$

and the Caputo derivative

$$
\begin{gathered}
\left(D^{\alpha} u\right)(x)=\left(\partial^{\alpha}(u-u(0))\right)(x)=\frac{\partial}{\partial x}\left(I^{1-\alpha}[u-u(0)]\right)(x)= \\
=\frac{1}{\Gamma(1-\alpha)} \frac{\partial}{\partial x} \int_{0}^{x}(x-p)^{-\alpha}[u(p)-u(0)] d p
\end{gathered}
$$

For u absolutely continuous we have

$$
\left(D^{\alpha} u\right)(x)=\frac{1}{\Gamma(1-\alpha)} \int_{0}^{x}(x-p)^{-\alpha} u^{\prime}(p) d p
$$

Let us define the operator of integration on $L^{p}(0, L)$ for $p \in[1, \infty]$ by

$$
\begin{equation*}
(\text { If })(x)=\int_{0}^{x} f(p) d p \quad \text { for } f \in L^{p}(0, L) . \tag{2}
\end{equation*}
$$

Let us define the operator of integration on $L^{p}(0, L)$ for $p \in[1, \infty]$ by

$$
\begin{equation*}
(\text { If })(x)=\int_{0}^{x} f(p) d p \quad \text { for } f \in L^{p}(0, L) \tag{2}
\end{equation*}
$$

Proposition

Let $L>0, p \in[1, \infty]$ and $\lambda \in \mathbb{C}, \quad \lambda \neq 0$. If $u, v \in L^{1}(0, L)$, then

$$
\begin{equation*}
(\lambda E+I) v(t)=u(t) \Longleftrightarrow v(t)=\lambda^{-1} u(t)-\lambda^{-2} \int_{0}^{t} u(s) e^{\frac{s-t}{\lambda}} d s . \tag{3}
\end{equation*}
$$

Furthermore, $I+\lambda E: L^{P}(0, L) \longrightarrow L^{P}(0, L)$ is an isomorphism and there holds the following estimate

$$
\begin{equation*}
\left\|(\lambda E+I)^{-1}\right\|_{B\left(L^{P}(0, L)\right)} \leq(1+\sqrt{2})|\lambda|^{-1} \quad \text { for } \quad \lambda \in \Sigma \tag{4}
\end{equation*}
$$

where

$$
\Sigma=\{z \in \mathbb{C}: \operatorname{Re} z>|\operatorname{lm} z|\} .
$$

Definition

[1, Definition 1.1.1] We say that A is non-negative if $(-\infty, 0) \subseteq \rho(A)$ and there exists $M>0$ such that

$$
\left\|(\lambda E+A)^{-1}\right\|_{B(X)} \leq \frac{M}{\lambda} \text { for every } \lambda>0 .
$$

Definition

[1, Definition 1.1.1] We say that A is non-negative if $(-\infty, 0) \subseteq \rho(A)$ and there exists $M>0$ such that

$$
\left\|(\lambda E+A)^{-1}\right\|_{B(X)} \leq \frac{M}{\lambda} \text { for every } \lambda>0 .
$$

Let A be a non-negative operator. We define for $0<\operatorname{Re} \alpha<1$ operator J^{α} as follows $D\left(J^{\alpha}\right)=D(A)$

$$
J^{\alpha} u=\frac{\sin \alpha \pi}{\pi} \int_{0}^{\infty} \lambda^{\alpha-1}(\lambda+A)^{-1} A u d \lambda .
$$

Definition

[1, Definition 1.1.1] We say that A is non-negative if $(-\infty, 0) \subseteq \rho(A)$ and there exists $M>0$ such that

$$
\left\|(\lambda E+A)^{-1}\right\|_{B(X)} \leq \frac{M}{\lambda} \text { for every } \lambda>0
$$

Let A be a non-negative operator. We define for $0<\operatorname{Re} \alpha<1$ operator J^{α} as follows $D\left(J^{\alpha}\right)=D(A)$

$$
J^{\alpha} u=\frac{\sin \alpha \pi}{\pi} \int_{0}^{\infty} \lambda^{\alpha-1}(\lambda+A)^{-1} A u d \lambda .
$$

Definition

[1, Definition 5.1.1] If A is non-negative and bounded we define $A^{\alpha}=J^{\alpha}$ for $\operatorname{Re} \alpha>0$.

Definition

[1, Definition 1.1.1] We say that A is non-negative if $(-\infty, 0) \subseteq \rho(A)$ and there exists $M>0$ such that

$$
\left\|(\lambda E+A)^{-1}\right\|_{B(X)} \leq \frac{M}{\lambda} \text { for every } \lambda>0
$$

Let A be a non-negative operator. We define for $0<\operatorname{Re} \alpha<1$ operator J^{α} as follows $D\left(J^{\alpha}\right)=D(A)$

$$
J^{\alpha} u=\frac{\sin \alpha \pi}{\pi} \int_{0}^{\infty} \lambda^{\alpha-1}(\lambda+A)^{-1} A u d \lambda .
$$

Definition

[1, Definition 5.1.1] If A is non-negative and bounded we define $A^{\alpha}=J^{\alpha}$ for $\operatorname{Re} \alpha>0$.

Definition

[1, Definition 5.1.2] Let A be an unbounded and positive operator (nonnegative and $0 \in \rho(A))$. We define for $\operatorname{Re} \alpha>0$

$$
A^{\alpha}=\left(\left(A^{-1}\right)^{\alpha}\right)^{-1}
$$

Here, the domain of A^{α} consists of $u \in X$ such that $u \in R\left(\left(A^{-1}\right)^{\alpha}\right)$.

Let us discuss $0<\operatorname{Re} \alpha<1$.

$$
J^{\alpha} u=\frac{\sin \alpha \pi}{\pi} \int_{0}^{\infty} \lambda^{\alpha-1}(\lambda E+I)^{-1} l u d \lambda .
$$

Let us discuss $0<\operatorname{Re} \alpha<1$.

$$
J^{\alpha} u=\frac{\sin \alpha \pi}{\pi} \int_{0}^{\infty} \lambda^{\alpha-1}(\lambda E+I)^{-1} l u d \lambda .
$$

By Proposition 1 we note that
$(\lambda E+I)^{-1} I u(t)=\lambda^{-1} \int_{0}^{t} u(\tau) d \tau-\lambda^{-2} \int_{0}^{t} \int_{0}^{s} u(\tau) d \tau e^{\frac{s-t}{\lambda}} d s=\lambda^{-1} \int_{0}^{t} u(\tau) e^{\frac{\tau-t}{\lambda}} d \tau$.

Let us discuss $0<\operatorname{Re} \alpha<1$.

$$
J^{\alpha} u=\frac{\sin \alpha \pi}{\pi} \int_{0}^{\infty} \lambda^{\alpha-1}(\lambda E+I)^{-1} l u d \lambda .
$$

By Proposition 1 we note that

$$
(\lambda E+I)^{-1} l u(t)=\lambda^{-1} \int_{0}^{t} u(\tau) d \tau-\lambda^{-2} \int_{0}^{t} \int_{0}^{s} u(\tau) d \tau e^{\frac{s-t}{\lambda}} d s=\lambda^{-1} \int_{0}^{t} u(\tau) e^{\frac{\tau-t}{\lambda}} d \tau
$$

Hence,

$$
J^{\alpha} u=\frac{\sin \alpha \pi}{\pi} \int_{0}^{\infty} \lambda^{\alpha-2} \int_{0}^{t} u(\tau) e^{\frac{\tau-t}{\lambda}} d \tau d \lambda
$$

Let us discuss $0<\operatorname{Re} \alpha<1$.

$$
J^{\alpha} u=\frac{\sin \alpha \pi}{\pi} \int_{0}^{\infty} \lambda^{\alpha-1}(\lambda E+I)^{-1} l u d \lambda .
$$

By Proposition 1 we note that

$$
(\lambda E+I)^{-1} l u(t)=\lambda^{-1} \int_{0}^{t} u(\tau) d \tau-\lambda^{-2} \int_{0}^{t} \int_{0}^{s} u(\tau) d \tau e^{\frac{s-t}{\lambda}} d s=\lambda^{-1} \int_{0}^{t} u(\tau) e^{\frac{\tau-t}{\lambda}} d \tau
$$

Hence,

$$
J^{\alpha} u=\frac{\sin \alpha \pi}{\pi} \int_{0}^{\infty} \lambda^{\alpha-2} \int_{0}^{t} u(\tau) e^{\frac{\tau-t}{\lambda}} d \tau d \lambda
$$

Applying the Fubini theorem and then the substitution $\frac{t-\tau}{\lambda}=p$ we arrive at

$$
\begin{gathered}
J^{\alpha} u=\frac{\sin \alpha \pi}{\pi} \int_{0}^{t} u(\tau)(t-\tau)^{\alpha-1} \int_{0}^{\infty} p^{-\alpha} e^{-p} d p d \tau \\
=\frac{\sin \alpha \pi}{\pi} \int_{0}^{t} u(\tau)(t-\tau)^{\alpha-1} d \tau \Gamma(1-\alpha)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t} u(\tau)(t-\tau)^{\alpha-1} d \tau .
\end{gathered}
$$

Let us discuss $0<\operatorname{Re} \alpha<1$.

$$
\left.J^{\alpha} u=\frac{\sin \alpha \pi}{\pi} \int_{0}^{\infty} \lambda^{\alpha-1}(\lambda E+I)^{-1} \right\rvert\, u d \lambda .
$$

By Proposition 1 we note that
$(\lambda E+l)^{-1} l u(t)=\lambda^{-1} \int_{0}^{t} u(\tau) d \tau-\lambda^{-2} \int_{0}^{t} \int_{0}^{s} u(\tau) d \tau e^{\frac{s-t}{\lambda}} d s=\lambda^{-1} \int_{0}^{t} u(\tau) e^{\frac{\tau-t}{\lambda}} d \tau$.
Hence,

$$
J^{\alpha} u=\frac{\sin \alpha \pi}{\pi} \int_{0}^{\infty} \lambda^{\alpha-2} \int_{0}^{t} u(\tau) e^{\frac{\tau-t}{\lambda}} d \tau d \lambda
$$

Applying the Fubini theorem and then the substitution $\frac{t-\tau}{\lambda}=p$ we arrive at

$$
\begin{gathered}
J^{\alpha} u=\frac{\sin \alpha \pi}{\pi} \int_{0}^{t} u(\tau)(t-\tau)^{\alpha-1} \int_{0}^{\infty} p^{-\alpha} e^{-p} d p d \tau \\
=\frac{\sin \alpha \pi}{\pi} \int_{0}^{t} u(\tau)(t-\tau)^{\alpha-1} d \tau \Gamma(1-\alpha)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t} u(\tau)(t-\tau)^{\alpha-1} d \tau .
\end{gathered}
$$

Proposition

Let $\operatorname{Re} \alpha, L>0, p \in[1, \infty]$. Then the operator I^{α} defined as an operator acting on $L^{p}(0, L)$ coincides with the fractional power of integration operator defined by (2).

Let us define the operator of differentiation

$$
\begin{equation*}
\frac{\partial}{\partial x}: D\left(\frac{\partial}{\partial x}\right):={ }_{0} W^{\mathbf{1}, p}(0, L) \rightarrow L^{p}(0, L), \quad \frac{\partial}{\partial x} u:=u^{\prime} . \tag{5}
\end{equation*}
$$

We will show that this operator is positive.

Let us define the operator of differentiation

$$
\begin{equation*}
\frac{\partial}{\partial x}: D\left(\frac{\partial}{\partial x}\right):={ }_{0} W^{\mathbf{1}, p}(0, L) \rightarrow L^{p}(0, L), \quad \frac{\partial}{\partial x} u:=u^{\prime} . \tag{5}
\end{equation*}
$$

We will show that this operator is positive. Indeed, we fix $v \in L^{p}(0, L), p \in[1, \infty]$ and we search for a solution to

$$
\lambda u+\frac{\partial}{\partial x} u=v, \quad \operatorname{Re} \lambda>0
$$

belonging to $D\left(\frac{\partial}{\partial x}\right)$.

Let us define the operator of differentiation

$$
\begin{equation*}
\frac{\partial}{\partial x}: D\left(\frac{\partial}{\partial x}\right):={ }_{0} W^{1, p}(0, L) \rightarrow L^{p}(0, L), \quad \frac{\partial}{\partial x} u:=u^{\prime} \tag{5}
\end{equation*}
$$

We will show that this operator is positive. Indeed, we fix $v \in L^{p}(0, L), p \in[1, \infty]$ and we search for a solution to

$$
\lambda u+\frac{\partial}{\partial x} u=v, \quad \operatorname{Re} \lambda>0
$$

belonging to $D\left(\frac{\partial}{\partial x}\right)$. We multiply the equation by $e^{\lambda x}$.

$$
\frac{\partial}{\partial x}\left(u e^{\lambda x}\right)=v e^{\lambda x}
$$

Since $u(0)=0$, we get

$$
u=\int_{0}^{x} e^{-\lambda(x-p)} v(p) d p
$$

and by the Young inequality for convolution

$$
\|u\|_{L^{p}(0, L)} \leq\|v\|_{L^{p}(0, L)}\left\|e^{-\lambda x}\right\|_{L^{1}(0, L)} \leq \frac{\|v\|_{L^{p}(0, L)}}{\operatorname{Re} \lambda} \text { for } \operatorname{Re} \lambda>0 .
$$

Let us define the operator of differentiation

$$
\begin{equation*}
\frac{\partial}{\partial x}: D\left(\frac{\partial}{\partial x}\right):={ }_{0} W^{\mathbf{1}, p}(0, L) \rightarrow L^{p}(0, L), \quad \frac{\partial}{\partial x} u:=u^{\prime} \tag{5}
\end{equation*}
$$

We will show that this operator is positive. Indeed, we fix $v \in L^{p}(0, L), p \in[1, \infty]$ and we search for a solution to

$$
\lambda u+\frac{\partial}{\partial x} u=v, \quad \operatorname{Re} \lambda>0
$$

belonging to $D\left(\frac{\partial}{\partial x}\right)$. We multiply the equation by $e^{\lambda x}$.

$$
\frac{\partial}{\partial x}\left(u e^{\lambda x}\right)=v e^{\lambda x}
$$

Since $u(0)=0$, we get

$$
u=\int_{0}^{x} e^{-\lambda(x-p)} v(p) d p
$$

and by the Young inequality for convolution

$$
\|u\|_{L^{p}(0, L)} \leq\|v\|_{L^{p}(0, L)}\left\|e^{-\lambda x}\right\|_{L^{1}(0, L)} \leq \frac{\|v\|_{L^{p}(0, L)}}{\operatorname{Re} \lambda} \text { for } \operatorname{Re} \lambda>0
$$

Obviously, zero belongs to the resolvent set of $\frac{\partial}{\partial x}$ and $\left(\frac{\partial}{\partial x}\right)^{-1}=I$, where I is an integration operator defined in (2).

$$
D\left(\left(\frac{\partial}{\partial x}\right)^{\alpha}\right)=\left\{u \in L^{p}(0, L): u \in R\left(I^{\alpha}\right)\right\}
$$

and

$$
\left(\frac{\partial}{\partial x}\right)^{\alpha}:=\left(\left(\left(\frac{\partial}{\partial x}\right)^{-1}\right)^{\alpha}\right)^{-1} .
$$

$$
D\left(\left(\frac{\partial}{\partial x}\right)^{\alpha}\right)=\left\{u \in L^{p}(0, L): u \in R\left(I^{\alpha}\right)\right\}
$$

and

$$
\left(\frac{\partial}{\partial x}\right)^{\alpha}:=\left(\left(\left(\frac{\partial}{\partial x}\right)^{-1}\right)^{\alpha}\right)^{-1} .
$$

Making use of $\left(\frac{\partial}{\partial x}\right)^{-1}=I$ we arrive at

$$
\left(\frac{\partial}{\partial x}\right)^{\alpha}=I^{-\alpha} .
$$

$$
D\left(\left(\frac{\partial}{\partial x}\right)^{\alpha}\right)=\left\{u \in L^{p}(0, L): u \in R\left(I^{\alpha}\right)\right\}
$$

and

$$
\left(\frac{\partial}{\partial x}\right)^{\alpha}:=\left(\left(\left(\frac{\partial}{\partial x}\right)^{-1}\right)^{\alpha}\right)^{-1} .
$$

Making use of $\left(\frac{\partial}{\partial x}\right)^{-1}=I$ we arrive at

$$
\left(\frac{\partial}{\partial x}\right)^{\alpha}=I^{-\alpha} .
$$

Let us recall

Proposition

[1, Theorem 7.1.1] Let $\alpha, \beta \in \mathbb{C}$ and let A be a non-negative and injective operator. If $u \in D\left(A^{\alpha+\beta}\right) \cap D\left(A^{\beta}\right)$, then $A^{\beta} u \in D\left(A^{\alpha}\right)$ and $A^{\alpha} A^{\beta} u=A^{\alpha+\beta} u$.

$$
D\left(\left(\frac{\partial}{\partial x}\right)^{\alpha}\right)=\left\{u \in L^{p}(0, L): u \in R\left(I^{\alpha}\right)\right\}
$$

and

$$
\left(\frac{\partial}{\partial x}\right)^{\alpha}:=\left(\left(\left(\frac{\partial}{\partial x}\right)^{-1}\right)^{\alpha}\right)^{-1} .
$$

Making use of $\left(\frac{\partial}{\partial x}\right)^{-1}=I$ we arrive at

$$
\left(\frac{\partial}{\partial x}\right)^{\alpha}=I^{-\alpha} .
$$

Let us recall

Proposition

[1, Theorem 7.1.1] Let $\alpha, \beta \in \mathbb{C}$ and let A be a non-negative and injective operator. If $u \in D\left(A^{\alpha+\beta}\right) \cap D\left(A^{\beta}\right)$, then $A^{\beta} u \in D\left(A^{\alpha}\right)$ and $A^{\alpha} A^{\beta} u=A^{\alpha+\beta} u$.

If $u \in D\left(I^{-\alpha}\right)$, then $u \in D\left(I^{1-\alpha}\right)=L^{p}(0, L)$. We apply Proposition with parameters $\alpha=-1$ and $\beta=1-\alpha$ and we obtain that $I^{1-\alpha} u \in D\left(I^{-1}\right)$ and $I^{-\alpha} u=I^{-1} I^{1-\alpha} u$.

$$
D\left(\left(\frac{\partial}{\partial x}\right)^{\alpha}\right)=\left\{u \in L^{p}(0, L): u \in R\left(I^{\alpha}\right)\right\}
$$

and

$$
\left(\frac{\partial}{\partial x}\right)^{\alpha}:=\left(\left(\left(\frac{\partial}{\partial x}\right)^{-1}\right)^{\alpha}\right)^{-\mathbf{1}} .
$$

Making use of $\left(\frac{\partial}{\partial x}\right)^{-1}=I$ we arrive at

$$
\left(\frac{\partial}{\partial x}\right)^{\alpha}=I^{-\alpha} .
$$

Let us recall

Proposition

[1, Theorem 7.1.1] Let $\alpha, \beta \in \mathbb{C}$ and let A be a non-negative and injective operator. If $u \in D\left(A^{\alpha+\beta}\right) \cap D\left(A^{\beta}\right)$, then $A^{\beta} u \in D\left(A^{\alpha}\right)$ and $A^{\alpha} A^{\beta} u=A^{\alpha+\beta} u$.

If $u \in D\left(I^{-\alpha}\right)$, then $u \in D\left(I^{1-\alpha}\right)=L^{p}(0, L)$. We apply Proposition with parameters $\alpha=-1$ and $\beta=1-\alpha$ and we obtain that $I^{1-\alpha} u \in D\left(I^{-1}\right)$ and $I^{-\alpha} u=I^{-1} I^{1-\alpha} u$. Furthermore,

$$
\boldsymbol{I}^{-1} \boldsymbol{I}^{1-\alpha} u=\frac{\partial}{\partial x} \boldsymbol{I}^{1-\alpha} u=\partial^{\alpha} u
$$

$$
D\left(\left(\frac{\partial}{\partial x}\right)^{\alpha}\right)=\left\{u \in L^{p}(0, L): u \in R\left(I^{\alpha}\right)\right\}
$$

and

$$
\left(\frac{\partial}{\partial x}\right)^{\alpha}:=\left(\left(\left(\frac{\partial}{\partial x}\right)^{-1}\right)^{\alpha}\right)^{-1} .
$$

Making use of $\left(\frac{\partial}{\partial x}\right)^{-1}=I$ we arrive at

$$
\left(\frac{\partial}{\partial x}\right)^{\alpha}=I^{-\alpha} .
$$

Let us recall

Proposition

[1, Theorem 7.1.1] Let $\alpha, \beta \in \mathbb{C}$ and let A be a non-negative and injective operator. If $u \in D\left(A^{\alpha+\beta}\right) \cap D\left(A^{\beta}\right)$, then $A^{\beta} u \in D\left(A^{\alpha}\right)$ and $A^{\alpha} A^{\beta} u=A^{\alpha+\beta} u$.

If $u \in D\left(I^{-\alpha}\right)$, then $u \in D\left(I^{1-\alpha}\right)=L^{p}(0, L)$. We apply Proposition with parameters $\alpha=-1$ and $\beta=1-\alpha$ and we obtain that $I^{1-\alpha} u \in D\left(I^{-1}\right)$ and $I^{-\alpha} u=I^{-1} I^{1-\alpha} u$. Furthermore,

$$
I^{-1} I^{1-\alpha} u=\frac{\partial}{\partial x} I^{1-\alpha} u=\partial^{\alpha} u
$$

Summing up the results, we obtain that

$$
\left(\frac{\partial}{\partial x}\right)^{\alpha} u=\partial^{\alpha} u \text { for every } u \in D\left(\left(\frac{\partial}{\partial x}\right)^{\alpha}\right)=D\left(I^{-\alpha}\right)=R\left(I^{\alpha}\right)
$$

Theorem

[1, Theorem 12.1.9] Let $\frac{\partial}{\partial x}$ be defined by (5) and $p \in(1, \infty)$. Then,

$$
\left\|\left(\frac{\partial}{\partial x}\right)^{i \tau}\right\|_{L^{p}(0, L)} \leq c(1+|\tau|) e^{\frac{\pi|\tau|}{2}} \quad \text { for } \quad \tau \neq 0
$$

Theorem

[1, Theorem 12.1.9] Let $\frac{\partial}{\partial x}$ be defined by (5) and $p \in(1, \infty)$. Then,

$$
\left\|\left(\frac{\partial}{\partial x}\right)^{i \tau}\right\|_{L^{p}(0, L)} \leq c(1+|\tau|) e^{\frac{\pi|\tau|}{2}} \quad \text { for } \quad \tau \neq 0
$$

Proposition

For $L>0, \alpha \in(0,1), p \in(1, \infty)$ the operators $I^{\alpha}: L^{p}(0, L) \longrightarrow{ }_{0} H^{\alpha, p}(0, L)$ and $\partial^{\alpha}:{ }_{0} H^{\alpha, p}(0, L) \longrightarrow L^{p}(0, L)$ are isomorphism and the following inequalities hold

$$
\begin{aligned}
& c^{-1}\|u\|_{0} H^{\alpha, p}(0, L) \leq\left\|\partial^{\alpha} u\right\|_{L^{p}(0, L)} \leq c\|u\|_{0} H^{\alpha, p}(0, L) \quad \text { for } u \in{ }_{0} H^{\alpha, p}(0, L), \\
& c^{-1}\left\|I^{\alpha} f\right\|_{0} H^{\alpha, p}(0, L) \leq\|f\|_{L^{p}(0, L)} \leq c\left\|I^{\alpha} f\right\|_{0} H^{\alpha, p}(0, L) \quad \text { for } f \in L^{p}(0, L) .
\end{aligned}
$$

Here by ${ }_{0} H^{\alpha, p}(0, L)$ we denote the fractional Lebesgue space defined by

$$
{ }_{0} H^{\alpha, p}(0, L):=\left[L^{p}(0, L),{ }_{o} W^{1, p}(0, L)\right]_{\alpha}
$$

and c denotes a positive constant dependent on α, p, L.

Proposition

[1, Theorem 3.1.8 and Corollary 5.1.12] Let $\operatorname{Re} \alpha>0$ and A be an non-negative operator. Then, J^{α} is closable and $A^{\alpha}=\overline{J^{\alpha}}$ if and only if A is densely defined.

Proposition

[1, Theorem 3.1.8 and Corollary 5.1.12] Let $\operatorname{Re} \alpha>0$ and A be an non-negative operator. Then, J^{α} is closable and $A^{\alpha}=\overline{J^{\alpha}}$ if and only if A is densely defined.

Proposition

Let $L>0$ and $0<\alpha<1$. Let us discuss the operator $\frac{\partial}{\partial x}$ defined in (5). Then, the Balakrishnan operator J^{α} of $\frac{\partial}{\partial x}$ coincides with the Caputo derivative D^{α}. Furthermore, the operator ∂^{α} defined on ${ }_{0} H^{\alpha, p}(0, L)$ is the closure of D^{α} defined on ${ }_{0} W^{1, p}(0, L)$.

Proposition

[1, Theorem 3.1.8 and Corollary 5.1.12] Let $\operatorname{Re} \alpha>0$ and A be an non-negative operator. Then, J^{α} is closable and $A^{\alpha}=\overline{J^{\alpha}}$ if and only if A is densely defined.

Proposition

Let $L>0$ and $0<\alpha<1$. Let us discuss the operator $\frac{\partial}{\partial x}$ defined in (5). Then, the Balakrishnan operator J^{α} of $\frac{\partial}{\partial x}$ coincides with the Caputo derivative D^{α}. Furthermore, the operator ∂^{α} defined on ${ }_{0} H^{\alpha, p}(0, L)$ is the closure of D^{α} defined on ${ }_{0} W^{1, p}(0, L)$.

Let us calculate the Balakrishnan operator of $\frac{\partial}{\partial x}$. For $u \in D\left(\frac{\partial}{\partial x}\right)$ we have

$$
J^{\alpha} u=\frac{\sin \alpha \pi}{\pi} \int_{0}^{\infty} \lambda^{\alpha-1}\left(\lambda+\frac{\partial}{\partial x}\right)^{-1} \frac{\partial}{\partial x} u d \lambda
$$

Proposition

[1, Theorem 3.1.8 and Corollary 5.1.12] Let $\operatorname{Re} \alpha>0$ and A be an non-negative operator. Then, J^{α} is closable and $A^{\alpha}=\overline{J^{\alpha}}$ if and only if A is densely defined.

Proposition

Let $L>0$ and $0<\alpha<1$. Let us discuss the operator $\frac{\partial}{\partial x}$ defined in (5). Then, the Balakrishnan operator J^{α} of $\frac{\partial}{\partial x}$ coincides with the Caputo derivative D^{α}. Furthermore, the operator ∂^{α} defined on ${ }_{0} H^{\alpha, p}(0, L)$ is the closure of D^{α} defined on ${ }_{0} W^{1, p}(0, L)$.

Let us calculate the Balakrishnan operator of $\frac{\partial}{\partial x}$. For $u \in D\left(\frac{\partial}{\partial x}\right)$ we have

$$
\begin{aligned}
& J^{\alpha} u=\frac{\sin \alpha \pi}{\pi} \int_{0}^{\infty} \lambda^{\alpha-1}\left(\lambda+\frac{\partial}{\partial x}\right)^{-1} \frac{\partial}{\partial x} u d \lambda \\
& =\frac{\sin \alpha \pi}{\pi} \int_{0}^{\infty} \lambda^{\alpha-1} \int_{0}^{x} e^{-\lambda(x-p)} u^{\prime}(p) d p d \lambda
\end{aligned}
$$

Proposition

[1, Theorem 3.1.8 and Corollary 5.1.12] Let $\operatorname{Re} \alpha>0$ and A be an non-negative operator. Then, J^{α} is closable and $A^{\alpha}=\overline{J^{\alpha}}$ if and only if A is densely defined.

Proposition

Let $L>0$ and $0<\alpha<1$. Let us discuss the operator $\frac{\partial}{\partial x}$ defined in (5). Then, the Balakrishnan operator J^{α} of $\frac{\partial}{\partial x}$ coincides with the Caputo derivative D^{α}. Furthermore, the operator ∂^{α} defined on ${ }_{0} H^{\alpha, p}(0, L)$ is the closure of D^{α} defined on ${ }_{0} W^{1, p}(0, L)$.

Let us calculate the Balakrishnan operator of $\frac{\partial}{\partial x}$. For $u \in D\left(\frac{\partial}{\partial x}\right)$ we have

$$
\begin{aligned}
& J^{\alpha} u=\frac{\sin \alpha \pi}{\pi} \int_{0}^{\infty} \lambda^{\alpha-1}\left(\lambda+\frac{\partial}{\partial x}\right)^{-1} \frac{\partial}{\partial x} u d \lambda \\
& =\frac{\sin \alpha \pi}{\pi} \int_{0}^{\infty} \lambda^{\alpha-1} \int_{0}^{x} e^{-\lambda(x-p)} u^{\prime}(p) d p d \lambda \\
& =\frac{\sin \alpha \pi}{\pi} \int_{0}^{x} u^{\prime}(p) \int_{0}^{\infty} \lambda^{\alpha-1} e^{-\lambda(x-p)} d \lambda d p .
\end{aligned}
$$

Proposition

[1, Theorem 3.1.8 and Corollary 5.1.12] Let $\operatorname{Re} \alpha>0$ and A be an non-negative operator. Then, J^{α} is closable and $A^{\alpha}=\overline{J^{\alpha}}$ if and only if A is densely defined.

Proposition

Let $L>0$ and $0<\alpha<1$. Let us discuss the operator $\frac{\partial}{\partial x}$ defined in (5). Then, the Balakrishnan operator J^{α} of $\frac{\partial}{\partial x}$ coincides with the Caputo derivative D^{α}. Furthermore, the operator ∂^{α} defined on ${ }_{0} H^{\alpha, p}(0, L)$ is the closure of D^{α} defined on ${ }_{0} W^{1, p}(0, L)$.

Let us calculate the Balakrishnan operator of $\frac{\partial}{\partial x}$. For $u \in D\left(\frac{\partial}{\partial x}\right)$ we have

$$
\begin{aligned}
& J^{\alpha} u=\frac{\sin \alpha \pi}{\pi} \int_{0}^{\infty} \lambda^{\alpha-1}\left(\lambda+\frac{\partial}{\partial x}\right)^{-1} \frac{\partial}{\partial x} u d \lambda \\
& =\frac{\sin \alpha \pi}{\pi} \int_{0}^{\infty} \lambda^{\alpha-1} \int_{0}^{x} e^{-\lambda(x-p)} u^{\prime}(p) d p d \lambda \\
& =\frac{\sin \alpha \pi}{\pi} \int_{0}^{x} u^{\prime}(p) \int_{0}^{\infty} \lambda^{\alpha-1} e^{-\lambda(x-p)} d \lambda d p .
\end{aligned}
$$

Applying substitution $\lambda(x-p)=w$ we get

$$
J^{\alpha} u=\frac{1}{\Gamma(1-\alpha)} \int_{0}^{x}(x-p)^{-\alpha} u^{\prime}(p) d p=D^{\alpha} u
$$

Definition

$$
{ }_{0} H^{\alpha}(0,1)=\left\{\begin{array}{lll}
H^{\alpha}(0,1) & \text { for } & \alpha \in\left(0, \frac{1}{2}\right), \\
\left\{u \in H^{\frac{1}{2}}(0,1):\right. & \left.\int_{0}^{1} \frac{|u(t)|^{2}}{t} d t<\infty\right\} & \text { for } \\
\left\{u \in H^{\alpha}(0,1):\right. & u(0)=0\} & \text { for } \\
\left\{u \in\left(\frac{1}{2}, 1\right)\right.
\end{array}\right.
$$

Definition

Theorem

The operators $\partial^{\alpha}:{ }_{0} H^{\alpha}(0,1) \rightarrow L^{2}(0,1), I^{\alpha}: L^{2}(0,1) \rightarrow{ }_{0} H^{\alpha}(0,1)$ are isomorphism and

$$
\begin{array}{ll}
c_{\alpha}^{-1}\|u\|_{0} H^{\alpha}(0,1) \\
c_{\alpha}\left\|I^{\alpha} f\right\|_{0} H^{\alpha}(0,1) \leq\left\|f \partial_{L^{2}(0,1)} \leq\right\|_{L^{2}(0,1)} \leq c_{\alpha}\|u\|_{0} H^{\alpha} f \|_{0} H^{\alpha}(0,1) & \text { for } u \in{ }_{0} H^{\alpha}(0,1) \\
\text { for } f \in L^{2}(0,1)
\end{array}
$$

Theorem

The operators $\partial^{\alpha}:{ }_{0} H^{\alpha}(0,1) \rightarrow L^{2}(0,1), I^{\alpha}: L^{2}(0,1) \rightarrow{ }_{0} H^{\alpha}(0,1)$ are isomorphism and

$$
\begin{array}{ll}
c_{\alpha}^{-1}\|u\|_{0} H^{\alpha}(0,1) \\
c_{\alpha}\left\|I^{\alpha} f\right\|_{0} H^{\alpha}(0,1) \leq\left\|\partial^{\alpha} u\right\|_{L^{2}(0,1)} \leq c_{\alpha}\|u\|_{0} H^{\alpha}(0,1) & \text { for } u \in{ }_{0} H^{\alpha}(0,1) \leq c_{\alpha}\left\|I^{\alpha} f\right\|_{0} H^{\alpha}(0,1)
\end{array} \quad \text { for } f \in L^{2}(0,1) .
$$

We have to deal with

$$
\frac{\partial}{\partial x} D^{\alpha} u=\frac{\partial}{\partial x} I^{1-\alpha} u_{x}=\partial^{\alpha} u_{x} .
$$

Theorem

The operators $\partial^{\alpha}:{ }_{0} H^{\alpha}(0,1) \rightarrow L^{2}(0,1), I^{\alpha}: L^{2}(0,1) \rightarrow{ }_{0} H^{\alpha}(0,1)$ are isomorphism and

$$
\begin{aligned}
& c_{\alpha}^{-1}\|u\|_{0 H^{\alpha}(0,1)} \leq\left\|\partial^{\alpha} u\right\|_{L^{2}(0,1)} \leq c_{\alpha}\|u\|_{0} H^{\alpha}(0,1) \quad \text { for } u \in{ }_{0} H^{\alpha}(0,1), \\
& c_{\alpha}\left\|I^{\alpha} f\right\|_{0} H^{\alpha}(0,1) \leq\|f\|_{L^{2}(0,1)} \leq c_{\alpha}\left\|I^{\alpha} f\right\|_{0} H^{\alpha}(0,1) \quad \text { for } f \in L^{2}(0,1) .
\end{aligned}
$$

We have to deal with

$$
\frac{\partial}{\partial x} D^{\alpha} u=\frac{\partial}{\partial x} I^{1-\alpha} u_{x}=\partial^{\alpha} u_{x} .
$$

We define the domain of $\frac{\partial}{\partial x} D^{\alpha}$ by

$$
D\left(\frac{\partial}{\partial x} D^{\alpha}\right) \equiv \mathcal{D}_{\alpha}:=\left\{u \in H^{1+\alpha}(0,1): u_{x} \in{ }_{0} H^{\alpha}(0,1), \quad u(1)=0\right\}
$$

Theorem

Operator $\frac{\partial}{\partial x} D^{\alpha}: \mathcal{D}_{\alpha} \subseteq L^{2}(0,1) \rightarrow L^{2}(0,1)$ generates an analytic semigroup.

Theorem

Operator $\frac{\partial}{\partial x} D^{\alpha}: \mathcal{D}_{\alpha} \subseteq L^{2}(0,1) \rightarrow L^{2}(0,1)$ generates an analytic semigroup.
Idea of the proof:

- $\frac{\partial}{\partial x} D^{\alpha}: \mathcal{D}_{\alpha} \subseteq L^{2}(0,1) \rightarrow L^{2}(0,1)$ generates a C_{0} semigroup of contractions.

Theorem

Operator $\frac{\partial}{\partial x} D^{\alpha}: \mathcal{D}_{\alpha} \subseteq L^{2}(0,1) \rightarrow L^{2}(0,1)$ generates an analytic semigroup.
Idea of the proof:

- $\frac{\partial}{\partial x} D^{\alpha}: \mathcal{D}_{\alpha} \subseteq L^{2}(0,1) \rightarrow L^{2}(0,1)$ generates a C_{0} semigroup of contractions.
- $\operatorname{Re}\left(-\frac{\partial}{\partial x} D^{\alpha} u, u\right) \geq 0$
- $R\left(\lambda I-\frac{\partial}{\partial x} D^{\alpha}\right)=L^{2}(0,1)$ for $\lambda>0$.

Theorem

Operator $\frac{\partial}{\partial x} D^{\alpha}: \mathcal{D}_{\alpha} \subseteq L^{2}(0,1) \rightarrow L^{2}(0,1)$ generates an analytic semigroup.
Idea of the proof:

- $\frac{\partial}{\partial x} D^{\alpha}: \mathcal{D}_{\alpha} \subseteq L^{2}(0,1) \rightarrow L^{2}(0,1)$ generates a C_{0} semigroup of contractions.
- $\operatorname{Re}\left(-\frac{\partial}{\partial x} D^{\alpha} u, u\right) \geq 0$
- $R\left(\lambda I-\frac{\partial}{\partial x} D^{\alpha}\right)=L^{2}(0,1)$ for $\lambda>0$.

Proposition

Let us discuss $\frac{\partial}{\partial x} D^{\alpha}: \mathcal{D}_{\alpha} \rightarrow L^{2}(0,1)$. Then, for every $\lambda \in \mathbb{C}$ belonging to the sector

$$
\begin{equation*}
\vartheta_{\alpha}:=\left\{z \in \mathbb{C} \backslash\{0\}:|\arg z| \leq \frac{\pi(\alpha+1)}{2}\right\} \cup\{0\} \tag{6}
\end{equation*}
$$

there holds

$$
R\left(\lambda E-\frac{\partial}{\partial x} D^{\alpha}\right)=L^{2}(0,1)
$$

$$
\sigma\left(\frac{\partial}{\partial x} D^{\alpha}\right)=\left\{\lambda \in \mathbb{C}: E_{\alpha+1}(\lambda)=0\right\} .
$$

The solution to

$$
\lambda u-\frac{\partial}{\partial x} D^{\alpha} u=g
$$

is given by

$$
u(x)=\left(E_{\alpha+1}(\lambda)\right)^{-1}\left(g * y^{\alpha} E_{\alpha+1, \alpha+1}\left(\lambda y^{\alpha+1}\right)\right)(1) E_{\alpha+1}\left(\lambda x^{\alpha+1}\right)-g * x^{\alpha} E_{\alpha+1, \alpha+1}\left(\lambda x^{\alpha+1}\right) .
$$

The solution to

$$
\lambda u-\frac{\partial}{\partial x} D^{\alpha} u=g
$$

is given by

$$
u(x)=\left(E_{\alpha+1}(\lambda)\right)^{-1}\left(g * y^{\alpha} E_{\alpha+1, \alpha+1}\left(\lambda y^{\alpha+1}\right)\right)(1) E_{\alpha+1}\left(\lambda x^{\alpha+1}\right)-g * x^{\alpha} E_{\alpha+1, \alpha+1}\left(\lambda x^{\alpha+1}\right)
$$

- An analytic extension of C_{0} - semigroup on a sector of complex plane.

The solution to

$$
\lambda u-\frac{\partial}{\partial x} D^{\alpha} u=g
$$

is given by
$u(x)=\left(E_{\alpha+1}(\lambda)\right)^{-\mathbf{1}}\left(g * y^{\alpha} E_{\alpha+1, \alpha+1}\left(\lambda y^{\alpha+1}\right)\right)(1) E_{\alpha+1}\left(\lambda x^{\alpha+1}\right)-g * x^{\alpha} E_{\alpha+\mathbf{1}, \alpha+\mathbf{1}}\left(\lambda x^{\alpha+1}\right)$.

- An analytic extension of C_{0} - semigroup on a sector of complex plane.

Proposition

For $u \in \mathcal{D}_{\alpha}$ we have

$$
\begin{equation*}
\operatorname{Re}\left(-\frac{\partial}{\partial x} D^{\alpha} u, u\right) \geq c_{\alpha}\|u\|_{H^{\frac{1+\alpha}{2}}}^{2}(0,1) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\left(-\frac{\partial}{\partial x} D^{\alpha} u, u\right)\right| \leq b_{\alpha}\|u\|_{H^{\frac{1+\alpha}{2}}}^{(0,1)}, \tag{8}
\end{equation*}
$$

where c_{α}, b_{α} are positive constant which depends only on α.

Theorem

Let us consider problem

$$
\begin{cases}u_{t}-\frac{\partial}{\partial x} D^{\alpha} u=0 & \text { in }(0,1) \times(0, T) \\ u_{x}(0, t)=0, \quad u(1, t)=0 & \text { for } t \in(0, T), \\ u(x, 0)=u_{0}(x) & \text { in }(0,1)\end{cases}
$$

If we assume that $u_{0} \in L^{2}(0,1)$, then there exists exactly one solution which belongs to $C\left([0, T] ; L^{2}(0,1)\right) \cap C\left((0, T] ; \mathcal{D}_{\alpha}\right) \cap C^{1}\left((0, T] ; L^{2}(0,1)\right)$. Furthermore, there exists a positive constant $c=c(T)$, such that the following estimate holds for every $t \in(0, T]$

$$
\|u(\cdot, t)\|_{L^{2}(0,1)}+t\left\|u_{t}(\cdot, t)\right\|_{L^{2}(0,1)}+t\left\|\frac{\partial}{\partial x} D^{\alpha} u(\cdot, t)\right\|_{L^{2}(0,1)} \leq c\left\|u_{0}\right\|_{L^{2}(0,1)} .
$$

Nevertheless, $u \in C^{\infty}\left((0, T] ; L^{2}(0,1)\right)$ and for every $t \in(0, T]$, for very $k \in \mathbb{N}$ we have $u(\cdot, t) \in D\left(\left(\frac{\partial}{\partial x} D^{\alpha}\right)^{k}\right)$. The last property implies that $u(\cdot, t) \in C^{\infty}(0,1)$ for every $t \in(0, T]$, however u has a singularity of the form $x^{\alpha+1}$ at the left endpoint of the interval.

Case with Dirichlet boundary conditions

$$
\begin{cases}u_{t}-\frac{\partial}{\partial x} D^{\alpha} u=f & \text { in }(0,1) \times(0, T), \tag{9}\\ u(0, t)=0, u(1, t)=0 & \text { for } t \in(0, T), \\ u(x, 0)=u_{0}(x) & \text { in }(0,1),\end{cases}
$$

$$
\begin{cases}u_{t}-\frac{\partial}{\partial x} D^{\alpha} u=f & \text { in }(0,1) \times(0, T) \tag{9}\\ u(0, t)=0, u(1, t)=0 & \text { for } t \in(0, T) \\ u(x, 0)=u_{0}(x) & \text { in }(0,1)\end{cases}
$$

Let us introduce

$$
\overline{\mathcal{D}}_{\alpha}:=\left\{u=w-w(1) x^{\alpha}, \text { where } w \in{ }_{0} H^{1+\alpha}(0,1)\right\}
$$

We equip $\overline{\mathcal{D}}_{\alpha}$ with the following norm

$$
\|u\|_{\overline{\mathcal{D}}_{\alpha}}=\|w\|_{H^{1+\alpha}(0,1)} \text { for } \alpha \in(0,1) \backslash\left\{\frac{1}{2}\right\}
$$

and

$$
\|u\|_{\overline{\mathcal{D}}_{\alpha}}=\left(\|w\|_{H^{\frac{3}{2}}(0,1)}^{2}+\int_{0}^{1} \frac{\left|w_{x}(x)\right|^{2}}{x} d x\right)^{\frac{1}{2}} \text { for } \alpha=\frac{1}{2}
$$

$$
\begin{cases}u_{t}-\frac{\partial}{\partial x} D^{\alpha} u=f & \text { in }(0,1) \times(0, T) \tag{9}\\ u(0, t)=0, u(1, t)=0 & \text { for } t \in(0, T) \\ u(x, 0)=u_{0}(x) & \text { in }(0,1),\end{cases}
$$

Let us introduce

$$
\overline{\mathcal{D}}_{\alpha}:=\left\{u=w-w(1) x^{\alpha}, \text { where } w \in{ }_{0} H^{1+\alpha}(0,1)\right\} .
$$

We equip $\overline{\mathcal{D}}_{\alpha}$ with the following norm

$$
\|u\|_{\overline{\mathcal{D}}_{\alpha}}=\|w\|_{H^{1+\alpha}(0,1)} \text { for } \alpha \in(0,1) \backslash\left\{\frac{1}{2}\right\}
$$

and

$$
\|u\|_{\overline{\mathcal{D}}_{\alpha}}=\left(\|w\|_{H^{\frac{3}{2}(0,1)}}^{2}+\int_{0}^{1} \frac{\left|w_{x}(x)\right|^{2}}{x} d x\right)^{\frac{1}{2}} \text { for } \alpha=\frac{1}{2}
$$

Theorem

The operator $\frac{\partial}{\partial x} D^{\alpha}: \overline{\mathcal{D}}_{\alpha} \subseteq L^{2}(0,1) \rightarrow L^{2}(0,1)$ is a densely defined sectorial operator, thus it generates an analytic semigroup.

$$
\begin{cases}u_{t}-\frac{\partial}{\partial x} D^{\alpha} u=f & \text { in }(0,1) \times(0, T) \tag{10}\\ \left(D^{\alpha} u\right)(0, t)=h(t), \quad u(1, t)=0 & \text { for } t \in(0, T) \\ u(x, 0)=u_{0}(x) & \text { in }(0,1)\end{cases}
$$

$$
\begin{cases}u_{t}-\frac{\partial}{\partial x} D^{\alpha} u=f & \text { in }(0,1) \times(0, T) \tag{10}\\ \left(D^{\alpha} u\right)(0, t)=h(t), \quad u(1, t)=0 & \text { for } t \in(0, T) \\ u(x, 0)=u_{0}(x) & \text { in }(0,1)\end{cases}
$$

Proposition

Let F be an absolutely continuous function and $f:=F^{\prime}$. Then we denote

$$
\left(D^{\alpha} F\right)(0):=\lim _{x \rightarrow 0} \frac{1}{\Gamma(1-\alpha)} \int_{0}^{x}(x-p)^{-\alpha} f(p) d p
$$

(-) If $\left(D^{\alpha} F\right)(0)$ exists and $\left(D^{\alpha} F\right)(0)=c$, then $\lim _{y \rightarrow 0} \frac{F(y)}{y^{\alpha}}=\frac{c}{\Gamma(1+\alpha)}$,
(2) if the limit $\lim _{y \rightarrow 0} \frac{f(y)}{y^{\alpha-1}}$ exists and $\lim _{y \rightarrow 0} \frac{f(y)}{y^{\alpha-1}}=\frac{c}{\Gamma(\alpha)}$, then $\left(D^{\alpha} F\right)(0)=c$.

$$
\begin{cases}u_{t}-\frac{\partial}{\partial x} D^{\alpha} u=f & \text { in }(0,1) \times(0, T) \tag{10}\\ \left(D^{\alpha} u\right)(0, t)=h(t), \quad u(1, t)=0 & \text { for } t \in(0, T) \\ u(x, 0)=u_{0}(x) & \text { in }(0,1)\end{cases}
$$

Proposition

Let F be an absolutely continuous function and $f:=F^{\prime}$. Then we denote

$$
\left(D^{\alpha} F\right)(0):=\lim _{x \rightarrow 0} \frac{1}{\Gamma(1-\alpha)} \int_{0}^{x}(x-p)^{-\alpha} f(p) d p
$$

(1) If $\left(D^{\alpha} F\right)(0)$ exists and $\left(D^{\alpha} F\right)(0)=c$, then $\lim _{y \rightarrow 0} \frac{F(y)}{y^{\alpha}}=\frac{c}{\Gamma(1+\alpha)}$,
(2) if the limit $\lim _{y \rightarrow 0} \frac{f(y)}{y^{\alpha-1}}$ exists and $\lim _{y \rightarrow 0} \frac{f(y)}{y^{\alpha-1}}=\frac{c}{\Gamma(\alpha)}$, then $\left(D^{\alpha} F\right)(0)=c$.

Hence, it is natural to search for a solution to (10) in the form

$$
\begin{equation*}
u=\frac{h(t)}{\Gamma(1+\alpha)} x^{\alpha}+v, \quad v_{x} \in{ }_{0} H^{\alpha}(0,1) \tag{11}
\end{equation*}
$$

Theorem

Let $b, T>0$ and $\alpha \in(0,1)$. Let us assume that

- $u_{0} \in H^{1+\alpha}(0, b), u_{0}^{\prime} \in{ }_{0} H^{\alpha}(0, b), u_{0}(b)=0$ and $u_{0} \geq 0, u_{0} \not \equiv 0$.
-

$$
\exists M>0 \quad \forall x \in[0, b] \quad u_{0}(x) \leq \frac{M \Gamma(2-\alpha)}{b^{1-\alpha}}(b-x)
$$

Then, there exists exactly one (u, s) a solution to the system (1), s.t.

Theorem

Let $b, T>0$ and $\alpha \in(0,1)$. Let us assume that

- $u_{0} \in H^{1+\alpha}(0, b), u_{0}^{\prime} \in{ }_{0} H^{\alpha}(0, b), u_{0}(b)=0$ and $u_{0} \geq 0, u_{0} \not \equiv 0$.
-

$$
\exists M>0 \quad \forall x \in[0, b] \quad u_{0}(x) \leq \frac{M \Gamma(2-\alpha)}{b^{1-\alpha}}(b-x)
$$

Then, there exists exactly one (u, s) a solution to the system (1), s.t.

- $s \in C^{1}([0, T])$ and $0<\dot{s}(t) \leq M$ for all $t \in[0, T]$,

Theorem

Let $b, T>0$ and $\alpha \in(0,1)$. Let us assume that

- $u_{0} \in H^{1+\alpha}(0, b), u_{0}^{\prime} \in{ }_{0} H^{\alpha}(0, b), u_{0}(b)=0$ and $u_{0} \geq 0, u_{0} \not \equiv 0$. -

$$
\exists M>0 \quad \forall x \in[0, b] \quad u_{0}(x) \leq \frac{M \Gamma(2-\alpha)}{b^{1-\alpha}}(b-x)
$$

Then, there exists exactly one (u, s) a solution to the system (1), s.t.

- $s \in C^{1}([0, T])$ and $0<\dot{s}(t) \leq M$ for all $t \in[0, T]$,
- $u, D^{\alpha} u \in C\left(\overline{Q_{s, T}}\right), u_{t}, \frac{\partial}{\partial x} D^{\alpha} u \in C\left(Q_{s, T}\right)$,

Theorem

Let $b, T>0$ and $\alpha \in(0,1)$. Let us assume that

- $u_{0} \in H^{1+\alpha}(0, b), u_{0}^{\prime} \in{ }_{0} H^{\alpha}(0, b), u_{0}(b)=0$ and $u_{0} \geq 0, u_{0} \not \equiv 0$.
-

$$
\exists M>0 \quad \forall x \in[0, b] \quad u_{0}(x) \leq \frac{M \Gamma(2-\alpha)}{b^{1-\alpha}}(b-x)
$$

Then, there exists exactly one (u, s) a solution to the system (1), s.t.

- $s \in C^{1}([0, T])$ and $0<\dot{s}(t) \leq M$ for all $t \in[0, T]$,
- $u, D^{\alpha} u \in C\left(\overline{Q_{s, T}}\right), u_{t}, \frac{\partial}{\partial x} D^{\alpha} u \in C\left(Q_{s, T}\right)$,
- $u_{x} \in C\left(\overline{Q_{s, T}}\right)$ in the case $\alpha \in\left(\frac{1}{2}, 1\right)$ and $u_{x} \in C\left(\overline{Q_{s, T}} \backslash(\{t=0\} \times[0, b])\right)$ in the case $\alpha \in\left(0, \frac{1}{2}\right]$.

Theorem

Let $b, T>0$ and $\alpha \in(0,1)$. Let us assume that

- $u_{0} \in H^{1+\alpha}(0, b), u_{0}^{\prime} \in{ }_{0} H^{\alpha}(0, b), u_{0}(b)=0$ and $u_{0} \geq 0, u_{0} \not \equiv 0$.
-

$$
\exists M>0 \quad \forall x \in[0, b] \quad u_{0}(x) \leq \frac{M \Gamma(2-\alpha)}{b^{1-\alpha}}(b-x)
$$

Then, there exists exactly one (u, s) a solution to the system (1), s.t.

- $s \in C^{1}([0, T])$ and $0<\dot{s}(t) \leq M$ for all $t \in[0, T]$,
- $u, D^{\alpha} u \in C\left(\overline{Q_{s, T}}\right), u_{t}, \frac{\partial}{\partial x} D^{\alpha} u \in C\left(Q_{s, T}\right)$,
- $u_{x} \in C\left(\overline{Q_{s, T}}\right)$ in the case $\alpha \in\left(\frac{1}{2}, 1\right)$ and $u_{x} \in C\left(\overline{Q_{s, T}} \backslash(\{t=0\} \times[0, b])\right)$ in the case $\alpha \in\left(0, \frac{1}{2}\right]$.
- There exists $\beta \in(\alpha, 1)$, such that for every $t \in(0, T]$ and every $0<\varepsilon<\omega<s(t)$ we have $u(\cdot, t) \in W^{2, \frac{1}{1-\beta}}(\varepsilon, \omega)$.
- The solution to parabolic type problem in non-cylindrical domain with given boundary s, where

$$
\begin{equation*}
s \in C^{0,1}[0, T], \quad 0<\dot{s} \leq M \quad \text { for a.a. } t \in(0, T) \tag{12}
\end{equation*}
$$

- The solution to parabolic type problem in non-cylindrical domain with given boundary s, where

$$
\begin{equation*}
s \in C^{0,1}[0, T], \quad 0<\dot{s} \leq M \quad \text { for a.a. } t \in(0, T) \tag{12}
\end{equation*}
$$

- Transformation to cylindrical domain $p=\frac{x}{s(t)}, v(p, t):=u(s(t) p, t)=u(x, t)$
- The solution to parabolic type problem in non-cylindrical domain with given boundary s, where

$$
\begin{equation*}
s \in C^{0,1}[0, T], \quad 0<\dot{s} \leq M \quad \text { for a.a. } t \in(0, T) \tag{12}
\end{equation*}
$$

- Transformation to cylindrical domain $p=\frac{x}{s(t)}, v(p, t):=u(s(t) p, t)=u(x, t)$

$$
\begin{cases}v_{t}-x \frac{\dot{s}(t)}{s(t)} v_{x}-\frac{1}{s^{1+\alpha}(t)} \frac{\partial}{\partial x} D^{\alpha} v=0 & \text { for } 0<x<1,0<t<T, \tag{13}\\ v_{x}(0, t)=0, v v(1, t)=0 & \text { for } t \in(0, T), \\ v(x, 0)=v_{0}(x) & \text { for } 0<x<1 .\end{cases}
$$

- The solution to parabolic type problem in non-cylindrical domain with given boundary s, where

$$
\begin{equation*}
s \in C^{0,1}[0, T], \quad 0<\dot{s} \leq M \quad \text { for a.a. } t \in(0, T) . \tag{12}
\end{equation*}
$$

- Transformation to cylindrical domain $p=\frac{x}{s(t)}, v(p, t):=u(s(t) p, t)=u(x, t)$

$$
\begin{cases}v_{t}-x \frac{\dot{s}(t)}{s(t)} v_{x}-\frac{1}{s^{1+\alpha}(t)} \frac{\partial}{\partial x} D^{\alpha} v=0 & \text { for } 0<x<1,0<t<T, \tag{13}\\ v_{x}(0, t)=0, v v(1, t)=0 & \text { for } t \in(0, T), \\ v(x, 0)=v_{0}(x) & \text { for } 0<x<1 .\end{cases}
$$

- Existence and regularity of the solution by means of evolution operator theory.

$$
t \mapsto A(t):=\frac{1}{s^{1+\alpha}(t)} \frac{\partial}{\partial x} D^{\alpha} \in C^{0,1}\left([0, T] ; B\left(\mathcal{D}_{\alpha}, L^{2}(0,1)\right)\right)
$$

and $A(t)$ is sectorial for every $t \in[0, T]$ and $A(t)$ have common domain.

- The solution to parabolic type problem in non-cylindrical domain with given boundary s, where

$$
\begin{equation*}
s \in C^{0,1}[0, T], \quad 0<\dot{s} \leq M \quad \text { for a.a. } t \in(0, T) . \tag{12}
\end{equation*}
$$

- Transformation to cylindrical domain $p=\frac{x}{s(t)}, v(p, t):=u(s(t) p, t)=u(x, t)$

$$
\begin{cases}v_{t}-x \frac{\dot{s}(t)}{s(t)} v_{x}-\frac{1}{s^{1+\alpha}(t)} \frac{\partial}{\partial x} D^{\alpha} v=0 & \text { for } 0<x<1,0<t<T, \tag{13}\\ v_{x}(0, t)=0, v v(1, t)=0 & \text { for } t \in(0, T), \\ v(x, 0)=v_{0}(x) & \text { for } 0<x<1 .\end{cases}
$$

- Existence and regularity of the solution by means of evolution operator theory.

$$
t \mapsto A(t):=\frac{1}{s^{1+\alpha}(t)} \frac{\partial}{\partial x} D^{\alpha} \in C^{0,1}\left([0, T] ; B\left(\mathcal{D}_{\alpha}, L^{2}(0,1)\right)\right)
$$

and $A(t)$ is sectorial for every $t \in[0, T]$ and $A(t)$ have common domain.

$$
v(x, t)=G(t, 0) v_{0}(x)+\int_{0}^{t} G(t, \sigma) \frac{\dot{s}(\sigma)}{s(\sigma)} x v_{x}(x, \sigma) d \sigma
$$

- The solution to parabolic type problem in non-cylindrical domain with given boundary s, where

$$
\begin{equation*}
s \in C^{0,1}[0, T], \quad 0<\dot{s} \leq M \quad \text { for a.a. } t \in(0, T) . \tag{12}
\end{equation*}
$$

- Transformation to cylindrical domain $p=\frac{x}{s(t)}, v(p, t):=u(s(t) p, t)=u(x, t)$

$$
\begin{cases}v_{t}-x \frac{\dot{s}(t)}{s(t)} v_{x}-\frac{1}{s^{1+\alpha}(t)} \frac{\partial}{\partial x} D^{\alpha} v=0 & \text { for } 0<x<1,0<t<T, \tag{13}\\ v_{x}(0, t)=0, v v(1, t)=0 & \text { for } t \in(0, T), \\ v(x, 0)=v_{0}(x) & \text { for } 0<x<1 .\end{cases}
$$

- Existence and regularity of the solution by means of evolution operator theory.

$$
t \mapsto A(t):=\frac{1}{s^{1+\alpha}(t)} \frac{\partial}{\partial x} D^{\alpha} \in C^{0,1}\left([0, T] ; B\left(\mathcal{D}_{\alpha}, L^{2}(0,1)\right)\right)
$$

and $A(t)$ is sectorial for every $t \in[0, T]$ and $A(t)$ have common domain.

$$
v(x, t)=G(t, 0) v_{0}(x)+\int_{0}^{t} G(t, \sigma) \frac{\dot{s}(\sigma)}{s(\sigma)} x v_{x}(x, \sigma) d \sigma
$$

- Higher spatial regularity in the interior of the domain.
- The solution to parabolic type problem in non-cylindrical domain with given boundary s, where

$$
\begin{equation*}
s \in C^{0,1}[0, T], \quad 0<\dot{s} \leq M \quad \text { for a.a. } t \in(0, T) . \tag{12}
\end{equation*}
$$

- Transformation to cylindrical domain $p=\frac{x}{s(t)}, v(p, t):=u(s(t) p, t)=u(x, t)$

$$
\begin{cases}v_{t}-x \frac{\dot{s}(t)}{s(t)} v_{x}-\frac{1}{s^{1+\alpha}(t)} \frac{\partial}{\partial x} D^{\alpha} v=0 & \text { for } 0<x<1,0<t<T, \tag{13}\\ v_{x}(0, t)=0, v v(1, t)=0 & \text { for } t \in(0, T), \\ v(x, 0)=v_{0}(x) & \text { for } 0<x<1 .\end{cases}
$$

- Existence and regularity of the solution by means of evolution operator theory.

$$
t \mapsto A(t):=\frac{1}{s^{1+\alpha}(t)} \frac{\partial}{\partial x} D^{\alpha} \in C^{0,1}\left([0, T] ; B\left(\mathcal{D}_{\alpha}, L^{2}(0,1)\right)\right)
$$

and $A(t)$ is sectorial for every $t \in[0, T]$ and $A(t)$ have common domain.

$$
v(x, t)=G(t, 0) v_{0}(x)+\int_{0}^{t} G(t, \sigma) \frac{\dot{s}(\sigma)}{s(\sigma)} x v_{x}(x, \sigma) d \sigma
$$

- Higher spatial regularity in the interior of the domain. We note that $v_{x}(t, 1)$ need not to vanish.
- The maximum principles

Lemma

Let $f \in A C[0, L]$ and for every $\varepsilon \in(0, L) f \in W^{1, \frac{1}{1-\beta}}(\varepsilon, L)$ for some $\beta \in(0,1]$. Then, if f attains its maximum at the point $x_{0} \in(0, L]$, then for every $\alpha \in(0, \beta)$ there holds the inequality $\left(D^{\alpha} f\right)\left(x_{0}\right) \geq 0$. Furthermore, if f is not constant on $\left[0, x_{0}\right]$, then $\left(D^{\alpha} f\right)\left(x_{0}\right)>0$.

- The maximum principles

Lemma

Let $f \in A C[0, L]$ and for every $\varepsilon \in(0, L) f \in W^{1, \frac{1}{1-\beta}}(\varepsilon, L)$ for some $\beta \in(0,1]$. Then, if f attains its maximum at the point $x_{0} \in(0, L]$, then for every $\alpha \in(0, \beta)$ there holds the inequality $\left(D^{\alpha} f\right)\left(x_{0}\right) \geq 0$. Furthermore, if f is not constant on $\left[0, x_{0}\right]$, then $\left(D^{\alpha} f\right)\left(x_{0}\right)>0$.

Lemma

Let $f \in A C[0, L]$ and $f^{\prime} \in W^{1, \frac{1}{1-\beta}}(\varepsilon, L)$ for every $\varepsilon>0$ and for fixed $\beta \in(0,1)$. If f attains its maximum at $x_{0} \in(0, L)$, then $\left(\frac{\partial}{\partial x} D^{\alpha} f\right)\left(x_{0}\right) \leq 0$ for every $\alpha \in(0, \beta)$. Furthermore, if f is not constant on $\left[0, x_{0}\right]$, then $\left(\frac{\partial}{\partial x} D^{\alpha} f\right)\left(x_{0}\right)<0$.

- Space-fractional version of the Hopf's, lemma, i.e. $D^{\alpha} u(s(t), t)<0$.
- Space-fractional version of the Hopf's, lemma, i.e. $D^{\alpha} u(s(t), t)<0$.

Proposition

Let u be a nonnegative solution to $u_{t}-\frac{\partial}{\partial x} D^{\alpha} u=0$ in $Q_{s, T}$, where s satisfies (12). We assume that u has the following regularity $u \in C\left(\overline{Q_{s, T}}\right), u_{t} \in C\left(Q_{s, T}\right)$, $u(\cdot, t) \in A C[0, s(t)]$ for every $t \in(0, T), \frac{\partial}{\partial x} D^{\alpha} u \in C\left(Q_{s, T}\right)$. Furthermore, for every $t \in(0, T)$, for every $0<\varepsilon<\omega<s(t)$ we have $u(\cdot, t) \in W^{2, \frac{1}{1-\beta}}(\varepsilon, \omega)$ for some $\beta \in(\alpha, 1]$. Let $t_{0} \in(0, T]$ be fixed. Then if $u\left(s\left(t_{0}\right), t_{0}\right)=0$, then either $\left(D^{\alpha} u\right)\left(s\left(t_{0}\right), t_{0}\right)<0$ or $u \equiv 0$ on $Q_{s, t_{0}}$.

- Space-fractional version of the Hopf's, lemma, i.e. $D^{\alpha} u(s(t), t)<0$.

Proposition

Let u be a nonnegative solution to $u_{t}-\frac{\partial}{\partial x} D^{\alpha} u=0$ in $Q_{s, T}$, where s satisfies (12). We assume that u has the following regularity $u \in C\left(\overline{Q_{s, T}}\right), u_{t} \in C\left(Q_{s, T}\right)$, $u(\cdot, t) \in A C[0, s(t)]$ for every $t \in(0, T), \frac{\partial}{\partial x} D^{\alpha} u \in C\left(Q_{s, T}\right)$. Furthermore, for every $t \in(0, T)$, for every $0<\varepsilon<\omega<s(t)$ we have $u(\cdot, t) \in W^{2, \frac{1}{1-\beta}}(\varepsilon, \omega)$ for some $\beta \in(\alpha, 1]$. Let $t_{0} \in(0, T]$ be fixed. Then if $u\left(s\left(t_{0}\right), t_{0}\right)=0$, then either $\left(D^{\alpha} u\right)\left(s\left(t_{0}\right), t_{0}\right)<0$ or $u \equiv 0$ on $Q_{s, t_{0}}$.

- Estimates

$$
\left(D^{\alpha} u\right)(s(t), t) \geq-M, \quad 0 \leq u(x, t) \leq M \Gamma(2-\alpha) s^{\alpha-1}(t)(s(t)-x)
$$

- Space-fractional version of the Hopf's, lemma, i.e. $D^{\alpha} u(s(t), t)<0$.

Proposition

Let u be a nonnegative solution to $u_{t}-\frac{\partial}{\partial x} D^{\alpha} u=0$ in $Q_{s, T}$, where s satisfies (12). We assume that u has the following regularity $u \in C\left(\overline{Q_{s, T}}\right), u_{t} \in C\left(Q_{s, T}\right)$, $u(\cdot, t) \in A C[0, s(t)]$ for every $t \in(0, T), \frac{\partial}{\partial x} D^{\alpha} u \in C\left(Q_{s, T}\right)$. Furthermore, for every $t \in(0, T)$, for every $0<\varepsilon<\omega<s(t)$ we have $u(\cdot, t) \in W^{2, \frac{1}{1-\beta}}(\varepsilon, \omega)$ for some $\beta \in(\alpha, 1]$. Let $t_{0} \in(0, T]$ be fixed. Then if $u\left(s\left(t_{0}\right), t_{0}\right)=0$, then either $\left(D^{\alpha} u\right)\left(s\left(t_{0}\right), t_{0}\right)<0$ or $u \equiv 0$ on $Q_{s, t_{0}}$.

- Estimates

$$
\left(D^{\alpha} u\right)(s(t), t) \geq-M, \quad 0 \leq u(x, t) \leq M \Gamma(2-\alpha) s^{\alpha-1}(t)(s(t)-x) .
$$

- Solution of the space-fractional Stefan problem by means of Schauder fixed point theorem.
- Space-fractional version of the Hopf's, lemma, i.e. $D^{\alpha} u(s(t), t)<0$.

Proposition

Let u be a nonnegative solution to $u_{t}-\frac{\partial}{\partial x} D^{\alpha} u=0$ in $Q_{s, T}$, where s satisfies (12). We assume that u has the following regularity $u \in C\left(\overline{Q_{s, T}}\right), u_{t} \in C\left(Q_{s, T}\right)$, $u(\cdot, t) \in A C[0, s(t)]$ for every $t \in(0, T), \frac{\partial}{\partial x} D^{\alpha} u \in C\left(Q_{s, T}\right)$. Furthermore, for every $t \in(0, T)$, for every $0<\varepsilon<\omega<s(t)$ we have $u(\cdot, t) \in W^{2, \frac{1}{1-\beta}}(\varepsilon, \omega)$ for some $\beta \in(\alpha, 1]$. Let $t_{0} \in(0, T]$ be fixed. Then if $u\left(s\left(t_{0}\right), t_{0}\right)=0$, then either $\left(D^{\alpha} u\right)\left(s\left(t_{0}\right), t_{0}\right)<0$ or $u \equiv 0$ on $Q_{s, t_{0}}$.

- Estimates

$$
\left(D^{\alpha} u\right)(s(t), t) \geq-M, \quad 0 \leq u(x, t) \leq M \Gamma(2-\alpha) s^{\alpha-1}(t)(s(t)-x) .
$$

- Solution of the space-fractional Stefan problem by means of Schauder fixed point theorem.

$$
\Sigma:=\left\{s \in C^{0,1}[0, T], \quad 0<\dot{s} \leq M, \quad s(0)=b\right\} .
$$

- Space-fractional version of the Hopf's, lemma, i.e. $D^{\alpha} u(s(t), t)<0$.

Proposition

Let u be a nonnegative solution to $u_{t}-\frac{\partial}{\partial x} D^{\alpha} u=0$ in $Q_{s, T}$, where s satisfies (12). We assume that u has the following regularity $u \in C\left(\overline{Q_{s, T}}\right), u_{t} \in C\left(Q_{s, T}\right)$, $u(\cdot, t) \in A C[0, s(t)]$ for every $t \in(0, T), \frac{\partial}{\partial x} D^{\alpha} u \in C\left(Q_{s, T}\right)$. Furthermore, for every $t \in(0, T)$, for every $0<\varepsilon<\omega<s(t)$ we have $u(\cdot, t) \in W^{2, \frac{1}{1-\beta}}(\varepsilon, \omega)$ for some $\beta \in(\alpha, 1]$. Let $t_{0} \in(0, T]$ be fixed. Then if $u\left(s\left(t_{0}\right), t_{0}\right)=0$, then either $\left(D^{\alpha} u\right)\left(s\left(t_{0}\right), t_{0}\right)<0$ or $u \equiv 0$ on $Q_{s, t_{0}}$.

- Estimates

$$
\left(D^{\alpha} u\right)(s(t), t) \geq-M, \quad 0 \leq u(x, t) \leq M \Gamma(2-\alpha) s^{\alpha-1}(t)(s(t)-x) .
$$

- Solution of the space-fractional Stefan problem by means of Schauder fixed point theorem.

$$
\begin{gathered}
\Sigma:=\left\{s \in C^{0,1}[0, T], \quad 0<\dot{s} \leq M, \quad s(0)=b\right\} . \\
(P s)(t)=b-\int_{0}^{t}\left(D^{\alpha} u\right)(s(\tau), \tau) d \tau=\ldots \\
\cdots=b+\int_{0}^{b} u_{0}(x) d x-\int_{0}^{s(t)} u(x, t) d x .
\end{gathered}
$$

- Space-fractional version of the Hopf's, lemma, i.e. $D^{\alpha} u(s(t), t)<0$.

Proposition

Let u be a nonnegative solution to $u_{t}-\frac{\partial}{\partial x} D^{\alpha} u=0$ in $Q_{s, T}$, where s satisfies (12). We assume that u has the following regularity $u \in C\left(\overline{Q_{s, T}}\right), u_{t} \in C\left(Q_{s, T}\right)$, $u(\cdot, t) \in A C[0, s(t)]$ for every $t \in(0, T), \frac{\partial}{\partial x} D^{\alpha} u \in C\left(Q_{s, T}\right)$. Furthermore, for every $t \in(0, T)$, for every $0<\varepsilon<\omega<s(t)$ we have $u(\cdot, t) \in W^{2, \frac{1}{1-\beta}}(\varepsilon, \omega)$ for some $\beta \in(\alpha, 1]$. Let $t_{0} \in(0, T]$ be fixed. Then if $u\left(s\left(t_{0}\right), t_{0}\right)=0$, then either $\left(D^{\alpha} u\right)\left(s\left(t_{0}\right), t_{0}\right)<0$ or $u \equiv 0$ on $Q_{s, t_{0}}$.

- Estimates

$$
\left(D^{\alpha} u\right)(s(t), t) \geq-M, \quad 0 \leq u(x, t) \leq M \Gamma(2-\alpha) s^{\alpha-1}(t)(s(t)-x) .
$$

- Solution of the space-fractional Stefan problem by means of Schauder fixed point theorem.

$$
\begin{gathered}
\Sigma:=\left\{s \in C^{0,1}[0, T], \quad 0<\dot{s} \leq M, \quad s(0)=b\right\} . \\
(P s)(t)=b-\int_{0}^{t}\left(D^{\alpha} u\right)(s(\tau), \tau) d \tau=\ldots \\
\cdots=b+\int_{0}^{b} u_{0}(x) d x-\int_{0}^{s(t)} u(x, t) d x .
\end{gathered}
$$

$P: \Sigma \rightarrow \Sigma$ and P is continuous in maximum norm.

Theorem

Let $\left(u^{i}, s_{i}\right)$ be a solution to (1) corresponding to b_{i} and u_{0}^{i} for $i=1$, 2. If $b_{1} \leq b_{2}$ and $u_{0}^{1} \leq u_{0}^{2}$, then for every $t \in[0, T]$ we have $s_{1}(t) \leq s_{2}(t)$.

$$
\begin{cases}u_{t}-\frac{\partial}{\partial x} D^{\alpha} u=0 & \text { in }\{(x, t): 0<x<s(t), 0<t<\infty\} \tag{14}\\ u(0, t)=c_{1}, \quad u(t, s(t))=0 & \text { for } t \in(0, \infty) \\ \dot{s}(t)=-\left(D^{\alpha} u\right)(s(t), t) & \text { for } t \in(0, \infty)\end{cases}
$$

where we assume that $s(0)=0$ and $c_{1}>0$.

$$
\begin{cases}u_{t}-\frac{\partial}{\partial x} D^{\alpha} u=0 & \text { in }\{(x, t): 0<x<s(t), 0<t<\infty\} \tag{14}\\ u(0, t)=c_{1}, \quad u(t, s(t))=0 & \text { for } t \in(0, \infty) \\ \dot{s}(t)=-\left(D^{\alpha} u\right)(s(t), t) & \text { for } t \in(0, \infty)\end{cases}
$$

where we assume that $s(0)=0$ and $c_{1}>0$.

- similarity variable $\xi=x t^{-\frac{1}{\alpha+1}}$,

$$
\begin{cases}u_{t}-\frac{\partial}{\partial x} D^{\alpha} u=0 & \text { in }\{(x, t): 0<x<s(t), 0<t<\infty\} \tag{14}\\ u(0, t)=c_{1}, u(t, s(t))=0 & \text { for } t \in(0, \infty) \\ \dot{s}(t)=-\left(D^{\alpha} u\right)(s(t), t) & \text { for } t \in(0, \infty)\end{cases}
$$

where we assume that $s(0)=0$ and $c_{1}>0$.

- similarity variable $\xi=x t^{-\frac{1}{\alpha+1}}$,

$$
F(\xi)=F\left(x t^{-\frac{1}{\alpha+1}}\right):=u(x, t)
$$

$$
\partial^{\alpha} F^{\prime}(\xi)=-\frac{\xi}{\alpha+1} F^{\prime}(\xi)
$$

Proposition

Let us consider the problem for fixed $c_{1}>0, R>0, c_{2}<0$.

$$
\left\{\begin{array}{l}
\partial^{\alpha} F^{\prime}(\xi)=-\frac{\xi}{\alpha+1} F^{\prime}(\xi) \tag{15}\\
F(0)=c_{1}, \quad I^{1-\alpha} F^{\prime}(0)=c_{2},
\end{array} \text { for } \quad 0<\xi<R\right.
$$

There exists exactly one solution to (15) which belongs to

$$
X_{R, c_{1}, c_{2}}:=\left\{v \in C^{1}((0, R]): \xi^{1-\alpha} v^{\prime} \in C([0, R]), \quad v(0)=c_{1}, \quad I^{1-\alpha} v^{\prime}(0)=c_{2}\right\} .
$$

Furthermore, the solution is given by the formula

$$
\begin{equation*}
F(\xi)=c_{1}+\frac{c_{2}}{\Gamma(\alpha+1)}\left[\xi^{\alpha}+\Gamma(\alpha+1) \xi^{\alpha} \sum_{k=1}^{\infty}\left(\frac{-\xi^{1+\alpha}}{1+\alpha}\right)^{k} \frac{\prod_{i=1}^{k}(i \alpha+i-1)}{\Gamma((\alpha+1)(k+1))}\right] \tag{16}
\end{equation*}
$$

where the series is uniformly convergent on $[0, R]$. Finally, if we define

$$
\begin{equation*}
u(x, t):=F\left(x t^{-\frac{1}{1+\alpha}}\right) \tag{17}
\end{equation*}
$$

then $u(0, t)=c_{1}$ and u satisfies (14) $)_{1}$ on $\left\{(x, t): 0<x<R t^{\frac{1}{\alpha+1}}, 0<t<\infty\right\}$.

In the next lemma we obtain the family $\left(u^{R}, s^{R}\right)_{R>0}$ of solutions to $(14)_{1}$ and $(14)_{3}$.

Proposition

For every $c_{1}>0$ and every $R>0$ the functions

$$
\begin{gather*}
s^{R}(t)=R t^{\frac{1}{1+\alpha}} \tag{18}\\
u^{R}(x, t)=c_{1}+\frac{\tilde{c}_{2}}{\Gamma(\alpha+1)}\left[x^{\alpha} t^{-\frac{\alpha}{\alpha+1}}\right. \\
\left.+\Gamma(\alpha+1) x^{\alpha} t^{-\frac{\alpha}{\alpha+1}} \sum_{k=1}^{\infty}\left(\frac{-x^{1+\alpha}}{(1+\alpha) t}\right)^{k} \frac{\prod_{i=1}^{k}(i \alpha+i-1)}{\Gamma((\alpha+1)(k+1))}\right] \tag{19}
\end{gather*}
$$

where

$$
\begin{equation*}
\tilde{c}_{2}=-\frac{R}{(1+\alpha)\left[1+\sum_{k=1}^{\infty}\left(\frac{-R^{\mathbf{1}+\alpha}}{\mathbf{1}+\alpha}\right)^{k} \frac{\prod_{i=1}^{k}(i \alpha+i-1)}{\Gamma((\alpha+\mathbf{1}) k+\mathbf{1})}\right]} \tag{20}
\end{equation*}
$$

satisfy the equation $(14)_{3}$. Moreover, u^{R} is a solution to $(14)_{1}$ with $s(t)=s^{R}(t)$ and $u^{R}(0, t)=c_{1}$.

It remains to choose $R>0$ such that the pair $\left(u^{R}, s^{R}\right)$ given by Lemma (12) satisfies $u^{R}\left(s^{R}(t), t\right)=0$.

Theorem

For every $c_{1}>0$ there exists $c_{0}>0$ such that the pair $(u, s):=\left(u^{c_{0}}, s^{c_{0}}\right)$, where ($u^{c_{0}}, s^{c_{0}}$) come from Lemma 12 with $R=c_{0}$, satisfies the system (14). Furthermore,

$$
\begin{gather*}
\forall x>0 \quad u(x, \cdot), u_{t}(x, \cdot), u_{x}(x, \cdot) \in C\left(\left[s^{-1}(x), \infty\right)\right) \tag{21}\\
\forall t>0 \quad u(\cdot, t), u_{t}(\cdot, t) \in C([0, s(t)]), \quad u_{x}(\cdot, t) \in C((0, s(t)]) \tag{22}
\end{gather*}
$$

and

$$
\begin{equation*}
\forall t>0 \quad \frac{\partial}{\partial x} D^{\alpha} u(\cdot, t) \in C([0, s(t)]) . \tag{23}
\end{equation*}
$$

Finally, $u>0, u_{t}>0, u_{x}<0$ on $\{(x, t): 0<x<s(t), 0<t<\infty\}$.C. Martinez, M. Sanz, The theory of fractional powers of operators, Elsevier, 2001.
V. Voller, Fractional Stefan Problems, International Journal of Heat and Mass Transfer, 74 (2017) 269-277.V. Voller, On a fractional derivative form of the Green-Ampt infiltration model, Advances in Water Resources, 34, (2011), 257-262.

